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Abstract

A discrete-event simulation environment, called GMSim, based on the generalized
semi-Markov process (GSMP) framework is described. The tool is completely generic
and extendible by Tcl script programming. Application specific components are de-
veloped in an objected-oriented setting by C++ programming in combination with M4
macro processing. Components are conveniently integrated by run-time linking.

The strong links to the underlying mathematical GSMP description is favorable in
two respects. First, qualitative results from a body of theory is readily available. Next,
the structured view leads to an efficient implementation.
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Chapter 1

Introduction

The generalized semi-Markov process (GSMP) description is a versatile stochastic for-
mulation of the dynamics found in discrete-event systems [10]. It is at the same time
both a precise mathematical setting for analysis and a discrete-event simulation algo-
rithm. In some sense the GSMP view unifies analytical methods with simulation, hence
we use the termsimulyticto characterize the approach.

Closed-form solutions cannotbe derived from the GSMP formulation. The frame-
work is targeted at simulation but benefits greatly from the inherent mathematical struc-
ture. Quantitative results must be obtained by simulation but a flavour of qualitative
theorycanbe established [10]. The latter is the reason for applying the GSMP frame-
work in the first place. The key point is that theoretically sound and computationally
efficient methods for carrying out the simulation are readily available. This includes
experimental design, sampling strategies and output analysis [9,12].

A GSMP model can really be implemented in any programming or simulation lan-
guage. However, we argue that it is preferable to keep the implementation of a simula-
tion model in in close resemblance with the underlying view. This document describes
the development of an appropriate simulation environment called GMSim.

The starting point is the basic GSMP formalism. Figure 1.1. suggests that the
idea is to convert this into an object-oriented implementation. The intermediate step is
a compositional GSMP view. The contribution of this work is related to the latter two
steps and the novelty is the compositional formulation. To our knowledge there is no
available implementation of a simulation tool that directly reflects the GSMP view.

Basic GSMP formalism

Object-oriented implementation

Compositional GSMP view

Figure 1.1:The idea behind the GMSim development
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The preciseness of the underlying description is also beneficial when it comes to
implementation. Due to the systematic and well-structured view we conjecture that an
direct implementation of the GSMP formulation leads to a consistent and efficient tool.
This is the motivation for the GMSim development.

The objectives of GMSim are execution speed and flexibility. Speed is gained
by building binary code for the basic parts of a model. This is based on the C++
programming language [38] in combination with M4 macro pre-processing [34]. The
concept of various hook functions is central to the discussion. Together, the set of
recognized hooks forms the programming interface to the GMSim core.

The GMSim tool itself is completely generic. Application specific components
are conveniently incorporated by run-time linking. Flexibility is further enhanced by
using the Tcl/Tk script environment [27] for simulation setup, configuration, control
and reporting. The tool can be extended in arbitrary ways by script programming.
Scheduling in GMSim is based on two-level strategy where a pairing-heap [8] is used
for the global queue.

In this document it is generally assumed that the reader has knowledge of the C++
programming language, the Tcl/Tk environment and the M4 macro processor. The
GMSim tool is currently available1 for the GNU gcc compiler and the Linux and
Solaris operating systems. It has successfully been used for studying the performance
of wormhole-switched communication systems [26].

Note that we only consider the core of the GMSim tool. Any application specific
extensions are beyond the scope of this document.

1.1 Organization

The emphasis of this document is theimplementationof GMSim more than its theoreti-
cal foundation. Hence, a discussion of the basic GSMP formalism is left to appendix B.
Likewise, the compositional GSMP view is formally discussed in appendix C. For the
casual reader it is sufficient to know that the object-oriented implementation is based
on how a GSMP model can be represented as an ensemble of interacting sub-models.
For readers unfamiliar with the Tcl/Tk environment, a brief introduction is given in
appendix A.

The rest of this document is organized as follows. Chapter 2 provides some back-
ground information on modeling of systems with discrete-event dynamics. The GSMP
is one possible approach which builds on the successful heritage from Markov chain
analysis. This is followed by an overview of the GMSim environment and its features
in chapter 3. Central to the discussion is how the Tcl/Tk scripting environment work
together with code written in C++. Chapter 4 elaborates on certain basic concepts like
packages, classes, simulation mode, verboseness and configuration. The C++ program-
ming interface is described in chapter 5. This is based on the concept of hook functions.
In chapter 6 various issues related to model development are discussed. This includes
debugging, deadlock detection and facilities for extending the tool itself. Finally, the
important topic of scheduling is discussed in 7. The report is summarized in chapter 8.

