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Abstract: This paper precisates the meaning of numerical membership values

and shows that there is no contradiction between a probabilistic interpretation

of grades of membership on the one hand, and membership functions of the

attribute universe whose ordinates add up to more than 1 on the other. The

membership value in a class � , e.g., �=tall, assigned by a subject to an object

of a given attribute value uex (e.g., uex=exact height value) is interpreted as

the subject's estimate of P (�juex) , the probability that this object would be

assigned (by herself or another subject) the label � in the presence of fuzziness

#1, 2 or 3 (in an experimental or natural language LB (labeling) or YN (yes-no)

situation in which the subject uses a nonfuzzy threshold criterion in the universe

U of estimated attribute values). �= �l is assumed to be an element of a label

set � , such as � = fsmall, medium, tallg . The probabilistic `summing up to

1 requirement' applies to the sum of P (�ljuex) = ��l(u
ex) over the elements

�l of � . In `traditional' fuzzy set theory, this requirement is expressed by the

formula for the negation, �NOT �(uex) + ��(uex) = 1 8uex , as well as by the

`summing up to 1' requirement (of the grades of membership of a given point

uex in all clusters) used by fuzzy clustering algorithms. The shapes of the

P (�ljuex) = ��l(u
ex) membership curves are derived in the TEE model, and

are contrasted with the shapes of the P (uexj�l) probability curves for which

the `summing up to 1 over uex ' holds. The signi�cance of the membership

values 0, 0.5 and 1, as well as the meaning of a `subnormal fuzzy set', of the

probability of a fuzzy event and of the possibility/probability consistency factor

are precisated. Zadeh's postulated formulas for the last two quantities are derived

and con�rmed. Entropy expressions connected with fuzzy subsets are derived.

The complementation paradox of fuzzy set theory is shown to disappear when

the postulated max operator for OR is replaced by the operators derived from

the TEE model.

This paper was �nished and distributed to a number of colleagues on Febru-

ary 19-th, 1988. It was �rst printed as a research report on October 8-th, 1990.



C1

Figures and Contents of

In�nite-Valued Logic Based on Two-Valued Logic and Probability

Part 1.4. The TEE Model for Grades of Membership

page

Figures see end of paper

Figure 1. Notation and Terminology

Figure 2. Derivation of uex =175 cm membership values for `tall' and `medium'

Figure 3. (a) Error curve and its wleft , wright . (b) Threshold and Membership

curve elicited in an exact YN and exact MU experiment respectively 3.3bc

Figure 4. Likelihoods and Grades of Membership versus � -quali�ed

probabilities

Abstract 0

1. Overview 1.1

1.1 Introduction 1.1

First and Second Assumptions of TEE Model

1.2 Non-probabilistic versus probabilistic interpretations of grades of

membership 1.3

De�nition 1. The fourth or black-box assumption

2. The Meaning of Grades of Membership

2.1 Labeling Probabilities or Likelihood Functions of uex

The convolution eqn (3) for fuzziness #1

2.2 De�nition 2. The third or LB,YN-MU assumption of Equivalence

2.3 Trying to Falsify the TEE Model

Norwich and Turksen

De�nition 3 of an Ideal Subject 2.6d

Theorem 1. The LB,YN-MU Theorem

3. Some Consequences of the TEE Model 3.1

Consequence 1. The S and bell shapes of the membership functions 3.1

Consequence 2. Derivation of the `one minus' formula for the negation 3.2

Consequence 3. Derivation of the `Summing up to one' formula 3.2

Consequence 4. The meaning of the uex values for which � = 1 3.3

Consequence 5. The meaning of the uex values for which � = 0 3.3

Consequence 6. The connection between the crossover points and the

threshold values 3.4



C2

Consequence 7. The meaning of subnormality

Consequence 8. The meaning of the mu-square function

4. Quantities which Depend on the Prior Distribution 4.1

4.1 � -Quali�ed Probabilities and Related Quantities 4.1

4.2 Introducing Grades of Membership into the Formulas 4.2

4.3 The Prior Distributions 4.3

5. More Consequences 5.1

Consequence 9. Resolution of the Possibility-Certainty Di�culty

Consequence 10. Resolution of the Only Man on Earth Di�culty

Consequence 11. The Meaning of the Probability of a Fuzzy Event

Consequence 12. The Meaning of the Degree of Consistency  of a

probability with a possibility distribution

Consequence 13. Entropies fo Fuzzy Sets

6. Conclusion

A1. An Alternative LB,YN-MU Assumption B A1

De�nition 4 of the (LB,YN-MU)-B Assumption A2

A2. The TEE Model and Bandler & Kohout's Checklist Paradigm A4

Common results for both, Implications for Fuzzy Set Theory A5

A3. The Resolution of the Complementation Paradox A6

References R1

Figures



1.1

The relation of the in�nite-valued system to the calculus of probabilities

awaits further inquiry

Karl Jan Lukasiewicz (Borkowsky, 1970 p. 173).

1. Overview

1.1 Introduction

In three previous papers (Hisdal 1986a,b, 1988a) we paved the way for the

presentation of the TEE model for grades of membership by 1. Showing that

there exist serious di�culties with present-day fuzzy set theory. 2. Identifying

14 di�erent sources of fuzziness or uncertainty and showing how the �rst three

of these (fuzziness #1a-3a) give rise to the grade of membership concept. 3.

De�ning LB (labeling), YN (yes-no) and MU (grade of membership) experiments,

label sets, and natural language situations to which grade of membership

functions refer. In addition, Hisdal (1988a) also sets up the �rst two assumptions

of the TEE model which are summarized in points i)-iii) below.

i) The �rst assumption says that when a subject performs a semantic (LB or

YN or MU) experiment under exact or nonexact conditions of observation, then

her �rst step is to make an estimate u of the object's atribute value; e.g., an

estimate of the object's height value when the experiment concerns a label set

such as

� = fsmall, medium, tallg ; (1)

with linguistic height values. This estimate need not be a numerical one, it can

be a comparison of the object's height with that of other, more familiar objects,

e.g., the height of a door opening. (In many applied cases, u will be a point in

a multidimensional universe.) The �rst assumption says that the answer which

a subject gives in a semantic experiment is a function of the estimated attribute

value u .

ii) The second assumption of the TEE model says that when a subject

performs an exact YN or LB experiment in which she is acquainted with uex ,

the exact attribute value of the object, then she constructs nonfuzzy (but context

dependent) quantization intervals �u� in the universe Uex such that she assigns

the label � to an object i� uex 2 �u� .

The following is a corollary of the �rst two assumptions:

iii) When a subject performs a nonexact LB or YN experiment, then she
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constructs nonfuzzy quantization intervals �u� in the universe U of estimated

attribute values such that she assigns the label � to an object in an LB

experiment i� u 2 �u� .

The second or `threshold' assumption of the TEE model (`TEE' stands

for `Threshold', `Error', `assumption of Equivalence') concerns only LB and

YN experiments. Such experiments exemplify natural language and everyday

discourse situations in which a person says, e.g., \John is tall"; or in which she

answers \Y" or \N" to the question \Is John tall?". In contrast, MU (grade

of membership) experiments do not exemplify an everyday situation because

numerical grade of membership values are not used in everyday discourse.

The present paper closes the circle by presenting the third or `LB,YN{MU'

assumption of Equivalence' which connects the numerical grade of membership

values speci�ed by a subject in a MU experiment with the answers given in an LB

or YN experiment. The assumption formalizes the contention that there exists a

positive correlation between the assignment of the label `tall' to an object in an

LB experiment, and the assignment to this object in a MU experiment of a high

grade of membership value in the fuzzy set `tall'.

The nonfuzzy quantization intervals used in LB or YN experiments according

to the second assumption give rise to nonfuzzy, binary-valued P (�ju) `threshold

functions of u ' which can assume solely the values 0 or 1. These functions are

`step'-shaped for extremal concepts � (e.g., �=old or �=young), and they are

`square-pulse'-shaped for nonextremal concepts like `middle-aged' (see �g. 2 and

Hisdal 1988a).

We show in this paper in precise mathematical terms how these nonfuzzy

LB or YN threshold curves in the universe U of estimated attribute values are

converted to the S- or bell- shaped `fuzzy threshold' or `grade of membership'

curves of fuzzy set theory in the universe Uex of exact attribute values when the

subject peforms an exact MU experiment. These washed-out threshold curves in

Uex are still more washed-out or fuzzi�ed when the MU experiment is nonexact

(see Hisdal 1986b, fuzziness #1b, section 3 and eqn (A9) in appendix. This last

fuzzi�cation e�ect was �rst discussed by Norwich & Turksen, 1982).

In order to limit the discussion, we shall deal mainly with fuzziness #1a

in this paper; i.e. with fuzziness due to the subject's anticipation of errors of
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observation. Fuzziness #2a and intersubject fuzziness #3a have already been

treated summarily in Hisdal (1986b).

Fig. 1 lists the main notation and terminology. A discussion of previous

probabilistic interpretations of grades of membership is given in sect. 1.2.

Sect. 2.1 shows how the nonfuzzy LB or YN threshold functions of U are

converted to fuzzy LB or YN threshold functions of Uex . The connection of

these fuzzy threshold curves in Uex with the membership functions elicited in a

MU experiment is presented in sect. 2.2 through the LB,YN-MU assumption of

equivalence. Experimental support for the TEE model is presented in sect. 2.3.

The di�erentiation in the TEE model between distributions of (�juex) versus

those of (uexj�) is presented in sect. 4 and illustrated in �g. 4. Eqn (21) of

sect. 4 expresses P (uexj�) in terms of ��(uex) for an `ideal subject', def. 3. The

connection of the TEE model with previous formulas and concepts of fuzzy set

theory is presented in sections 3 and 5. We conclude in sect. 6 that the TEE

model has important consequences for the applications of fuzzy set theory; as

well as for a theory of logic which is �rmly founded on the basic metalanguage

used by all human beings, namely natural language. Three important subjects

have been relegated to the appendix in order not to interrupt the continuity

of the paper. Appendix A1 presents an alternative LB,YN-MU assumption of

equivalence and explains why we assign to it a minor role only. Appendix A2

uncovers the tight connection between Bandler and Kohout's checklist paradigm

and the TEE model. Finally appendix A3 shows how the complementation

paradox of fuzzy set theory is naturally resolved when the max operator for

OR is replaced by the operators derived from the TEE model.

1.2 Probabilistic Interpretations of Grades of Membership and P

Zadeh (1978a) has made it quite clear that he considers possibility

distributions of the attribute universe to be conceptually completely distinct from

probability distributions. He has also made it clear that possibility distributions

are numerically equal to grade of membership distributions (Hisdal, 1986a,

eqn (1) ). In the course of time, a number of other voices have, however, also

made themselves heard.

Thus Hersh and Caramazza (1976) identify in their big experimental work

the grade of membership of the object's exact attribute value uex in, e.g., the
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fuzzy set `small', with the relative number of `yes' answers concerning smallness

of objects having that uex value.

Bandler & Kohout (1985) interpret partial truth values as the proportion

of `yes' answers checked o� on a `checklist'. We show in appendix A2 that the

membership concept of the TEE model (see sect. 2 here) can be interpreted as a

special application of Bandler & Kohout's checklist paradigm.

Lindley (1982) has investigated the question of possibilities versus

probabilities from the standpoint of scoring rules. He concludes that only the

+ and � operations are admissible, not the max and min operations. Natvig

(1983) interprets possibility distributions as a family of probabilities and Saaty

(1974) espouses a ratio scale for fuzzy sets.