1See<http://www.ifi.uio.no/˜froden/gmsim>
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Chapter 2

Background

Modern technology has increasingly created man-made systems with discrete-event
dynamics. The class of queuing networks serves as an example. Such systems, termed
discrete-event dynamic systems (DEDS) are in contrast to continuous variable dynam-
ics systems (CVDS) often found in nature [14,15]. The distinction between DEDS and
CVDS is illustrated by figures 2.1 and 2.2.

Differential equations arethe most important tool for modeling and analysis of
CVDS. The success of the approach is due to a functional view with well-defined re-
lations between the constituent variables. A DEDS is different as its workings are
naturally defined in terms of a set of operational rules. This corresponds to an algo-
rithmic view. The definition of state is also different. DEDS use a pure physical state
description whereas CVDS entail a proper mathematical state. The latter includes the
former, but not vice versa. Another feature is that DEDS are often so complex as too
appear as random even though the constituent parts all behave deterministically.

There seems to be no convenient way to capture the behavior of DEDS mathemat-
ically with the same degree of efficiency as the case of CVDS with differential equa-
tions [14, 15]. The available theory is in general less developed than for CVDS. The
most important achievement is the theory of Markov chains [4]. Associated scientific
disciplines are operations research [24] and queuing theory [21].

Much of the theory in both domains is qualitative in nature. A major computational

time

state

e1 e2 e3 e4 e5 e6

x1

x2

x3

x4

x5

x6

Figure 2.1:Illustration of a discrete-event dynamic system (DEDS).
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state (x), parameter (u)

dx/dt = f(x,u,t)

x(t)

time (t)

Figure 2.2:Illustration of a continuous variable dynamic system (CVDS).

difference is that CVDS are more readily available for numerical analysis. DEDS typ-
ically suffer from a combinatorial explosion of the underlying state space [12,15]. For
a completely general approach to modeling of DEDS we are left with the alternative of
simulations [1,2,6,22,28].

The generalized semi-Markov process (GSMP) formalism [9–13,35,36] is one ap-
proach to modeling and analysis of DEDS. It is an attempt to build on the successful
heritage from Markov chains. Hence, it provides a precise mathematical framework
for analysis. At the same time it is a succinct description of a discrete-event simulation
algorithm. To emphasize the duality we use the termsimulyticto characterize the ap-
proach. Quantitative results can be found from simulations. The utility of the inherent
mathematical structure is to simplify output analysis. A flavor of qualitative theory and
numerical algorithms can be obtained as a result of viewing discrete-event systems as
GSMP. In particular, methods for output analysis and statistical inference are readily
available.

The basic idea of the GSMP formalism is to add supplementary variables [5] to
the state description so as to maintain the Markov property. Then the process becomes
memoryless is the sense that the future evolution depends only on the current state.
As always, this simplifies analysis. It should also be noted that the GSMP framework
is a behavioral formulation rather than a logic or algebraic description. Therefore, it
is well-suited for performance studies but has less relevance when it comes to formal
verification and validation [2,29] of system designs.

4



Chapter 3

Overview

GMSim is structured as shown in figure 3.1 and consists of a number of packages to
be loaded into a Tcl interpreter. The interpreter must exist in the realm of a running
program. Each package comprises binary code which is dynamically linked1 with the
executing program at load-time. One of the standard Tcl/Tk shellstclsh orwish are
normally used to host the interpreter. Readers unfamiliar with Tcl/Tk should consult
appendix A before reading on.

A package namedcore must be loaded to set up the basic simulation environment.
This results in an enriched set of commands and global variables that enable simulation.
Names added to the interpreter have the formatsim_xxx . Appendix F and appendix G
document the commands and variables pertinent to the user.

The new script commands are used to build and manage simulation models. A
model comprises items instantiated from prototype classes of various kinds.

• alive classes

• dead classes

• parameter classes

• statistics classes.
1Dynamical linking is a feature of the Tcl interpreter.

Interpreter

Tcl/Tk

GMSim core PkA PkX

Program

Figure 3.1: GMSim is structured as a number of packages to be loaded into a running Tcl
interpreter. Loading thecore package sets up the basic simulation environment.
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linkA
IfcA

IfcB linkB

1 X 2 Y

write

read

Figure 3.2:Inter-object communication takes place in terms of links and interfaces. Links are
typed and can only connect to conforming objects.

binary domain script domain

Tcl command loopobject dispatcher loop

visit

sim_run

objects

Figure 3.3:GMSim alternates between the script domain and the binary domain during opera-
tion. The command loop parses script commands. Objects are visited from the object dispatcher
loop.

An item is either an object or a statistics. Objects are instantiated from the first two
types of classes. Statistics are created from statistics classes. In section 4.4 we return to
the properties of the different kinds of classes. Before instantiationcan start, space must
be allocated by thesim_alloc command. Thesim_new command is responsible
for instantiation.

An alive object corresponds to a component in the compositional GSMP formula-
tion discussed in appendix C. Connections between objects are formed by links and
interfaces. This isillustrated in figure 3.2. Two objects are instantiated from classes
X and Y and connected by a pair of links. Interaction takes place in term the con-
necting links. In this case each object posses one interface (shaded) and the links are
typed according to the interfaces they conform to. Hence, only compatible objects
can be linked. This issue is further discussed in section 4.7. Links are created by the
sim_link command.

The GMSim core providesno classes. This is left to additional packages. Each
package is expected to implement pertinent classes according to the compositional
GSMP view. The recognized classes depends on which packages are loaded. New
packages are loaded in response to thesim_pkg command. Hence, the modeling ca-
pabilities of GMSim can be extended in arbitrary ways without recompiling the core.
In section 4.3 we return to the issue of package development.

The operation of GMSim is illustrated in figure 3.3. We distinguish between
the binary domain and the script domain. The command loop is responsible for pars-
ing script commands. If thesim_run command is invoked, simulation proceeds by
transferring control to the binary domain and the object dispatcher loop. In turn, the in-
stantiated (alive) objects gain control according to their ordering in a scheduler queue.
Scheduling is discussed in more detail in section 7.1.

For each alive object a piece of behavioral code is executed before control is re-
linquished. This is called a visit to the object. The number of objects visited before

6



Figure 3.4:The main window of GMSim showing the log for a specific example. The current
response line is highlighted.

control returns to the script domain depends on the designated simulation speed. This
is further discussed in section 4.2. The most recently visited object is referred to as
the current object. Information about the current status is provided by thesim_curr
command.

GMSim provides a graphical user interface if the hosting program supports Tk.
Figure 3.4 shows the status of the main window if the script filemm1.tcl listed in
appendix E.4 is used. Except from menus and buttons, the main window shows a log
of responses as script commands are evaluated. The last line marked with a hash

2 ExpSrv 109(+1/+1) 3(+1) 0(+0) {[simDumpHook 2 109] 1}

is the response after three simulation steps. Whenever control returns to the script
domain a line like this is printed. The first field is an identification of the current
object. Objects are given numerical identifiers as the are instantiated. The second field
shows the object class. The third field is the current simulation time. The incremental
value in parenthesis is the elapsed simulation time since the last invocation of the run
command. The fourth field is the accumulated number of visits and the fifth field is
associated with deadlocking as discussed in section 6.3. The sixth field has to do with
script hooks as explained in section 6.1

The log is an example of a report in GMSim. Reports can be opened to write infor-
mation to ordinary text files during simulation. Associated windows can optionally be
displayed on the screen.

The log is an example of a report in GMSim. A Report, which is associated with an
underlying text file and optionally a window, can be managed entirely from the script
domain by thesim_rep command. A particular kind of report, called a dump report,
can be requested for any alive object. This makes the object verbose about its inner

7



workings.
GMSim includes a system where configuration parameters can be set and read from

the script domain. This is accopplished by thesim_par command and is subject to
discussion in section 4.6. A generic feature for recording measurements in the binary
domain is also provided . This takes place in terms of assigned statistics. Statistics are
in turn accessible from the script domain. We return to this issue in section 4.8. The
sim_stats command is used to manage statistics.