Giles (1976, 1982) and Ruspini (1969) have both operated with probabilistic

interpretations of grades of membership. Giles identi�es grades of membership

with subjective probabilities determined in a betting situation. And Ruspini, in

his foundation laying 1969 paper on fuzzy clustering algorithms, says explicitly

that he uses a probabilistic interpretation of grades of membership. Furthermore

he sets up a formula according to which the grades of membership of an object

in the di�erent classes or clusters add up to 1. This formula has been retained

both by himself, by Backer (1978), by Bezdec, Coray, Gunderson and Watson

(1981), by Chaudhuri and Majumder (1982, p. 7, eqn (9) ), and by Dunn (1974)

in their subsequent work on fuzzy clustering algorithms. Which, by the way, are

some of the most widely accepted fuzzy systems that we have today, also outside

the fuzzy set community.

Gaines (1978, p. 167), suggests that membership values are averages over

a population of binary 0 or 1 responses. And Kandel (1978, p. 1623) says:

\Intuitively a similarity is felt between the concepts of fuzziness and probability.

The problems in which they are used are similar or coincide. . . . . The fact

that the assignment of a membership function of a fuzzy set is \nonstatistical"

does not mean that we cannot use probability distribution functions in assigning

membership functions." Zimmermann and Zysno (1980) say that they prefer the

algebraic sum and the product operators to max and min.

In the following we attempt to summarize the points of similarity and

di�erence between the TEE model and the probabilistic models of Gaines and
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Giles, and Bandler & Kohout's checklist paradigm.

1. The TEE model contrasts the natural-language-exemplifying situation

of an LB or YN experiment, in which the subject makes use of a linguistic

label, with the situation of a MU experiment in which the subject answers

with a numerical membership value chosen from the continuous interval [0,1]

concerning such a label. It is only in the latter situation that we can talk of a

partial grade of membership value according to the TEE model which identi�es

grade of membership values with the subject's estimate of the labeling- or Y-

probability elicited in a great number of LB or YN experiments. This is in

contrast to Gaines' and Bandler & Kohout's representations which do not make

use of MU experiments at all, but operate solely with the averages obtained in

YN experiments.

However, there is probably good agreement on this point between Giles'

betting model and the TEE model. If a subject is willing to bet money concerning

the correctness of a given statement (the correctness being ascertained by asking

the `�rst man in the street' for a YN answer, see Giles, 1976), then she is actually

estimating the probability of occurrence of Y answers over all `men in the street'.

This interpretation also agrees with Giles' latest work in which he introduces the

subject's `degree of belief' (Giles 1988, sect. 3). A characteristic feature of Giles'

work is that he does not operate at all with grade of membership functions of the

attribute universe, only with grades of membership of objects. Giles concludes

his 1988 paper with a pessimistic outlook for the grade of membership concept.

This is probably due to his introduction of the more fuzzy `homogeneous agents'

and `general agents' in addition to his `Bayesian agent'. In our opinion Giles'

pessimistic conclusion is not justi�ed according to his own work. The existence

of subjects who are so conscientious that they are averse to specifying an exact

numerical membership value does not imply that such values are meaningless. We

believe that it only means that such subjects estimate distributions or intervals

over the [0,1] grade of membership interval in order not to bind themselves to a

single value.

2. According to the �rst and second assumption of the TEE model, a sub-
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ject who performs a YN or LB experiment has no other choice than that

of basing her answer a) on her estimate of the object's attribute value and

b) on the use of a nonfuzzy quantization interval in the universe of estimated

attribute values. The last assumption agrees with Gaines' assumption of nonfuzzy

thresholds. Gaines operates solely in the universe of exact attribute values. His,

as well as Giles' membership values are to be identi�ed with those of the TEE

model obtained in an exact MU experiment, assuming that the subject operates

solely with fuzziness #3 (intersubject fuzziness, see Hisdal, 1986b). Fuzziness

#1 (variable conditions of observation, see present paper) and fuzziness #2

(representation in an underdimensioned universe, see Hisdal 1986b) are, as far as

I understand these authors, not considered by Gaines and Giles.

The TEE model combines an operational de�nition of grades of membership

in the form of MU experiments (also contained in Giles' betting model, though in

a di�erent form) with an interpretational de�nition which speci�es a procedure

that a subject can use in order to give her answer in an LB or YN experiment,

or in order to specify the size of his bet (also contained in Gaines' work).

3. Finally the TEE model connects up these two de�nitions by the LB,YN-

MU assumption of equivalence which interprets grades of membership as the

subject's estimate of the labeling probability obtained in LB or YN experiments

for objects of the same exact attribute value uex ; the variability in labeling being

due to fuzziness #1, 2 or 3.

The TEE model thus attaches great signi�cance to the complete de�nition

of the meaning of the grade of membership concept. However, it also makes the

following `black box' assumption.

De�nition 1 of the `BLACK BOX' or fourth assumption of

the TEE model. Often the detailed original meaning of the numerical grade-

of-membership-values becomes gradually buried in a `black box' in the subject's

mind such that only the values of the membership functions for di�erent (context

dependent) concepts remain in her consciously accessable data base.

This assumption is in agreement with many other �elds of arti�cial

intelligence (e.g., visual pattern recognition or processing of language) in which

we have learned that a very substantial part of human information processing

proceeds on a subconscious level. It is just this `black box e�ect' which makes

arti�cial intelligence such a di�cult and, at the same time, fascinating �eld.
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2. The Meaning of Grades of Membership

2.1 Labeling Probabilities or Likelihood Functions of uex

Since grades of membership are connected up in subsection 2.2 with labeling

or YN probabilities elicited in LB or YN experiments, we start by deriving

a formula for these probabilities expressed in terms of 1) �u� , the subject's

quantization interval for � in the universe U of estimated attribute values and

2) the real error function P (ujuex) . This is the probability that the subject's

estimate of the object's attribute value is u when the exact attribute value of

the object (as determined by the experimenter in an exact experiment) is uex .

We start with the example shown in �g. 2. This presupposes a subject S

for whom u�;l , the (lower) threshold value for `tall man', in the universe U is

170 cm. Her nonfuzzy ttall(u) threshold curve for `tall man' is shown by the step

curve in the left half of �g. 2.

In general, the t�(u) threshold curve for a concept � is de�ned as a function

of uwhich is equal to 1 inside the subject's quantization interval �u� for � ,

and to 0 outside this interval. According to the �rst and second assumptions of

the TEE model, it can be interpreted as,

t�(u) = P (� j u) ; (2)

the probability that the subject will assign the label � 2 � (in an LB or YN

situation) to an object whose attribute value she estimates to be equal to u .

Fuzzy set theory has always operated with membership functions of the

exact attribute values uex of the objects, not of the estimated attribute values

u (although uex is usually denoted by u in present-day theory). This is not

only natural, but also necessary in an experimental situation because 1) u ,

the subject's estimate of the attribute value of the object, is unknown to the

experimenter. 2) uex is an invariant for a given object, while u is not. In

the following we therefore derive the shape of the P (�juex) curves from the

shape of the nonfuzzy P (�ju) `step' or `square-pulse' curves. And we show that

the former are a rounded-o� or fuzzi�ed version of the latter. More precisely,

P (�juex) is the convolution of P (�ju) with the P (ujuex) error curve.

Before we start the derivation, we note that we assume a quantized attribute

universe in our formulas and �gures. For purposes of visualization, continuous
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curves are drawn through the discrete points of the �gures, and subscripts on u

are mostly left out in the formulas. The extension of the formulas to continuous

universes is straightforward.

The lower and upper threshold values for the di�erent elements �l of �

are marked o� in the �gure as the midpoints between the greatest (upper)

quantization point u�;u of the concept �= �l to the left of the threshold, and

the smallest (lower)quantization point u�0;l of the concept �
0 = �l+1 to the right

of the threshold (see Hisdal 1988a, item 5 of def. 1 and remark 2 of def. 11).

The derivation of the P (�juex) value for uex =175 cm is illustrated in �g. 2.

The abcissa axis of this �gure represents the estimated attribute-value u . The

probability that the subject will label an object with exact attribute value uex

as being � is, according to our second assumption, equal to the probability

that u will fall into S's quantization interval �u� = fu�l; : : : ; u�ug for � ,

P (�juex) =

u�uX
u=u�l

P (ujuex) =

1X
u=�1

t�(u) P (uju
ex) ; (3)

where t�(u) is the nonfuzzy `threshold curve' (see illustrations in �g. 2 for �

equal to `tall' and `medium' respectively).

The broken curve in �g. 2 shows an assumed P (ujuex) real error function

for uex=175 cm. P (�juex) is equal to the sum of the ordinates of this function

in the shaded areas for �=tall and �=medium respectively. For a each value

of uex , we must now displace the error curve to u = uex and compute the sum

(3). This results in the fuzzy or rounded P (talljuex) threshold curve for `tall' of

�g. 3(b). The nonfuzzy threshold curve in the same �gure can be interpreted as

the P (talljuex) curve elicited in an exact YN experiment for which u= uex .

Note that there is nothing fuzzy about the meaning of the fuzzy P (�juex)

threshold curves. The value of P (�juex) denotes the probability that an object

with exact attribute value uex will be assigned the label � 2 � by the subject;

the uncertainty in labeling being due to errors of estimation of uex .

In statistical terminology the P (�juex) labeling probabilty is called a

likelihood distribution over the conditioning variable uex . We will therefore

also use the alternative names `likelihood distribution of � over uex ' or `fuzzy

threshold function of uex for the label � ' for this quantity.

We can sum up the results of this section by stating that, for a given

subject, the labeling probability P (�) is a nonfuzzy threshold function of u ,
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the estimated attribute value of the object (see `step'- and `square pulse' curves

of �g. 2). When P (�) is considered to be a function of uex , the exact attribute

value of the object, then eqn (3) shows that it is converted to a fuzzy threshold

function (see rounded curve in �g. 3(b) ). The nonfuzzy function of u and the

fuzzy function of uex refer to the same YN or LB experiment. (By a nonfuzzy and

fuzzy function we mean a function whose range is f0; 1g and [0,1] respectively.)

The bigger the width of the error curve (�g. 3(a) ), the bigger is the

fuzzi�cation or rounding-o� e�ect. For an exact YN or LB experiment we have

that u= uex , and consequently the error curve has the width 0 (i.e., it is a delta

function). In this case there is no fuzzi�cation e�ect, and the labeling probability

is given by a nonfuzzy threshold function not only of u , but also of uex . This

function is shown by the step curve in �g. 3(b).

2.2 The LB,YN-MU Assumption of Equivalence

In this subsection we �nally make the important connection between the

results of LB or YN experiments on the one hand, and those of MU experiments

on the other. The connecting link is the third or LB,YN-MU assumption of

equivalence of the TEE model, def. 2 below.

We shall assume that the grade of membership curves refer to an exact MU

experiment performed by the subject. (For nonexact MU experiments, see Hisdal

1986b, sect. 1 and appendix, fuzziness #1b.)

As a preliminary, we start with our �=tall example. In an exact YN or LB

experiment, the P (�juex) curve is now the nonfuzzy threshold curve of �g. 3(b).

In a MU experiment, the subject is no longer required to select a label � 2 � ,

or to give a YN answer concerning the object's being � . Instead she is instructed

to assign to an object with a given uex -value a grade of membership-value in

the class `tall' (see Hisdal 1988a, defs. 4, 5). We know that she then performs

some sort of smoothing operation on this step curve. The TEE model now says,

that the original meaning of the ordinates of this smoothed grade of membership

curve is the following:

When asked to what degree a person is tall, the subject (who knows that the

object's exact height is 175� 5 cm) puts herself into the situation of everyday

life in which she cannot measure the exact height value of each object. She

knows that under such conditions she will make errors of observation. And
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she takes account of this knowledge by constructing an estimated error curve

P est(u j (uex=175 cm)) and saying to herself: \Under everyday conditions of

observation, I would estimate the object's height to lie in my quantization interval

for `tall' in 75% of all cases. In 25% of all cases I would estimate it to lie in my

quantization interval for `medium', and would therefore not assign the label `tall'

to the object. The grade of membership of this object in the class `tall' is therefore

�tall(u
ex=175 cm) = P (tall j (uex=175 cm)) = 0:75 :" (4)

This is the situation for uex=175 cm depicted in �gs. 2, 3, assuming that the

error curve E(x) in �g. 3(a) is the subject's estimated error curve P est(xjuex) ,

where x = u � uex . In general the subject carries out this operation for every

value of uex , thereby converting the nonfuzzy threshold curve of �g. 3(b)

to the fuzzy threshold or grade of membership curve of that �gure. Finally

the subject stores this membership curve in her knowledge base, its original

meaning becoming a `black box' whose contents may be forgotten. The `black

box assumption' has already been stated in def. 1, end of sect. 1.2.