General system information is provided by thesim_info command. This in-
cludes the names of recognized and loaded packages. The same command gives spe-
cific information about packages, classes or objects. Package information includes
dependencies and implemented classes. Class information includes linking features.
Object information includes actual links and scheduled status.

Finally, note that on-line help is available by thesim_h command.

8



Chapter 4

Basic concepts

4.1 Startup

The detailed procedure for starting GMSim is left to aREADMEfile in the source dis-
tribution. Without going into details, it includes a convenient shell script wrapper. In
this section we discuss general concepts related to startup. Keep in mind that the tool
is launched by loading thecore package in a running Tcl interpreter.

More specifically, there are two variants of the package referred to as the develop-
ment and production versions. The former is equipped with debugging and verboseness
features. The production version is targeted at execution speed and minimizes such
features. Each additional packages also come in two version. The appropriate type is
loaded according to the version of thecore .

GMSim is started with the graphical user interface if the hosting program supports
Tk. Otherwise a pure Tcl version is started. In any case, a command-line interface
is available if the executing program provides interactive terminal capabilities. The
graphical interface always include the main window. Other windows are initially dis-
played depending on the setting of thesim_wdisp variable. E.g. if a window showing
data about the current object is of interest,sim_wdisp(curr) should be set prior to
loading thecore .

An important step in the startup sequence is recognition of installed packages. This
is based on the contents of thesim_path variable. For each directoryyyy in the
path list, the immediate sub-directoriesyyy/xxx are searched for packages. If a sub-
directoryxxx contains a filesimpkgIndex.tcl , it is assumed to be the directory
location of a package namedxxx . Note that packages arenot loaded as they are
recognized. The user can control which packages are recognized by setting the path
variable prior to startup.

The final step of startup is to source the script files named by thesim_script
variable. In this way application specific scripts can be evaluated immediately. This is
required in batch mode. Scripts can also be evaluated on demand by thesim_source
command. Note that thesim_path variable is also used when searching for the
location of script files.

9



Figure 4.1:Example of a dump report window in GMSim. The current dump is highlighted.

4.2 Verboseness and speed

GMSim is verbose at every return to the script domain since a response line is always
printed. Verboseness can be further enhanced in two ways

• Script commands can be logged as they are evaluated.

• Objects can be made verbose as they are visited.

Logging of script commands is controlled by supplying an appropriate mask to
thesim_log command. Each loggable command is associated with a specific level
designation. Logging takes place if this level number appears in the mask when the
command is evaluated. This feature is very helpful to trace bugs in scripts.

Thesim_dump command can be used to reveal the inner workings of an object and
simplify debugging. A dump of the internal state for any object is available at request.
This can be used to make an object verbose in the sense that a dump is automatically
prepared at every visit. The information is in turn written to an associated dump report
when control returns to the script domain. An example of a dump report is shown in
figure 4.1 for an object instantiated from the classExpSrv discussed in appendix E.
In section 6.2 we discuss how to generate the information contained in such a dump.

Control should return to the script domain foreach verbose object. Hence, verbose-
ness works together with simulation speed. The speed is controlled by thesim_speed
command and takes one of the valuesslow , semi or quick . Slow mode corre-
sponds to single-step behavior where control returns to the command loop at every
pass through the object dispatcher loop. In semi mode control returns only for objects
set to be verbose. In quick mode verboseness is bypassed all together and simulation
proceeds as fast as possible without returning to the script domain.

Note that exceptional system conditions will also always force a return to the script
domain. This is controlled by setting system parameters as documented in appendix D.
In addition, the evaluation of object script hooks as described in section 6.1 may lead
to a forced return, regardless of the designated speed.

In any case, when control eventually returns to the command loop, the subsequent
behavior depends on if> or >> was given as an argument tosim_run . The former

10



mm1/
wish

mm1.tcl

3
mm1.h

mm1.cc
init.tcl

*.cfg.tcl

simpkgIndex.tcl

m4 gcc code.devel.so

code.prod.so

Source files

core/

init.tcl

SysParB.cfg.tcl

simpkgIndex.tcl

code.devel.so

code.prod.so

21

Figure 4.2:GMSim is launched (1) by loading thecore package into a running interpreter.
Additional packages (3) are loaded in response to application (2) needs. Themm1 package
illustrates package building and which files are involved.

corresponds to breaked operation. Then a new run command must be invoked explic-
itly in order to continue. Otherwise the simulation proceeds immediately as the latest
command is re-issued automatically. This is called continuous run.

4.3 Packages

The user is responsible for loading packagesaccording to which classes are needed in
a particular simulation model. Loading is accomplished by thesim_pkg command.
It starts with resolving all dependencies so that any subsequently required packages are
loaded first.

The process of package development and use is outlined by an example in fig-
ure 4.2. A packagemm1is considered and it is assumed that all associated files are
installed in a directorymm1/ relative to the search path. File listings for this example
are found in appendix E.

The package is built from a single source filemm1.cc which in turn is com-
piled into a pair of binary filescode.devel.so andcode.prod.so . The binary
files correspond to development and production versions of the package, respectively.
An accompanying index filesimpkgIndex.tcl contains information about imple-
mented classes and any package dependencies. The*.cfg.tcl files have to do with
configuration as explained in section 4.6.

The source file is pre-processed by the M4 macro processor before actual compi-
lation. Using a set of macros which is related to the GSMP formalism is mandatory.

11



As these macros are expanded code is automatically generated to takes care of package
initialization and all interfacing to the Tcl environment. The last step of the initial-
ization code is to read a script fileinit.tcl . This provides for packet initialization
from the script domain. E.g. thecore package has a long script sequence setting up
the basic GMSim environment.

The GMSim source distribution includes several makefiles which assist in building
packages.

4.4 Classes

As already suggested there are different kinds of prototype classes in GMSim. Most
objects are instantiated from alive classes. An alive class corresponds to part of a
GSMP description and comprises:

1. A piece of behavioral code which is writtenaccording to the GSMP view. This
is based on a state description and a set of events as discussed in section 5.5.

2. Declarations of links which can be used to form outgoing connections. We return
to this issue first in section 4.7 and then in sections 5.4 and 5.5.

3. One or more interfaces to accept in-going connections. This is described in
section 5.3.

4. Recognized configuration parameters enhancing the versatility of the class. The
corresponding programming interface is discussed in section 5.4.

5. Declaration of measures to record observations. We return to this topic first in
section 4.8 and then in section 5.5.

A simulation model can also comprise dead objects. Since a dead class lacks char-
acteristics 1 and 5, such objects do not really participate in the simulation. Their role
is simply to act as link centers.

Statistics are instantiated from statistics classes. They only possess property 4 but
are related to alive classes by way of measures. We return to this issue in section 4.8.

A parameter class is also restricted to property 4 but is otherwise self-contained.
This is how global variables are handled in GMSim. Parameter classes cannot be used
for instantiation in the ordinary way bysim_new . They are automatically instanti-
ated once and given an identifier corresponding to the class name in lower case. E.g.
the core package defines theSysPar class with a corresponding instance named
syspar . The system parameters are documented in appendix D and is related to
generic simulation control. The normal use of parameter classes is to define one such
class for each package. In this way global parameters associated with the package can
be set conveniently.

Note finally that the class concept in GMSim build directly on C++ classes. Hence,
the full power of inheritance and polymorphism characteristic for object-oriented pro-
gramming is available.

4.5 Modes

The GMSim tool is in different modes during operation. The mode designation is
numeric in the range[−2, 2] where−2 is the default after launching the tool. The mode
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sim_run done

Figure 4.3:GMSim operates according to a mode designation. The diagram shows the mode
specific script commands and how they lead to transitions.

is important in two respects. First, certain script commands are restricted to specific
modes. Second, the significance of configuration parameters are mode dependent as
discussed in the next section.

Figure 4.3 is a mode transition diagram displaying the mode specific commands.
Every command not included in this figure is general and can be used in any mode.
Mode−1 is where objects can be instantiated and linked. Topology specific configu-
ration parameters are also set in this mode. Other configuration parameters get their
initial value in mode1. Mode 2 is the run mode and it is split into two sub-modes
corresponding to continuous or breaked run. Note that all required packages must be
loaded in mode−2 before the topology can be setup in mode−1.