The following is a more formal statement of the LB,YN-MU assumption.

De�nition 2 of the LB,YN-MU assumption of

equivalence or the third assumption of the TEE model for fuzziness #1a

(for #2a and 3a, see Hisdal (1986b, sect. 2.3 and appendix)). When a subject

performs a MU experiment under exact conditions of observation, she puts herself

into the situation of an observation under nonexact conditions. Her grade of

membership curve is her estimate of the modi�cation of her nonfuzzy LB or

YN threshold curve by the error curve. The word `estimate' in this connection

referring both to her estimate of the probabilities of error and to her estimate of

the mathematically computed e�ect of these errors in rounding-o� the nonfuzzy

threshold curve,

�excond� (uex) = subject's estimate of P (�juex) under nonexact conditions

= P est�nexcond(�juex) : (5)

The superscripts `excond' and `est-nexcond' on the left and right hand sides of

eqn (8) refer to a membership and a likelihood function elicited under `exact

conditions of observation' and `nonexact conditions of observation' respectively.
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The latter being the estimated nonexact conditions assumed by the subject in

connection with her fuzziness #1a.

The value of P est�nexcond(� j uex) on the right hand side of eqn (5) is found

from eqn (3), except that we must now replace the real error curve P (ujuex) by

P est(ujuex) , the subject's estimate of this curve. Assuming that the subject is

able to carry out the mathematical operation of eqn (3) correctly, we have then

�excond� (uex) =
Xu�u

u=u�l
P est(ujuex) =

X1

u=�1
t�(u) P

est(ujuex) ; (6)

where t�(u) is the nonfuzzy threshold curve, see �g. 2. The subject will

usually refer her membership curve to everyday conditions of observation; i.e.,

P est(ujuex) is her estimate of the error curve under everyday conditions. Her

membership curve for � , as elicited in a MU experiment performed under exact

conditions, will then be equal to her likelihood curve for � , as elicited under

everyday conditions; provided that her estimate of the error curve of everyday

conditions, and her computation of the e�ect of these errors on the nonfuzzy

threshold or likelihood curve is correct.

2.3 Trying to Falsify the TEE model

An outline of the TEE model was �rst presented in Las Palmas (Hisdal

1982), and was immediately criticized by I.B. Turksen on the ground that his

experimental results showed that MU experiments result in wider curves than

YN experiments (Norwich & Turksen, 1982). Already then I could tell Turksen

that this is just what is to be expected from the TEE model when the two

experiments are performed under the same conditions of observation. Indeed, if

Norwich and Turksen had found that the two curves are approximately identical,

then this result would have been a falsi�cation of the TEE model. This subsection

is devoted mainly to a discussion of this point.

Later, Turksen (private communication) criticized the TEE model on the

ground that an experimental test of eqn (5) would require the YN experiment

and the MU experiment to be performed under di�erent conditions of observation

while \all the psychophysical literature is in favor of comparing two functions

under identical conditions".

This criticism is not really to the point. If the subject's meaning of the

membership function is indeed that of a tool used for communicating her estimate
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of the e�ect of nonexact conditions of observation on the labeling of objects, then

we cannot reject eqn (5) just because it is inconvenient from an experimental

point of view.

Finally Turksen has criticised the notion of `everyday conditions of

observation' because of the di�culty of de�ning and applying such conditions.

Again his attack on the TEE model is due to the supposedly great experimental

di�culties for testing it. Assuming for the moment that these di�culties are

real, they would not be a su�cient ground for pronouncing a theory as being

false. E.g., Einstein's prediction of the dependence of time intervals on the

movement of the coordinate system in which they are measured was only veri�ed

experimentally decennia later. But the theory of relativity was not falsi�ed in

1906 because this prediction could not be veri�ed with the technologies and

instrumentations available at that time. (For possible de�nitions of `everyday

conditions of observation', see Hisdal 1984a section 5 and de�nition 5.14; also

Hisdal 1986b, sect. 1.)

In this subsection we show that it is not necessary to perform a YN and a

MU experiment under di�erent conditions of obseervation in order to test the

TEE model. Norwich and Turksen's experimental setup of a YN and a MU

experiment performed under the same conditions of observation can be used as a

partial test of this model. Furthermore, a good de�nition of everyday conditions

of observation is not a prerequisite for the TEE model. All that is required, is that

the subject make some assumption about the frequency of errors of observation

which occur under the uncontrolled conditions of everyday life.

In general we would not expect that the subject can carry out the

computational part of eqn (6) exactly when she performs an exact MU

experiment, or when she stores her internal membership function. The better

the agreement between �excond� (uex) and the right hand side of eqn (6), the

more consistent is the subject's information processing in connection with grade

of membership assignments. To formalize this statement, we de�ne an ideal

subject as follows.

De�nition 3 of an ideal subject. This is a subject who

1. Consistently uses the same estimated error curve P est(ujuex) in connection

with MU experiments.
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2. Consistently uses the same lower and upper thresholds in u in semantic

experiments concerning � , and referring to the same situation (concerning

the situation dependence, see Hisdal 1988a, sections 1 and 6).

3. Performs the summation operation in eqn (6) correctly for all uex .

In summary, an ideal subject always uses the same internal ��(u)

membership function in a MU experiment referring to a given label and a well-

de�ned situation. In an exact MU experiment, the ordinates of this function of

u= uex are given by eqn (6). In a nonexact MU experiment, ��(uex) is not

a constant. Its expectation value is given in Hisdal (1986b eqn (A9); see also

eqns (A7), (A8) concerning the internal membership function).

The formulas of the TEE model papers which involve grades of membership

assume an ideal subject unless something else is mentioned.

We are now ready to say something about the relation between ��(uex) and

P (�juex) when both are elicited from an ideal subject under the same conditions

of observation. Suppose �rst, that these are exact conditions. According to

the second assumption of the TEE model, P excond(�juex) is then given by

the nonfuzzy t�(u) threshold curve of �gs. 2 and 3(b). While �excond� (uex)

is, according to eqns (5), (6) and �gs. 2, 3, a rounded-o� version of the nonfuzzy

threshold curve.

Suppose now that P (�juex) and ��(uex) are both elicited under the same

nonexact conditions, namely those assumed by the subject in connection with

her fuzziness #1a. Pnexcond(�juex) is then identical with the right hand side

of eqn (6) (and with the rounded curve in �g. 3(b)). While the expectation of

�nexcond� (uex) (over objects of a given uex ) is a rounded version of �excond� (uex) ,

the left hand side of (6) ( �excond� (uex) being identical with the rounded curve of

�g. 3(b)). More precisely, �nexcond� (uex) is the convolution of �excond� (uex) and

the real error curve of the nonexact conditions (see Hisdal 1986b, eqn (A9) in

appendix). We have thus the following result:

Theorem 1. The LB,YN-MU Theorem. When a membership

curve ��(uex) and an LB or YN likelihood curve P (�juex) are both elicited

under the same, real conditions of observation, these being either exact

conditions, or the nonexact conditions estimated by the subject in connection

with her fuzziness #1a, then the expected membership curve is a rounded-o�
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version of the likelihood curve. More precisely, it is the convolution of the

likelihood curve with the estimated error curve.

Norwich and Turksen's YN and MU experiment were performed under the

same conditions of observation (although these probably lie in between exact and

everyday conditions), and they �nd just this qualitative result. Indeed Norwich

and Turksen (private communication) write: \Let us consider the two types of

experiment under identical conditions, regardless of whether they are `everyday'

or `exact'. As described in the discussion following Theorem 2 (in Norwich &

Turksen 1982) and culminating in Theorem 3, the LB,YN and MU experiments

are not equivalent under any identical conditions, which we may denote `Ci '. In

Hisdal's notation then our Theorem 3 means that

PYN (conditions Ci)(�juex) 6= �
(conditions Ci)

� (uex) : (7)

Moreover, we have performed this comparison empirically hundreds of times and

equality has never occurred. The size of the fuzzy region of �X is typically

many times that of the fuzzy region of P YN ." (The last sentence is underlined

in Norwich and Turksen's communication.)

The fact that Norwich & Turksen �nd exactly the qualitative result predicted

by the TEE model does not, of course, prove the correctness of this model. We

know from Popper's work (Popper, 1969) that a theory can never be proved

experimentally, it can only be falsi�ed. We can say, however, that if one

assumes that the TEE model is correct, then one �nds that it predicts just the

experimental result of Norwich and Turksen.

We remark that for fuzziness #2a and 3a we have similar YN-MU

assumptions of equivalence (see appendix of Hisdal 1986b for details). For

fuzziness #3a, the subject performing the MU experiment puts herself into the

role of other subjects, realizing that these may have thresholds for `tall' which

di�er somewhat from her own. Resulting again in a rounded-o� or fuzzy threshold

curve.

When two or all three sources of fuzziness are present simultaneously, then

the rounded-o� likelihood or grade of membership curves due to one source of

fuzziness are further rounded-o� by the other sources.
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3. Some Consequences of the TEE Model

We shall here derive eight consequences of the �rst three assumptions of the

TEE model. These consequences resolve various former di�culties in fuzzy set

theory (listed under di�culties 7 and 14-16 in Hisdal 1986a).

The �rst three consequences are theorems which follow from the TEE model

and which have, up to now, been postulates of fuzzy set theory. These theorems

concern the S- and bell- shapes of the membership curves, the `one minus'

theorem for the negation and the `summing up to one' theorem of fuzzy clustering

algorithms. The remaining consequences clarify the meaning of previously-used

concepts or numerical values, or formulas; namely the meaning of the 0, 0.5 and

1 values of grade of membership functions, of a `subnormal' fuzzy set, and of the

square of the membership function for � . Further consequences are derived in

sect. 5. In contrast to the consequences of the present section, those of sect. 5

depend also on the prior distibution P (uex) .

Zadeh (1976 p. 256; 1977, p. 10; 1978a, pp. 5,6; 1978b, p. 404) postulates

that the ��(u
ex) grade of membership functions are S- or bell- shaped. In the

TEE model we have the following corresponding consequence 1 which is derived

from eqn (6) and from �g. 2. These show that the membership functions of

extremal concepts are cumulative probability functions.

Consequence 1 concerning the shapes of the member-

ship functions. The membership functions of upper extremal concepts like

`tall' or `VERY tall' are non-decreasing functions of uex . Those of lower extremal

concepts like `small' or `VERY small' are non-increasing functions; and those of

non-extremal concepts like `medium' (or `tall' with LB reference, assuming that

`VERY tall' is an element of the reference label set, see Hisdal 1988a, sect. 1

and sect. 6, def. 15) are unimodal functions (i.e., functions with a single hump).

Assuming a unimodal error function P est(ujuex) , the above three shapes reduce

to the previously postulated S, 1{S and bell shapes respectively.

Zadeh (1973, p. 32) postulates that the grade of membership of `NOT � '

is equal to one minus the grade of membership of � for the same uex . To

derive the corresponding theorem of the TEE model we start with the following

theorem derived in Hisdal (1988a, sect. 5, theorem 3):

P (� j uex) + P (NOT- � j uex) = 1 8uex ; (8)
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where the �rst and second terms on the left hand side are the probabilities of a

Y and N answer respectively to the question \Is this object � ?". This theorem

is simply a consequence of the requirement that in a YN experiment the subject

must answer either `Y' or `N'.

In Hisdal (1988a, appendix A1) we show that natural language makes use

of many other, situation-dependent interpretations of the negation all of which

are, however, built on top of the above simple interpretation referring to a

straightforward YN experiment.

Assuming an ideal subject we derive the following consequence 2 from (8)

and the LB,YN-MU assumption.

Consequence 2. Derivation of the `one minus' formula

for the negation. It follows from the TEE model that the following equation

holds for the grades of membership elicited in an exact MU experiment with YN

reference,

��(u
ex) + �NOT �(u

ex) = 1 8uex ; (9)

where the label `NOT � ' refers to a YN-MU experiment concerning

NOT �=NOT �spec . (See defs. 3, 5 in Hisdal 1988a. In appendix A1 of that

paper it is argued that the direct use of negated speci�ed labels in formal YN

and YN-MU experiments is not to be recommended.)

Eqn (9), combined with the traditional max operator for the union of fuzzy

sets, results in the complementation paradox of fuzzy set theory. In appendix A3

we show that this paradox disappears in the TEE model if we de�ne the union

of two fuzzy sets a , b as the fuzzy set ` a OR b '; provided that we derive the

operation for the inclusive OR connective instead of postulating it to be the max

operation. It then turns out that the membership function for ` a OR NOT a '

has the value 1 for all uex .

In sect. 1.2 we have already mentioned the `summing up to one' formula

used in all fuzzy clustering algorithms. In the TEE model we start out with

theorem 2 of Hisdal (1988a, sect. 5) which says that in an LB experiment, the

sum of P (�ljuex) over all �l 2 � is equal to 1. From this theorem and the

LB,YN-MU assumption we derive the following consequence 3.

Consequence 3. Derivation of the `Summing up to 1'

formula. It follows from the TEE model that the following formula holds for
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the grades of membership elicited in an exact MU experiment with LB reference

(Hisdal 1988a, sect. 2, def. 4),

LX
l=1

��l(u
ex) = 1 8uex : (10)

Eqns (9) and (10) are also valid when uex is replaced by u , irrespective

of whether the MU experiment is exact or not. For a nonexact MU experiment,

the two equations are valid when all �(uex) functions are replaced by their

expected values (with respect to the � 2 [0; 1] values assigned in the nonexact

MU experiment to objects of a given uex , see Hisdal 1986b, p. 134.) The common

reason for all these equations, which are valid for an ideal subject, def. 3, is that

the subject refers her membership values to the natural language situation of an

LB or YN experiment; and that she must necessarily assign one of the �l 2 �

labels, or one of the two YN values, in such an experiment.

In Hisdal (1986a, sect. 3, di�culty 1) we discussed the unsatisfactory

situation in the present-day theory of possibility which does not allow us to

distinguish between a certainty and a mere possibility. In the TEE model

this di�culty is clari�ed through the well-de�ned meaning of a P (�juex) = 1

value and the ��(uex) = 1 value associated with it through the LB,YN-MU

assumption of equivalence. Furthermore, the second or threshold assumption

of the TEE model allows us to �x precisely the subset of the Uex domain for

which the membership function has the value 1. This is done by drawing �gures

analogous to �g. 2, but with the u= uex point of the error function displaced

successively to all points on the u-axis for which the complete error function lies

inside the quantization interval for � . Similar statements hold in connection

with the grade of membership values 0 and 0.5. These three cases are stated in

consequences 4, 5 and 6 below.

Consequence 4. The meaning of the uex values for

which ��(uex) = 1 . Let a subject perform an exact MU experiment with

an object of exact attribute value uex . Since the subject interprets ��(uex)

as P est(�juex) , she will assign the membership value 1 to the object i� she

estimates that she would always assign the label � to this object in an LB or

YN experiment, irrespective of the point of the set of conditions of observation
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under which it is observed. This happens for the following values of uex ,

u�;l + wleft(u
ex) � uex � u�;u � wright(u

ex): (11)

In (11), u�;l , u�;u are the lower and upper bounds respectively of the subject's

quantization interval �u� for � . wleft and wright (see �g. 3(a)) are the size

of the u regions to the left and right of u= uex for which P est(ujuex) > 0 .

We see that the smaller the width of the estimated error curve in relation to

the size �u� = u�;u�u�;l of the quantization interval �u� for � , the bigger is

the Uex region for which ��(uex) = 1 . The region is biggest for a subject who

assumes an error curve with width 0, such that her estimate u is always equal

to uex . This results in a nonfuzzy, subjective grade of membership curve which

coincides with the nonfuzzy threshold curve.

Consequence 5. The meaning of the uex values for

which ��(uex) = 0 . Let a subject perform an exact MU experiment with

an object of exact attribute value uex . Since the subject interprets ��(uex)

as P est(�juex) , she will assign the membership value 0 to the object i� she

estimates that she would never assign the label � to this object in an LB or YN

experiment, irrespective of the point of the set of conditions of observation under

which it is observed. This happens when uex satis�es one of the two conditions

below,

uex � u�;l � wright(u
ex); or uex � u�;u +wleft(u

ex) : (12)

The bigger the width of the estimated error curve in relation to the size

of the quantization interval for � , the smaller are the Uex regions for which

��(uex) = 0 . For an in�nitely wide error curve there exists no uex for which

��(uex) = 0 .

Zadeh (1973, p. 30) de�nes the `crossover points' of ��(uex) as those values

of uex for which ��(uex) =0.5. In the TEE model it can be shown that the

crossover points coincide with the subject's threshold value(s) for � under

certain, not too restrictive, conditions. The name `crossover points' is thus very

�tting one according to the TEE model.

Consequence 6. The connection between the crossover

points and the threshold values. This connection is best stated in

the form of the following theorem.
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When u and uex take on values in a continuous universe, then the crossover

points of ��(uex) coincide with the subject's threshold values for � (as elicited

in an LB or YN experiment),

��(u
ex = u�;l) = 0:5 ; (13)

��(u
ex = u�;u) = 0:5 ; (14)

under the following conditions: (13) holds if conditions (13a) and (13b) below

are satis�ed; and (14) holds if conditions (14a) and (14b) are satis�ed.

Conditions (13a) and (14a) say that the median of the P est(ujuex) curve

must, for uex= u�;l and uex= u�;u respectively, coincide with the point

u= uex ,

Z uex

�1

P (u j uex = u�;l) du =

Z
1

uex
P (u j uex = u�;l) du = 0:5 ; (13a)

Z uex

�1

P (u j uex = u�;u) du =

Z
1

uex
P (u j uex = u�;u) du = 0:5 : (14a)

Conditions (13b), (14b) require that wleft and wright respectively (see

�g. 3(a)) must not exceed the size of the quantization interval for � ,

wright(u
ex = u�;l) � �u� = u�;u � u�;l : (13b)

wleft(u
ex = u�;u) � �u� = u�;u � u�;l : (14b)

The next consequence concerns the mystic concept of a subnormal fuzzy set,

i.e., a fuzzy set whose biggest membership value is smaller than 1. We have

already discussed Norwich and Yao's and Norwich and Turksen's `brutal' device

of demystifying a subnormal fuzzy set by normalizing it such that its biggest and

smallest membership values are 1 and 0 respectively (Hisdal 1986a, di�culty 16b;

1986b, fuzziness #2a in appendix).

According to the TEE model, subnormality occurs in connection with

fuzziness #1 when there exists no value of uex for which the subject estimates

that she is certain to assign the label � to the object in an LB or YN

experiment under any condition of observation (belonging to the set of conditions

of observation to which she refers her fuzziness #1).

Said in another way, subnormality occurs when the width of the subject's

estimated P est(ujuex) error curve is bigger than the quantization interval for �
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(for a more precise formulation, which takes into account that the error curve

may depend on uex , see consequence 7 below). Thus subnormality is demysti�ed

in the TEE model not by replacing the subnormal fuzzy set by a normal one, but

by a clear di�erentiation in meaning between a normal and a subnormal fuzzy

set.

Consequence 7 concerning subnormality of ��(uex) . The

membership function ��(u
ex) is subnormal i� there exists no value of uex

for which eqn (11) is satis�ed. It follows from eqn (11), that an equivalent

condition is that the width of the error curve must always be bigger than the

quantization interval for � . I.e., ��(uex) is subnormal i� w > �u� 8uex ,

where w = w(uex) = wleft(uex) + wright(uex) is the size of the u region for

which P est(ujuex) > 0 (see �g. 3a).

In `traditional' fuzzy set theory, the membership function for `VERY � ' is

de�ned as the square of the membership function for � (Zadeh 1973, eqn (3.3)).

We have already discussed in Hisdal (1988a, sect. 6 and �gs. 4,5; 1986a,

di�culties 7 and 14b) that this representation of `VERY � ' is not satisfactory,

and that a displacement of the ��(uex) curve along the uex axis is a better

representation of the membership function of `VERY � ' both according to

experimental results and according to the TEE model. However, �2�(u
ex) does

have a de�nite meaning in the TEE model as stated in consequence 8 below.

Consequence 8. �2�(u
ex) represents ` � AND � ' (with RR

reference), not `VERY � '. Let ��(uex) be the subject's membership

function for � . Then the function �2�(u
ex) is equal to �� AND �(uex) , her

membership function for ` � AND � ', provided that she refers the AND

connective to an RR situation. This means that the grade of membership which

the subject assigns to an object in ` � AND � ' is equal to her estimate that she

will assign the label � to the object in two successive LB or YN experiments

which are such that the objects are rerandomized with respect to the points of

the set of conditions of observation between the two experiments.

The theorem of consequence 8 is proved in Hisdal (1984a, eqns (10.37),

(12.18)). The subject of the connectives will be treated in detail in (Hisdal,

1988b).
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4. Quantities which Depend on the Prior

Distribution

4.1 � -Quali�ed Probabilities and Related Quantities

In this section we treat three quantities which depend on the `prior'

or `unquali�ed' distribution P (uex) (e.g., the distribution over height of the

population of men, unquali�ed by a label such as ` �=tall man' or ` �=small

man'). These are the � -quali�ed probability distribution P (uexj�) , the

marginal labeling probability P (�) , and the RR `autological probability'

P (�j�) . The latter two are identi�ed in section 5 with Zadeh's probability of the

fuzzy event � , and with his possibility/probability consistency  respectively.

Furthermore the entropy of a fuzzy set is discussed in sect. 5, as well as the

resolution of two previous di�culties.

The present subsection refers to LB or YN experiments for the assignment of

the label � . Grades of membership are introduced into the formulas in subsection

4.2. Subsection 4.3 discusses the prior distribution which pertains to a given

situation.

In contrast to the likelihood distribution P (�juex) of sect. 2.1 which denotes

the probability that an object of attribute value uex will be assigned the label � ,

P (uexj�) denotes the probability that an object which has been assigned the label

� in a YN or LB experiment has the attribute value uex .

The numerical relation between P (uex) , P (�juex) and P (uexj�) is easily

found from the law of compound probabilities,

P (xi; yj ) = P (xi) P (yj jxi) = P (yj ) P (xijyj) : (15)

In (15), xi and yj are the values of two attributes X and Y of an outcome

of a statistical experiment. In our case the attributes refer to the linguistic label

and the exact attribute value assigned to a single object by the subject and the

experimenter respectively. Eqn (15) is valid irrespective of whether X and Y

are statistically dependent or not.

The `marginal probability' P (yj ) in (15) is given by

P (yj) =
X
i

P (xi; yj) =
X
i

P (xi) P (yj jxi) : (16)

From (15) it follows that

P (xijyj) = P (xi) P (yj jxi) = P (yj ) ; (17)
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where P (yj ) is given by (16).