4.6 Configuration

The final step of package loading is to prepare a configuration template for each class
introduced by the actual package. The templates are build from configuration files
having namesxxx.cfg.tcl wherexxx corresponds to a class name. These files
have one line of the following format for each recognized parameter.

x.y "text" -flag defval {opt1 opt2}
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Figure 4.4:The configuration dialog box for theSysPar parameter class.

There are five fields separated by white spaces. The third field is a unique flag used
for identification. The second field is an explanatory text used in configuration menus.
The fourth field holds the default value for the parameter. The fifth field is optional and
is a list of legal values. If this field is omitted any value isaccepted.

The leading dot-formated numberx.y is used to determine the when the parameter
is significant. The numbery ∈ {0, 1} tells whether it is a class or object parameter.
A class parameter is common to all instances whereas object parameters can be set
individually. The numberx ∈ {−1, 1, 2} gives the highest modemh in which the
parameter is setable. E.g. a topology specific parameter should have a valuemh = −1.
In addition, the second column of the following table is used to determine the lowest
modeml in which the parameter can be set.

x Low(ml) High(mh)
-1 -1 -1
1 1 1
2 1 2

Hence,[ml, mh] gives the range of modes in which a specific parameter is setable.
At entry to a new modem all parameters with a corresponding low designationml

get their initial value from the default entry held by the template. Form < ml the
parameter is without significance and the user is free to modify the default template
value. Form ≥ ml the template value is considered read-only. Form > mh the
parameter can not be set but is still of significance.

The default parameter value in template entries can be set or read by thesim_par
command using the class name as the second argument. Object parameters can be set
and read by the same command with the object identifier as the second argument. Note
that class parameters are only setable by way of the default template value.

If Tk is available parameters can also be set and browsed in terms of dialog boxes.
This happens in response to the commandssim_xpar andsim_xvpar . Figure 4.4
shows the dialog box that will appear if the template entry for theSysPar parameter
class is inspected.

Configuration parameters for a class are implemented in terms of the general pro-
gramming interface discussed in section 5.4. In addition, some parameters concerning
links and measures are recognized automatically. This is discussed in more detail by
section 4.7 and section 4.8.
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4.7 Links and interfaces

Connections between model objects are formed by links and interfaces asillustrated
in figure 3.2. A link acts as a plug which can be inserted into a socket in terms of
an interface. Together they form a one-way communication channel. An interface is
considered to be written from outside and read from inside. Links are typedaccording
to the interface(s) they conform to so that only compatible objects can be linked.

We will see in section 5.4 that a link declaration is complete except that the number
of emerging links of a particular name is left unspecified. Rather, this is configurable
by a parameter. Iflnknam is the name of a link, then-#lnknam is a parameter
specifying the number of links. Note that these parameters are topology specific and
common to all instances of a class. Hence, the configuration template entry has a
significance field of−1.0.

4.8 Measures and statistics

In section 5.5 it will become apparent that a measure is a function which can be called
whenever an object is visited. A measure is concerned about how to make an observa-
tion. The observation is in turn recorded in terms of a statistics.

For a measure to be in effect for a particular object, one or more statistics must
be assigned. This is accomplished by setting a configuration parameter which is auto-
matically recognized. I.e. ifmesnam is the name of a measure, then-mesnam is a
parameter which takes a list of statistic identifiers. Any non-zero value indicates that
observations should be collected and recorded in the designated statistics. A zero value
breaks any association for the measure.

The preferred way to establish an association between a measure and a statistics is
to use thesim_stats command. This command also performs other management
functions related to statistics.

Statistics can be assigned individually for objects during run. Accordingly, the
configuration template entry for a measure parameter has a significance field of2.1.
Note also that the same statistics can be assigned for different objects, if required.

15



Chapter 5

Programming

This chapter describes how object-oriented programming according to the GSMP view
takes place. Macro expansion and the concept ofhook functions are central to the
discussion.

5.1 Macro expansion

Code development for GMSim depends on using a number of M4 macros in a C++
environment. The idea is to extend the concept of a class declaration by using block
constructs like

sim_xxx(...) sim_use(...) {
sim_yyy(...);
...

sim_data:
...

sim_hooks:
...

sim_body:
...