Substituting uexi for xi and �l for yj in (17) (we abbreviate these two to

uex and � respectively), we obtain

P (uexj�) = P (uex) P (�juex) = P (�) ; (18)

where the marginal labeling probability P (�) is, according to (16), given by

P (�) =
X
uex

P (uex; �) =
X
uex

P (uex) P (�juex) : (19)

Finally we compute the `autological probability' P (�j�) referring to an RR

composite experiment. This is the probability that the label � 2 � will be

assigned to an object in an LB or YN experiment when it has been assigned

to the same object in a previous such experiment; assuming that the object is

ReRandomized with respect to the points of the set of conditions of observation

between the two experiments. (See Hisdal 1988b or Hisdal 1984a, sect. 10.4 for

RR composite experiments; and sect. 11 of the last reference for `autological

probabilities'.)

P (�j�) is equal to 1 in the absence of fuzziness. In general it is given, for

RR reference, by the formula

PRR(�j�) =
X
uex

P (�juex) P (uexj�) =
X
uex

P (uex) P 2(�juex) = P (�) ; (20)

where the expression after the last equality sign is obtained by substituting for

P (uexj�) from (18).

The following is a summary of the results of this subsection. P (�) , the

unquali�ed or marginal labeling probability for � , is given by eqn (19), and the

autological probability P (�j�) for RR reference by (20). From (18) and (19) it

follows that the P (uexj�) function of uex , eqn (18), is equal to the normalized

product of the P (uex) and P (�juex) functions of uex .

4.2 Introducing Grades of Membership into the Formulas

We shall here make use of the LB,YN-MU assumption of equivalence, def. 2,

and substitute ��(uex) (as elicited in a MU experiment) for P (�juex) (as

elicited in an LB or YN experiment) into eqns (18)-(20). The resulting formulas

for P (�) , P (uexj�) and P (�j�) are then expressions for probabilities computed
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on the basis of the subject's estimate ��(uex) of the quali�ed labeling probability

P (�juex) which would be elicited in an LB or YN experiment in the presence of

fuzziness. The connection of these formulas with quantities which have previously

been used in the theory of fuzzy sets, and the signi�cance of the formulas for the

resolution of some previous inconsistencies are discussed in sect. 5.

Making the substitution of eqn (5) into (18), (19) and (20) we obtain,

P (uexj�) = P (uex) ��(u
ex) = P (�) ; (21)

P (�) =
X
uex

P (uex) ��(u
ex) ; (22)

PRR(�j�) =
X
uex

��(u
ex) P (uexj�) =

X
uex

P (uex) �2�(u
ex) = P (�) : (23)

4.3 The Prior Distribution

Each of the three distributions (18), (19), (20), and its corresponding

expression (21), (22), (23) in terms of the membership function, is consistent

in the sense that

X
uex

P (uexj�l0) =

LX
l=1

P (�l) =

LX
l=1

P (�lj�l0) = 1 8l0 ; (24)

provided that the P (�juex) (or ��(uex) ) and P (uex) functions are consistent,

i.e. provided that

LX
l=1

P (�lju
ex0

) =
LX
l=1

��l(u
ex0

) =
X
uex

P (uex) = 1 8uex
0

: (25)

In (24), (25), �l and �l0 are elements of � = f�lg; l = 1; : : : ; L , the

reference label set for the semantic experiment.

There exist many prior distributions P (uex) which satisfy the consistency

requirement
P

uex P (u
ex) = 1 . How do we choose the correct one to insert into

eqns (18)-(23)?

As in so many other cases, the answer to this question depends on the

situation to which the quantities on the left hand sides of the equations refer.

E.g., the quantity de�ned by (21) can be regarded as the answer to the question,

The man ob has been assigned the label �=tall by the subject.

What is the probability that his height is uex=185cm? (26)
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If this question is put to the subject, then she will use her own estimate of

P (uex) for the population of objects to which she believes that the experiment

refers. If the question is put to the experimenter, then she can use her

information concerning the P (uex) function. In our example, this may be the

distribution over height of all men as published by some o�cial agency. A better

approximation to P (uexj�) is obtained by the experimenter if she uses for P (uex)

the relative frequencies of uex in the particular sample OB presented to the

subject. If she uses eqn (21) to give her answer to (26), then her estimate of

P (uexj�) is based on the subject's estimate of P (�juex) (namely ��(uex) ), and

on her own �ndings concerning P (uex) . We may even have the case in which the

experimenter chooses a biased sample from the population of objects to which

the subject believes that the experiment refers. E.g., a random sample from the

set of all policemen (assuming that the average height of policemen is bigger

than that of the population as a whole). The experimenter should then use the

P (uex) distribution for policemen (or for the particular sample of policemen) in

(21) to give her answer to (26).

In the last case, the experimenter's estimate of P (uexj�) is based

on information from mixed sources. Namely on the subject's estimate of

P (�juex) = ��(uex) for the object to which the question (26) refers; and

on her own knowledge concerning the P (uex) distribution. If the subject

does not know that the sample used by the experimenter is biased, then

she will use her usual quantization intervals for the elements of the label set

� = fsmall man, medium man, tall mang to which she refers her membership

values. If she knows that she is presented with a biased sample of men, then she

may adjust her quantization intervals for the elements of � , and displace them

towards higher values, even though the question (26) does not refer to policemen.

This will again result in a displacement of her membership curves towards higher

uex values. Her ��(uex) values will therefore be di�cult to interpret correctly.

We conclude that there exists more than one prior distribution P (uex) which

results in mathematically consistent values for P (uexj�) , P (�) and PRR(�j�) .

The P (uex) distribution which is the correct one from a semantic point of view

depends on the situation to which the three quantities refer.
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5. More Consequences

In the following we enumerate consequences of the TEE model which make

use of the formulas of sect. 4, and thus of the prior distribution P (uex) . These

consequences concern the resolution of former di�culties, the interpretation

of previously postulated formulas and the concepts which they describe, and

the necessary quali�cations or modi�cations in connection with other previous

concepts or formulas. Most of these items have been listed under di�culties 1,

6, 15 and 17 in Hisdal (1986a).

Consequences 9 and 10 treat the resolution of `the possibility certainty

paradox' and of `the only man on earth (who is 255 cm tall) paradox'.

Both consequences are connected with the di�erentiation in the TEE model

between probabilities/possibilities of �juex versus those of uexj� . The lack of

di�erentiation between these distributions in the `traditional' theory of possibility

has been discussed previously (Hisdal 1986a, eqns(4), (5)).

Consequences 11, 12 concern the precisation and defuzzi�cation of the

meaning of Zadeh's expressions for the probability of a fuzzy event and for the

degree of consistency  of a probability with a possibility distribution. Finally

consequence 13 deals with the entropy formulas which are valid for fuzzy sets. In

this case Zadeh's eqn (28) below is replaced by the new equation (35).

There is a second concept whose formula is replaced by a new one in the TEE

model, namely Zadeh's `possibility measure' (Zadeh, 1978a). We have already

discussed in Hisdal (1986a, di�culty 17b) that the only meaningful interpretation

of this concept seems to be `the poss/prob that x is b , given that x is a ' where

a and b are elements of the same or of di�erent label sets. In the TEE model

we therefore interpret this measure as P (bja) , the `autological probability' (or

its estimate by the subject) that a given object is assigned the label b 2 �2 in

an LB or YN experiment, given that it has been assigned the label a 2 �1 in

a previous such experiment. The TEE model formulas for P (bja) are given in

Hisdal (1986a, eqns (16)-(19) ) for the SIM and the RR case. They are quite

di�erent from Zadeh`s max-min formula (eqn (15) in Hisdal 1986a) which makes

no use of the prior distribution. This is in contrast to Zadeh's formulas for

the negation, the probability of a fuzzy event and the possibility/probability

consistency whose meaning is defuzzi�ed in the TEE model, the formulas being

left unchanged.
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Consequence 9. The resolution of the possibility-

certainty di�culty (di�culty 1 in Hisdal, 1986a). As an illustration of

this di�culty, consider the case of a grade of membership value

�tall(u
ex = 195 cm) = �tall(u

ex = 195 cm) = 1 : (27)

In spite of the value of 1 for this possibility, it is not interpreted as meaning that

the outcome uex=195 cm is a certainty for an object which has been assigned

the grade of membership 1 in `tall'. The theory of possibility has thus no means

of distinguishing the important case of a certainty from a mere possibility.

In the TEE model, the di�culty is resolved because the possibility or

membership value in (27) is interpreted as the subject's estimate of P (talljuex) =

1 ; i.e., as her estimate that the label `tall' will always be assigned to this object

in an LB experiment or in a YN experiment (with �spec=tall). In contrast,

the probability that an object which has been assigned a grade of membership

�tall = 1 has a given height value uex is computed from eqns (21), (22). It

follows from these equations that this probability is always smaller than 1, even

though �tall(uex) =1, unless �tall(uex) or P (uex) are 0 for all other values of

uex .

Consequence 10. The resolution of `the only man on

earth di�culty'. This di�culty concerns a man who is 255 cm tall, and

whose grade of membership in `tall man' is consequently equal to 1 (according

to some, and probably all, subjects, assuming that the MU experiment refers

to a YN situation; or to an LB situation with the reference label set (1), see

Hisdal 1988a, sect. 1 and defs. 4, 5, 15). However, he is the only man on earth

with this big height value. Consequently the event that a man who is labeled

`tall' has the height 255� 5 cm is an extremely rare one. In spite of this, the

grade of membership �tall(uex = 255 cm) is equal to 1. This value seems to be

meaningless in view of the extreme rarity of the event uex=255 cm for a man

who has been labeled `tall'.

Again, in the TEE model, the grade of membership value 1 means only that

a man of this height is certain to be labeled `tall' in a YN or LB experiment.

The probability that a man who has been assigned in a MU experiment

the membership value 1 in `tall' has a height of uex=255 cm is obtained from

eqn (21). Since P (uex = 255 cm) is very small in our case (about 10�9 , as-
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suming a world population of 2 billion), it follows from (21) that the probability

that a �tall = 1 man has a height of 255 cm is of the same order of magnitude.

Fig. 4 shows the complete P (uexjtall) curve as computed from (21), (22) on

the basis of the assumed prior distribution P (uex) shown in the �gure and the

membership curve (also shown in the �gure) computed from �gs. 2 and 3.

The di�erence in shape between the probability and possibility curves of

`Hans the egg-eater' (di�culty 15d in Hisdal 1986a), which Zadeh sets up solely

by intuition (Zadeh 1978a, p. 8), can be derived in a similar way from the TEE

model (Hisdal 1984a, pp. 12.5-12.8).

Consequence 11. The meaning of the probability of

a fuzzy event. The right hand side of eqn (22) is identical with Zadeh's

postulated formula for `the probability of the fuzzy event � ' (Zadeh 1968,

eqn (5)) whose meaning is far from clear. Eqns (19) and (22) clarify this fuzziness

in meaning and show that the `fuzzy event' � is no di�erent from an ordinary

event in the theory of probability. The right hand side of (19) and (22) is an

expression for the (marginal) probabiliy that a randomly chosen object will be

labeled � in a YN or LB experiment, irrespective of the attribute value of the

object. In (22), the value of this probability is based on the subject's estimates

��(uex) of P (�juex) for objects of di�erent atrribute values uex .

The expression for the probability of a fuzzy event shows also that the prior

distribution P (uex) has been used in fuzzy set theory, in spite of all claims that

this theory has no connection with the Bayesian approach.

Consequence 12. The meaning of the degree

of consistency  of a probability with a possibility

distribution. Zadeh (1978a) de�nes this quantity as  =
PI

i=1 �(ui) p(ui):

(see Hisdal (1986a, eqn (20) for more details). The �(ui) are numerically

equal to the �(ui) membership values according to Zadeh, in our notation to

��(uex) . A reasonable interpretation of Zadeh's probability distribution p(ui)

is our P (uexj�) (although another probability distribution is also relevant in

connection with Zadeh's egg-eater example, see Hisdal 1984a, p. 12.8, �g. 12.1b).

It then follows from eqn (23), that  is equal to the PRR(�j�) autological

probability as de�ned in the sequel to eqn (19). In the SIM case, in which no

ReRandomization takes place, we have always that SIM = PSIM (�j�) = 1 .
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Consequence 13. Entropies for fuzzy sets. Zadeh

(1968, eqn (28)) de�nes the entropy of a fuzzy subset �l of the �nite

set fx1; : : : ; xi; : : : ; xIg with respect to the probability distribution P (X) =

fP (x1); : : : ; P (xi); : : : ; P (xI)g by the equation

HP (X)(�l) =

IX
i=1

��l(xi) P (xi) log [1=P (xi)] : (28)

Alternatively he calls (28) the entropy of the fuzzy event �l with respect to the

distribution P(X). We shall see that this quantity is replaced in the TEE model

by eqn (35).

In Shannon's theory, the `entropy of the source X ', or the expected

uncertainty with respect to the outcome xi , is measured by the quantity,

H(X) =
IX
i=1

P (xi) log [1=P (xi)] ; where
IX
i=1

P (xi) = 1 : (29)

When two attributes X;Y are connected with each outcome, then we have

also the uncertainty with respect to the outcome of X when the outcome yj of

Y is speci�ed and known to the observer,

H(Xjyj ) =
IX
i=1

P (xijyj) log [1=P (xijyj)] ; where
IX
i=1

P (xijyj) = 1 : (30)

The expectation of this quantity over all Y is denoted by H(XjY ) , and is

called the equivocation of X when Y is known to the observer,

H(XjY ) =
JX
j=1

P (yj ) H(Xjyj ) : (31)

The meaningfulness of Zadeh's entropy formula (28) is questionable because

many of the mathematical properties of the entropy or equivocation which make

these functions signi�cant ones as de�ning the expected uncertainty before {,

or the expected information after { an outcome (see Shannon & Weaver 1964,

pp. 48-53, 67; also end of this section), depend on the structure of eqns (29)-(31),

and are thus violated in (28). This problem disappears in the TEE model in

which the meaning of the di�erent expressions is clearly de�ned.

Let O be an observer to whom the exact attribute value uex of the object

is known. O 's uncertainty with respect to the label �l which a subject S will

attach to the object under a randomly chosen point of the set of conditions
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of observation is then found by substituting P (�ljuex) for P (xi) in (29), and

summing over all elements �l of the reference label set � ,

H(�juex) =

LX
l=1

P (�lju
ex) log [1=P (�lju

ex)] =

LX
l=1

��l(u
ex) log [1=��l(u

ex)] (32)

where
LX
l=1

P (�lju
ex) =

LX
l=1

��l(u
ex) = 1 8uex : (33)

Eqn (32) is the only formula in the present section which makes no implicit

or explicit use of the prior distribution P (uex) . Note that the summation is

performed over the elements of the reference label set, not over uex .

H(�jUex) , the expected uncertainty (equivocation) with respect to the label

� for objects of any uex value (this value being known to the observer) is given by

the expectation of the right hand side of (32) over the prior distribution P (uex) ,

H(�jUex) =
IX
i=1

P (uexi )
LX
l=1

��l(u
ex
i ) log [1=��l(u

ex
i )] (34)

In contrast, the uncertainty with respect to uex for objects which have been

assigned a speci�c label �l is given by

H(Uexj�l) =
IX

i=1

P (uexi j�l) log [1=P (u
ex
i j�l)]

= [1=P (�l)]

IX
i=1

P (uexi ) ��(u
ex
i ) log P (�l)=[P (u

ex
i ) ��l(u

ex
i )] ; (35)

where the expression after the last equality sign is obtained from (21).

H(Uexj�) , the expected uncertainty (equivocation) with respect to the exact

attribute value uex when the label attached to the object is known to the

observer, is given by the expectation of the right hand side of (35) over P (�l) ,

eqn (22).

Finally H(�l) is the uncertainty connected with the outcome of the label

�l for objects whose uex value is unspeci�ed and unknown to the observer. This

is given by

H(�) =

LX
l=1

P (�l) log [1=P (�l)]

=
LX
l=1

log [1=
IX
i=1

P (uexi ) ��l(u
ex
i )]

IX
i=1

P (uexi ) ��l(u
ex
i ) ; (36)

where the last expression in (36) is obtained from (22).
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The H(�) and H(�j�) entropies refer to the uncertainties of an external

observer concerning the subject's choice of label �l 2 � . The H(Uex) or

H(Uexj�) entropies are the external observer's uncertainties concerning the

experimenter's result of the measurement of uex , the exact attribute value of

the object. When grades of membership are used in the formulas, then the

values of the uncertainties are based on the subject's estimate of the probability

of assignment of the label �l as elicited in a MU experiment.

Equations (32)-(36) refer to an LB or LB-MU experiment. If we want them

to refer to a YN or YN-MU experiment, then � must be replaced in these

equations by the pair-set fY-�; N-�g . The entropies of eqns (32), (34), (36)

will then have a value that is smaller than or equal to log 2. For LB reference

these entropies are smaller than or equal to logL , where L is the number of

elements in � . The H(Uex) , H(Uexj�l) and H(Uexj�) entropies are smaller

than or equal to log I , where I is the number of quantization points in Uex .

Furthermore it follows from a theorem of information theory (Shannon & Weaver

1962 p. 52) that H(�juex) and H(�jUex) are always smaller than or equal to

H(�) ; and H(Uexj�l) and H(Uexj�) are smaller than or equal to H(Uex) .

In conclusion we note that eqns (32) and (35) are of particular interest. In

eqn (32), the probabilities in Shannon's basic entropy equation (29) have been

replaced by grades of membership. Such a replacement has previously been

suggested by De Luca and Termini (1972, eqn 3. This equation, as a measure of

the entropy of a fuzzy set, is then replaced by their somewhat more complicated

eqn (9) which is based on eqn (3) ). There is, however, a very important di�erence

between De Luca and Termini's eqn (3) and our eqn (32). While the summation

in (32) is over the elements �l of the reference label set � , the summation in

De Luca and Termini's equation is over all uex 2 Uex . The meaning of the sum

over � log(1=�) in (32) is clearly de�ned in the TEE model. It is the observer's

uncertainty with respect to the label assigned by the subject to objects of a given

value of uex .

The observer`s uncertainty with respect to uex `for a given fuzzy set �l ',

i.e. for those objects to which the subject has assigned the label �l , is given

by the TEE model equation (35) which replaces Zadeh's postulated eqn (28) (in

which xi should be replaced by uexi for purposes of comparison).
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6. Conclusion

It has always been implicitly assumed in fuzzy set theory that there exists

a connection between the fact that an object is labeled � (e.g., �=young) in

a natural language discourse on the one hand; and the assignment to the object

of a high grade of membership in � on the other. In the TEE model for grades

of membership, this connection is laid down on a �rmer, and more quantitative

basis through the LB,YN-MU assumption of equivalence, def. 2. According to

this assumption, the memberhsip value which a subject assigns to an object in

the class � is her estimate of the probability that this object would be labeled

� in an LB or YN situation in the presence of fuzziness #1, 2 or 3.

Using this interpretation of grades of membership, we have then shown that

the fuzzy set membership function for a label � is a rounded, or fuzzi�ed version

of the nonfuzzy threshold curve used in an LB or YN situation. Furthermore we

have shown that the TEE model clari�es the meaning of previously-used concepts

of fuzzy set theory, and lets us derive formulas which were previously postulated.

The most important clari�cation in meaning concerns that of the membership

concept itself.

Thus the TEE model, in contrast to the usual philosophies of many-valued

logics and fuzzy set theory, does not modify traditional two-valued logic by

smearing out the 0 and 1 truth values of the latter over the whole [0,1] interval,

without explaining how this smearing-out process is accomplished. Instead, it

leaves the exact logic of YN and LB experiments intact and uses it as a building

stone for explaining and deriving the results of MU experiments which make use

of intermediate truth values; attributing such values to the subject's estimate of

the e�ects of fuzziness #1, 2 or 3. This reconciliation between two-valued logic

with its law of the excluded middle on the one hand, and the graded membership

concept on the other, has been discussed in more detail elsewhere. (Hisdal 1985;

the law of the excluded middle is discussed in sect. 5 of that paper.) Two-valued

logic can thus be looked upon as a metalanguage used for the de�nition of the

higher-order many-valued logic of the TEE model; both of these languages for the

processing of logical information being parts of our basic metalanguage, namely

natural language.

Such a stepwise model, in which fuzzy logic is elevated to a higher position
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than the two-valued logic from which it is constructed, does indeed seem to be a

reasonable explanation of the logical aspect of human thinking when we remember

1) that small children insist on precise de�nitions and information. 2) that the

processing of imprecise information is much more complicated and memory-

consuming than that of precise information. Zadeh's seemingly convincing

principle of incompatibility between precision and signi�cance (Zadeh 1973,

p. 28) is true only when we identify precision with oversimpli�cation. Such an

oversimpli�cation is illustrated by Zadeh's example of the de�nition of `recession'

as a condition which obtains when the gross national product declines in two

successive quarters (Zadeh 1976, p. 251). The lack of signi�cance of this de�nition

should be a signal to the economist that the single attribute `ratio between gnp

in successive quarters' is not su�cient for de�ning a recession. If we succeed in

identifying all the attributes necessary for the de�nition of a recession, as well as

the situations under which these attributes are elicited, then we have the tool for

a precise de�nition which does not lack in signi�cance. The signi�cance being

due to the correct identi�cation of the high-dimensional attribute universe, not

to the use of fuzziness as a basic concept. Fuzziness is introduced when we do

not, or cannot, take the values of some of the attributes into account; this being

a typical case of fuzziness #2 (Hisdal 1986b). In such a situation the use of

an intermediate membership value is indeed a very important tool for the best

possible processing of the available information.

An objection to the TEE model on the ground that it sometimes makes

use of a prior probability distribution cannot be maintained when we consider

that prior distributions have previously been used for de�ning the probability

of a fuzzy event and the entropy of a fuzzy set (consequence 11 and eqn (28) ).

Likewise the mystical `particularizing distribution' used by Zadeh (see Zadeh

1978b, p. 407; or Hisdal 1980, def. 3.1) is a prior distribution.

The most important previous formulas which are not generally con�rmed in

the TEE model are the max and min formulas for OR and AND respectively.

These are precisely the formulas for which alternatives have been suggested

throughout the years, both by Zadeh and by many other researchers. (See, e.g.,

Zadeh, 1975 p. 34 eqns (A49), (A50); Zadeh, 1973, footnote p. 31; Zadeh, 1978b

p. 425; Dubois & Prade, 1980, p. 16; Yager 1978.)



6.3

Because the TEE model does not accept the general validity of the max

and min operations, it cannot hope for support from that part of the purely

mathematically-minded group of fuzzy set workers who consider these operations

to be the cornerstone of fuzzy set theory.

However, the TEE model should have a clear message to those who are

interested in establishing a theory which can explain the use of-, and the reasoning

with-, linguistic labels, negation, connectives and modi�cation by `VERY' in

everyday language and discourse. A logic which is in accord with this reasoning

has the biggest chance of being useful for extensions and applications to more

complicated cases because it evolves out of the basic metalanguage used for the

de�nition of every logical system.

Although natural languages di�er widely as to their syntax and their use of

sounds, it seems that the basic logical operations are common to most natural

languages, and are therefore, probably, connected with the structure of our brains.

Higher order logical systems cannot escape the necessity of coping with this

structure. As long as we cannot explain the means of reasoning in our basic

metalanguage, we cannot hope to construct completely consistent higher-level

logical systems without paradoxes; let alone automated reasoning systems whose

output agrees in all limiting special cases with the output expected by human

beings according to their most basic logic.