};

Heresim_xxx , sim_use , sim_yyy , sim_data , sim_hooks andsim_body
corresponds to M4 macro calls. As these macros are expanded code is automatically
generated that takes care of all interactions with the GMSim core.

The following kinds of blocks are recognized with the associated opening macro
call in parenthesis:

• Interface declaration (sim_ifc )

• Virtual alive class declaration (sim_vaclass )

• Real alive class declaration (sim_raclass )

• Virtual dead class declaration (sim_vdclass )

• Real dead class declaration (sim_rdclass )

• Virtual statistics class declaration (sim_vsclass )

• Real statistics class declaration (sim_rsclass )
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• Virtual parameter class declaration (sim_vpclass )

• Real parameter class declaration (sim_rpclass )

Thesim_use macro following a block-opening macro is always used to specify
inheritance. An alive class can only inherit alive base classes. Likewise, an dead class
can only be derived from dead base classes. The same applies for parameter classes
and statistics classes. The distinction between virtual and real class declarations is
important. The latter corresponds to a complete prototype which can be instantiated
from the script domain. Virtual classes are abstract [38] and cannot be instantiated.
They represents base classes which must be further inherited. On the other hand, a real
class is final and cannot be inherited.

Anything between the delimitingsim_data andsim_hooks statements is ex-
pected to be ordinary C++ variable declarations pertinent to the class. The trailing
part of the block, i.e. after thesim_body statement, is expected to be ordinary C++
member function declarations.

For each of the block constructs there is a set of C++ member functions, referred to
as hooks. The hook functions are called from within thecore and represents a conve-
nient way to let the user implement a particular behavior for a class. Each hook has a
default implementation which is used unless overridden by the user. Overridden hooks
should be declared between thesim_hooks and thesim_body statements. Note
that there will be several hooks of the same type in a multi-level class hierarchy. Simi-
lar hooks are invoked in sequence from top to bottom and left to right in the inheritance
graph. Hence,all instances are called in response to a hook invocation.

The following subsections describes each of the block constructs in turn. For sim-
plicity we restrict the discussion to real classes, noting that the virtual class constructs
have similar features. The reader is urged to also take a look at the example in ap-
pendix E. For more detailed information the source distribution should be considered.

5.2 Standard hooks

In GMSim there is a number of standard hooks common to all of the block constructs.

...
sim_data:

...
sim_hooks:

void objParSet (Sim_Opt &opt);
void objParGet (EString &lst);
bool objCheck (int mode, EString &msg);
void objInit(int mode);
void objClean(int mode);
void objInfo(EString &lst);
...

sim_body:
...

The objParSet and objParGet hooks represent the programming interface for
setting and reading configuration parameters. The utility classSim_Opt is used for
convenient parsing of options.

TheobjParSet hook is called for the first time right after instantiation of a model
object or statistics. Subsequently, it is invoked when GMSim makes a transition into
a higher-numbered simulation mode. Each time the configuration parameters with a
matching significance designation get their default values. However, theobjCheck
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hook is called before leaving the current mode. It provides an opportunity to check that
the configuration is valid before completing the transition.

Otherwise, theobjParSet hook is called in response to thesim_par set
command. TheobjParGet hook is invoked from thesim_par get command.

The objInit hook is also called for every object and statistics at a transition
into a higher-numbered simulation mode. It is responsible for initialization to known
state according to the new mode. Since this happens after the corresponding invocation
of objParSet , initialization may depend on configuration parameters. The hook is
initially called at instantiation.

In contrast, theobjClean hook is invoked for every object and statistics as GMSim
makes a transition into a lower-numbered simulation mode. As the name implies, it it
responsible for cleaning upaccording to the current mode.

The objInfo hook can be used to provide specific information about an object
or statistics. This hook is called whenever thesim_info command is invoked. For
interfaces, alive and statistics classes additional hooks are defined as explained in sec-
tion 5.3, section 5.5 and section 5.6

5.3 Interface

An interface is the abstraction used for inter-object communication as discussed in
section 4.7. Interfaces are declared according to

sim_ifc(name) sim_use(...) {
sim_data:

int x;
...

sim_hooks:
<std. hooks>
void ifcClear (void);

sim_body:
name &operator= (const name &ifc);
void xWrite(int wx) {

x = wx;
};
...