PRINTING ERROR
The second paragraph of section 1 of the �rst paper of this series (Hisdal,

1986a), which was correctly printed in the proof of the paper, lost some of its

lines in the �nal edition of the journal, while others were interchanged. The

correct formulation of this paragraph is:

There are, maybe, those who claim that logical systems should always be

independent of the use of logic in everyday discourse. But we should remember,

that no matter how many successive metalanguages we use to describe our logical

system, the �nal metalanguage must always be natural language. Thus the logic

of natural language stands in a unique position compared with all other systems

of logic. If we deny the functioning of the logic of natural language, then we also

deny the possibility of the description of any other logical system. Furthermore,

fuzzy set theory concerns, according to Zadeh (1973, 1976) the use and logic of

fuzzy expressions in natural language.
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Appendix A1. An Alternative LB,YN-MU

Assumption B

It seems to me that the �rst and second assumptions of the TEE model, see

sect. 1.1, describe the only possible procedures that a subject can use when she

wants to give meaingful answers to a semantic experiment.

This is not quite true of the third or LB,YN-MU assumption of def. 2

in sect. 2.2. There exists an alternative meaningful procedure for specifying

numerical membership values. This procedure is described in def. 4 below. Here

we will call the LB,YN-MU assumption of def. 2 `assumption A' and that of def. 4

`assumption B'.

There are two important di�erences between the predictions of

assumptions A and B. The �rst concerns the membership values speci�ed in an

exact MU experiment in which the subject is acquainted with uex , the exact

attribute value of the object. AssumptionB of this appendix predicts that she

will always specify nonfuzzy membership values (of either `0' or `1') in such an

experiment. This is in contrast to assumptionA according to which the subject

can specify intermediate membership values also in an exact experiment.

The second di�erence between the two LB,YN-MU assumptions concerns

the use of the prior distribution P (uex) . According to assumptionA, the subject

makes no use of this distribution when she assigns her membership values in any

MU experiment. In contrast, she needs to estimate this distribution when she

gives her answers according to the procedure of assumptionB in a nonexact MU

experiment.

Traditional fuzzy set theory has always assumed that membership values

are independent of the prior distribution. It has also assumed that there exists

a unique ��(uex) function (for a given subject and a given context dependence

of � ) whose range is the whole [0,1] interval*.

These assumptions of traditional fuzzy set theory, which probably also

agree with experimental results, can only be reconciled with the (LB,YN-MU)-

A assumption. However, since assumptionB is just as consistent from a logical

* A unique ��(uex) function can exist only for an exact MU experiment.

A nonexact MU experiment will always result in the speci�cation of variable

membership values for objects of a given uex . (See Norwich & Turksen, 1982;

also Hisdal, 1986b sect. 3 and p. 134.)
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point of view, we present it here. AssumptionsA and B correspond roughly to

the use of likelihoods versus that of a posteriori probabilities which, around 1916,

gave rise to the big controversy between the two great statisticians Fisher and

Pearson (see Fisher-Box, 1978, e.g. pp. 68, 70, 79, 89).

Before we present assumptionB, we note that our previous statement that a

subject probably makes no use of a prior distribution when she gives her answer

in a MU experiment concerns only the conversion from LB or YN experiments

to MU experiments in the subject's mind as given by eqn (5). The choice of the

quantization interval �u� for � is probably strongly inuenced by her estimate,

P est(uex) , of the prior distribution. The description of a person as being `small'

or `tall' implies that the subject's estimate of the person's height deviates from

the estimated average height value; and the latter depends on P est(uex) .

De�nition 4 of the (LB,YN-MU)-B assumption or

assumption3-B of the TEE model. According to this assumption, a subject

who performs a MU experiment estimates both the attribute value of the object

and the P (ujuex) error function for the particular condition of observation under

which she observes the object in the particular experiment. She then speci�es

a �� value for the object which is equal to her estimate of the probability that

uex , the exact attribute value of the object, falls into her quantization interval

�u� for � ,

��(object) = ��(u) = P est(uex 2 �u� j u) : (A1)

When the MU experiment is an exact one, then the subject's estimate u of

the object's attribute value is equal to uex . ��(object) = ��(uex) of eqn (A1)

is then equal to the subject's nonfuzzy P (�juex) function which she uses in an

LB or YN experiment (see the nonfuzzy threshold curves in �g. 2).

For a nonexact MU experiment, the procedure of assumptionB results in

a distribution of �� values for objects of a given uex just as for the LB,YN-

MU assumptionA (see last footnote here and eqn (A9) in Hisdal 1986b). The

expectation value of ��(uex) is then given by,

Exp f�nexcond� (uex)g =
X
u

P (ujuex) ��(u) ; (A2)

where P (ujuex) is the subject's real error curve under the given set of conditions

of observation. We show below that ��(u) on the right hand side of eqn (A2) is

given by,

��(u) = [1=P est(u)]
X

uex02�u�

P est(uex0) P est(ujuex0) ; (A3)
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where

P est(u) =
X
uex0

P est(uex0) P est(ujuex0) : (A4)

In these equations, uex0 denotes the various possible values which uex may

assume for the given object according to the subject's estimate. Furthermore,

all probability distributions are estimates by the subject. Note that P est(ujuex0)

is, in contrast to the case of assumption A, not a constant function referring to

the set of everyday conditions of observation. It is the subject's estimate of the

error function under the given condition of observation (i.e. the given point of

the set of conditions of observation, see Hisdal 1986b, end of sect. 1) under which

the particular object to which she assigns a MU value is observed.
end def. 4

To prove (A3), (A4), let uex be the attribute value of the object as measured

by the experimenter, and let u be the subject`s estimate of this value. We then

have from the law of compound probabilities that the following relation holds

between the real probability distributions pertaining to a statistical experiment

whose outcomes are the values of uex and u for a given object,

P (uex; u) = P (uex) P (ujuex) = P (u) P (uexju); (A5)

and therefore

P (uexju) = [1=P (u)] P (uex) P (ujuex) ; (A6)

where

P (u) =
X
uex

P (uex; u) =
X
uex

P (uex) P (ujuex): (A7)

Eqn (A1) tells us that the ��(u) value speci�ed by the subject depends

on her estimate of the P (uexju) distribution pertaining to the given condition

of observation. To estimate this distribution, the ideal (LB,YN-MU)-B subject

substitutes her estimates of P (uex) and P (ujuex) into the right hand sides of

(A6) and (A7). Substituting the resulting eqn (A6) into (A1), we then obtain

(A3); while (A4) follows from (A7). q.e.d.

In summary, in a nonexact MU experiment, the expectation of the ��(uex)

membership curve is given, according to assumption B, by the right hand side

of (A2), ��(u) being given by (A3), (A4). The membership curve elicited in an

exact MU experiment is, according to assumption B, identical with the nonfuzzy

threshold curve elicited from the same subject in an exact LB or YN experiment.

Norwich and Turksen's experiment, section 2.3, thus comes very near to falsifying

assumption B.
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Appendix A2. The TEE Model and Bandler and

Kohout's Checklist Paradigm

We show in this appendix that the TEE model can be derived from Bandler

and Kohout's (1985) checklist paradigm, provided that we add to the latter the

asssumption that grades of membership speci�ed by a subject in a MU experiment

are estimates by the subject of the truth values elicited according to this paradigm

in one of the three experimental situations desribed below.

BK's (Bandler and Kohout's) paper deals mainly with the connectives and

the implication. Their checklist is then a two-dimensional table. In Hisdal

(1988b), we come back to the connection between the checklist paradigm and

the TEE model in this case.

Here we make use only of BK's simplest checklist consisting of a one-

dimensional table with n originally empty entries (see BK sect. 1, �rst two

paragraphs). The table is used in an experimental situation in order to �nd the

degree of truth of a statement A which summarizes a sequence of n detailed

assertions A1; : : : ; An . The subject is asked to give a Y or N answer to each

of these n assertions. The degree of truth of A is then de�ned as a = nY =n ,

where nY is the total number of Y answers. At the end of their sect. 2, the

authors also use the symbol � for nY =n instead of a .

To apply this checklist to the simple case of �nding the degree of truth of

the statement A that an object of attribute value uex is � (e.g., that a man of

height 175 cm is tall), we let the n detailed assertions A1; : : : ; An be identical,

namely:

This object is � . (A8)

For each assertion, the subject is shown an object with the same exact attribute

value uex = uexi . However, each of the n assertions is presented in a new

situation. The type of variation in situation depends on the type of fuzziness to

which the ��(uex) value is to refer (see Hisdal 1986b, fuzziness #1a, 2a, 3a).

In connection with fuzziness #1a, the object is observed under a new

condition of observation for each statement (more precisely, under a new,

randomly chosen, point of the set of conditions of observation.)

Fuzziness #2a deals with the case of a two-attributional concept � (e.g.,

`slimness' which refers to the universe Uex �W ex , where uex=height of object

and W ex =weight of object) in the case when the subject is acquainted with

(or can estimate) the value of one of the attributes only (e.g., the height uex ).

For each assertion, the subject is presented with a new object chosen at random
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from all objects whose �rst attribute has the value uexi . The value of the second

attribute is randomly distributed and varies from assertion to assertion. (The

example of �=slim is not a good one in connection with fuzziness #2a because

the probability of being slim or stout is largely independent of the person`s height.

For a better illustration, see the medical diagnosis example in Hisdal 1986b,

p. 121.)

For fuzziness #3a, the subject who gives the YN answer varies from assertion

to assertion, being chosen at random from the population of subjects.

For each of these three types of fuzziness, the experimenter then de�nes the

truth value of A = A1; : : : ; An as being equal to nY =n , where nY is the total

number of Y answers.

To obtain the TEE model, we only add the assumption that the membership

value speci�ed by a subject in an exact MU experiment (with YN reference, see

Hisdal 1988a, def. 5) is an estimate of nY =n in connection with fuzziness #1a,

2a, or 3a.

We have thus complete correspondence between the TEE model (with YN

reference of the membership values) and the above application of the BK checklist

paradigm. Partial truth or grade-of-membership values are considered to be

estimates by the subject of the average of the Y (1) and N (0) answers.

Two additional, extremely important results which are common to the

checklist paradigm and the TEE model are 1) The unique identi�cation of

grades of membership with distributions of Y-�juex , not of uexjY-� . And 2) The

summing-up-to-1 of the truth or membership value of Y-�juex and N-�juex for

all uex . These two results make it quite clear that the fact, that the sum over

uex of the ordinates of a discrete membership function is usually bigger than 1,

is not a valid argument for the need of a non-additive measure theory.
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Appendix A3. The Resolution of the

Complementation Paradox

We show in this appendix that the complementation paradox of fuzzy set

theory disappears when the traditional postulated max operator for the ORA

(inclusive OR) connective is replaced by the derived TEE model operators for

this connective.

Let �a(uex) be the membership function of the fuzzy subset a of the

attribute universe Uex . And let NOT a be the complement of a . It is de�ned

as a fuzzy subset whose membership function is that of the negation of a as

given by eqn (9) (see Zadeh, 1973, eqn 2.26) ).

The max-min fuzzy set theory postulates the pointwise max operator for

the union of two fuzzy subsets (see Zadeh 1973, eqn (2.27) ). We have then the

paradox that the union of a fuzzy subset a of Uex and of its complement NOT a

is, in general, not equal to the attribute universe Uex . In the sequel we show

that the use of either of the two TEE model operators for ORA (corresponding

to SIM and RR situations respectively) results in the attribute universe for the

union of a fuzzy subset and its complement, see eqn (A15).

We shall here use the implied de�nition of traditional nonfuzzy and fuzzy

set theory according to which the union of two fuzzy subsets a , b , is the fuzzy

subset whose membership function is ��(uex) , where �= a ORA b .

The label

� = a ORA b (A9)

(with YN reference for the composite label � as a whole) applies, according

to the TEE model, to every object which is such that when two successive LB

or YN experiments, exp1 and exp 2, concerning the noncomposite labels a and

b respectively are performed on it, then the following outcomes contribute to

a ORA b , assuming that exp1 and exp2 refer to the same label set,

a in exp1 and (either a or b) in exp2] or

[b in exp1 and (either a or b) in exp2]. (A10)

In our case the two experiments refer to the label set

� = �1 = �2 = fa; bg; where b=NOT a : (A11)

The quantization intervals for the two labels are such that

�ua [�ub = U : (A12)
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The reason why eqn (A12) must hold is that the subject must answer either

Y or N in each of the two noncomposite experiments, assuming that these are of

the YN type. If they are LB experiments concerning the label set (A11), we get

again eqn (A12) according to def. A1 in appendix A1 of Hisdal (1988a).

Two formulas for the ORA connective apply to our case, depending on the

situation to which the subject (who assigns a membership value concerning the

label a ORA b in a YN-MU experiment, see Hisdal 1988a, def. 5) refers. For a

SIM reference, the subject refers to the case in which the noncomposite LB or YN

exp1 and exp2 are performed SIMultaneously on each object. Consequently u ,

the estimated attribute value of the object, is the same for exp1 and exp2. The

formula for the membership function of � , eqn (A9), is then given by eqns (A13),

(A14) below (eqns (10) and (12) in Hisdal (1988c) ),*

��(u
ex) =

X
u2�u�

P est(ujuex) ; (A13)

where �u� is given by,

�u� = �ua [�ub = U : (A14)

The last equality sign in (A14) is due to (A11), (A12).

Substituting (A14) into (A13) we �nd the desired result

�a OR NOT a(u
ex) = 1 8uex ; (A15)

because the sum of the probabilities of all possible estimated attribute values u

(for a given uex ) must be equal to 1.

A composite label can also refer to an RR situation in which each object is

ReRandomizedwith respect to conditions of observation between exp1 concerning

the label a , and exp2 concerning the label b . This statement holds for fuzziness

#1a. For fuzziness #3a, an RR reference situation means that the subject who

performs the MU experiment concerning the composite label refers to the case

that two, generally di�erent, randomly chosen subjects assign the labels in exp1

and exp2 respectively. For fuzziness #1a we then have the following formula for

ORA (eqn (15) in Hisdal (1988c) ),

�a ORA b(u
ex) = 1� f1� [�a(u

ex) + �b(u
ex)]g2 : (A16)

* In Hisdal (1988c, sect. 2.9), the formulas for the connectives are presented

without proof. The proof can be found in Hisdal (1984a), sect. 10 and in Hisdal

(1988b).
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Substituting the `one-minus' formula for the negation, �a(uex) +

�NOT a(uex) = 1 8uex (see consequence 2 in sect. 3) into (A16), we �nd that

eqn (A15) holds also for RR reference of the membership values of the composite

label.

This then is the resolution in the TEE model of the complementation

paradox of the max-min fuzzy set theory.

We remark that the formal proofs of this appendix are, strictly speaking,

superuous, except that they demonstrate that the TEE model formulas are

consistent. Eqn (A15) must always hold, irrespective of SIM or RR reference of

the composite label, because 1) The subject interprets the grade of membership

of ` a ORA NOT a ' as her estimate that an object will be labeled ` a ' in one

of the two noncomposite YN or LB experiments, ORA that the object will be

labeled `NOT a ' in the other; 2) One of these two labels must necessarily

be assigned in each of the two noncomposite experiments; and �nally because

3) Every object has a unique exact attribute value uex .

The complementation paradox has been discussed previously under

di�culty 9 in Hisdal (1986a). We said there that the TEE model resolves this

paradox by recognizing that a fuzzy subset of the attribute universe is not a

collection of elements of Uex , but a distribution over Uex . In contrast, the

present appendix shows that the complementation paradox is simply due to the

use of a wrong operator, namely the max operator, for the inclusive OR. The

appendix therefore represents a modi�cation of our previous statement under

di�culty 9. The question of whether we should use the name `fuzzy subset of the

attribute universe Uex ' for the ��(uex) membership function will be discussed

in part 1.5 of this series.
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�u� = fu�l; : : : ; u�ug = quantization-interval for the label � . Nonfuzzy interval in
U for which the subject assigns the label � in an LB (labeling) or YN (yes-no)
experiment (see Hisdal 1988a, de�nition 11).

est superscript for the estimate by the subject of a probability distribution relating to his
fuzziness #1a,2a or 3a (Hisdal 1986b).

est-nexcond superscript for a quantity elicited under real conditions of observation which are
identical with the estimated ones assumed by the subject in connection with his
fuzziness #1a.

Exact conditions or experiment. A semantic experiment in which the subject measures (or is
told) the exact attribute value of each object. Consequently u = uex for an exact
experiment.

excond superscript for a quantity elicited under exact conditions of observation for which
u = uex:

Fuzziness #1a is due to the subject's awareness of the possibility of errors of estimation of the attribute
value (see section 2.2).

Fuzziness #3a is due to the subject's awareness of the possibility of variations between di�erent
persons of the thresholds u� for the label � (Hisdal 1986b).

� a label; e.g. `tall', or `VERY tall', or `tall OR medium'. The same symbol is used to
denote the corresponding fuzzy class. In fuzzy set theory it is usual to identify this
concept with its membership function ��(uex) , and to call it the \fuzzy set � ". We
use a lower case letter to denote this concept and its label instead of the more usual
A or F of fuzzy set theory, because we need the corresponding upper case letter for a
label set.

� = f�lg a label set; e.g., ` fsmall, medium, tallg ' (see Hisdal 1988a, def. 1, item 9).

LB
experiment

a Labeling experiment in which a subject assigns a label from a label-set to an object
(see Hisdal 1988a, de�nition 2).

LB,YN-MU assumption of equivalence of the TEE model. The assumption that the grade of
membership value is a means by which a subject takes account of the existence of
fuzziness in everyday life. He interprets the �� value which he assigns to an object
of attribute value uex (in a MU experiment performed under exact conditions) as
the proportion of objects with that value of uex which he would label � in an LB
or YN experiment under the conditions of observation to which he refers his fuzziness

#1a: �excond� (uex) = P est�nexcond(�juex) =
P1

u=�1 t�(u) P est(ujuex) .
For fuzziness #3a, the subject interprets �� as the proportion of subjects who would
label the object � in an LB or YN experiment (Hisdal 1986b).

�� membership value in class � assigned by the subject to a given object under given
conditions of observation. �� is a unique function of u , but not of uex according
to the TEE model; assuming a given reference label set � , and a given reference to
either a YN or an LB situation (see Hisdal 1988a, de�nitions 4, 5).

�nexcond� (uex) Under nonexact conditions, �� is a unique function of u , but not of
uex . We therefore de�ne its expectation over all objects with attribute

value uex , Exp f�nexcond� (uex)g =
P1

u=�1 P (ujuex) �excond� (u): Thus

�excond� (uex) is a rounded version of the nonfuzzy threshold curve t�(u) ; and

Exp f�nexcond� (uex)g is a rounded version of �excond� (uex) . The rounding-o�

being performed by a convolution with P est(ujuex) and P (ujuex) respectively.

Fig. 1a. Notation and Terminology (continued in �g. 1b).



MU
experiment

a grade of membership experiment in which the subject is asked to assign a grade of
membership value � 2 f0; : : : ; 1g to an object concerning the label � (see Hisdal
1988a, de�nitions 4, 5).

nexcond superscript for a quantity elicited under nonexact conditions of obervation. Note that
uex (the exact attribute value of the objects as measured by the experimenter) may
be an argument such a quantity.

P (�juex) labeling probability or likelihood distribution of � over uex . Probability that
an object with attribute value uex will be labeled � in a YN or LB experiment.
Super�cially stated, it is later identi�ed with ��(uex) elicited in a MU experiment
(see LB,YN-MU assumption, sect. 2.2).

P (uex) unquali�ed or prior probability distribution over uex ; e.g., the distribution over height
of the population of objects, unquali�ed by the label � .

P (ujuex) real error curve for a given subject, and a given set of conditions of observation. When
P (x) , the probability of an error x = u � uex , is independent of uex , then we
talk about a ` uex -invariant' error curve.

P est(ujuex) estimated error curve; the subject's estimate of the error curve for the conditions of
observation to which he refers his fuzziness #1a.

Semantic experiment. An LB or YN or MU experiment (Hisdal 1986b, defs. 2-5).

Set of con-
ditions of
observation

(see Hisdal 1986b, end of sect. 1); A given set of conditions of observation gives rise to a
unique P (ujuex) error curve for a given subject. For exact conditions of observation
the set contains one point only. A set of conditions of observation containing more
than one point (anticipated by the subject or real) gives rise to fuzziness #1 (1a or 1b
respectively).

t�(u) threshold curve for � ; a two-valued function of u whose value is 1 inside the

quantization interval �u� , and 0 outside this interval. t�(u) = P excond(�ju) =
Pnexcond(�ju) . In contrast, Pnexcond(�juex) is a fuzzi�ed version of the
threshold curve. It is identi�ed with the membership curve elicited from an ideal
subject under exact conditions (see sect. 2, defs. 2, 3).

u�l; u�u; u� u�l; u�u are nonfuzzy lower and upper threshold values in U of a given subject for
classifying an object as being � in a YN or LB experiment. For extremal concepts
(like `tall', `small', `VERY small') only one of these need to be speci�ed. It can then
be denoted by u� .

u estimate of the object's attribute value by the subject.

uex exact attribute value of object as measured by the experimenter; e.g. the height in
centimeters, measured with a centimeter stick.

Uex , U the universe in which uex and u take on values. In all the formulas and �gures we
assume a quantized universe (although we often leave out a subscript on the quantized
` u ' values in order not to complicate the appearance of the formulas). u = 165 cm
in a �gure should be interpreted as u 2 [160; 170) cm. Continuous curves are drawn
through the computed points for convenience of visualization.

YN (yes-no)
experiment

an experiment in which a subject answers `yes' or `no' to the question of whether an
object is � (see Hisdal 1988a, def. 3).

Fig. 1b. Notation and Terminology, contnd from �g. 1a.
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Fig. 3. Fig. 3(b) illustrates the di�erence, according to the TEE model, between

a P (talljuex) YN-curve and a �tall(uex) membership-curve elicited under the same

(namely exact) conditions of observation (see sect. 2.3, theorem1). It is assumed

that the subject's threshold for `tall' is 170 cm, and that her ( uex -invariant)

estimated error curve E(x) = P est(u � uexjuex) is that of �g. 3(a). The grade of

membership curve is computed from the threshold and the error curve according to

eqn (3) (see illustration of this equation in �g. 2 for uex=175cm). The membership

curve is also equal to the P (�juex) curve which would be elicited from the same

subject in a nonexact YN experiment with a real error curve equal to the one

estimated by the subject for everyday conditions of observation in connection with

her assignment of the membership values (see LB,YN-MU assumption, sect. 2.2).

The di�erence between a YN and a MU curve elicited under the same conditions

of observation has been demonstrated experimentally by Norwich and Turksen.



Fig 4. Likelihoods and grades of membership P (�juex)=��(uex) (elicited in a

nonexact and an exact experiment respectively, see eqn (5) ) versus � -quali�ed

probabilities P (uexj�) (referring to a nonexact YN experiment for the assignment

of � ). P (uex) is an assumed unquali�ed probability distribution (distribution over

height of the population to which ` �=tall' refers). P (tall j uex) is computed from

the subject's assumed quantization interval for `tall' by the method of �g. 2(a)

and eqn (3). P (uex j tall) is equal to the normalized product of the other two

distributions, see eqns (18), (21). The di�erentiation between the distribution of

(tall j uex) and that of (uex j tall) disposes of `The Only Man on Earth' di�culty,

see consequence 10.