};

and the standard hooks are recognized. We will see in section 5.5 that interfaces be-
come part of alive classes. A standard interface hook is invoked whenever the corre-
sponding hook of the incorporating class is called.

For an interface declaration to be useful ordinary C++ variables should be included.
The variablex provides an example. Variables are supposed to represent features of the
interface and they are modified when the interface is written from an external object.
Writing should always beaccomplished in terms of a corresponding member function.

Internally, GMSim operates with dual interfaces. This protects from mutual over-
writing when objects are scheduled at the same time. An assignment operator function
shouldalwaysbe provided in order to make a temporary copy of any pertinent vari-
ables.

The ifcClear hook is invoked right after the copy operation. This should leave
the interface in a clean state so that any newly written variables are recognized at the
next visit. As will be apparent from the discussion in section 7.1, an object will always
get the opportunity to read the copied variables before they are overwritten.

Note that interfaces can be inherited like classes. A derived interface will be poly-
morphic in the sense that it also conforms to its base interfaces, if any.
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5.4 Dead class

A dead class is declared according to

sim_rdclass(name) sim_use(...) {
sim_links(...);

sim_data:
...

sim_hooks:
<std. hooks>

sim_body:
...

};

and inheritance is allowed. Emerging links are declared by thesim_links macro
using an argument list of the following format

name1 Type1, name2 Type2 OPT, ...

Each argument has two or three white-space separated fields and comprises a link def-
inition. The leading field is an identifier. The second field defines the type of the link.
For dead classes this should be the name of another dead class. Hence, dead objects
can only connect to dead objects. Further, since a link is typed it can only connect to
conforming objects.

The declaration of a link identifier corresponds an array of pointers to objects of the
actual type. The size of this array is run-time configurable as explained in section 4.7.
If a third field OPTis present in the link definition, a value of zero is accepted for the
corresponding parameter. Otherwise at least one link of the given name must exists.

To refer to a particular link within the class scope the notationname1[n] should
be used. The actual number of links is available by calling an automatically gener-
ated member functionname1LCnt() . There are also two public member functions
name1LGet(...) facilitating externalaccess to the link-pointer array.

5.5 Alive class

Alive classes are declared by the construct

sim_vaclass(name) sim_use(...) {
sim_events(...);
sim_links(...);
sim_measures(...);

sim_data:
...

sim_hooks:
<std. hooks>
Sim_UsrTime initOccur (int e);
void nextState (void);
Sim_UsrTime nextOccur (int ev);

sim_body:
...

};

and have the same features as dead classes. However, linking is more distinguished for
alive classes. The point is that alive objects can connect tobothdead and alive objects.
In the latter case an interface specification must be used to specify the type of the link.
Further, writing to a remote interfacemusttake place in terms of using thesim_tell
macro. E.g. iflnk is the name of a link andmembf in the name of a member function
of the associated interface, then

sim_tell(lnk[..], membf(...));
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is the proper way to express inter-object communication.
The sim_use macro is used to indicate that an alive class conforms to a partic-

ular interface. IfMyIfc is the name of an incorporated interface, then an identifier
theMyIfc is introduced in the scope of the class. This is a reference which makes is
possible to read the variables of the appropriate interface.

The careful reader may have noticed that thesim_use macro has an extended use
in the context of alive classes since both inheritance and conforming interfaces can be
specified. The type of an argument is automatically recognized.

The notion of state is significant for alive classes. A state description is provided by
declaring ordinary C++ variables in thesim_data section. The state variables should
be updated whenever thenextState hook is invoked. We return to this issue in a
moment.

In accordance with the GSMP formulation a number of events is associated with an
alive class. The events are declared as a list of symbolic names given to thesim_events
macro. IfEV is an event1 defined for a classMyClass , thenMyClass_EV is a cor-
responding identifier for the event. Events are represented as integer values internally,
but the identifier should always be used when referring to an event.

The following event-sets are also introduced in the scope of the class

Sim_EvSet trigEvs;
Sim_EvSet actEvs;
Sim_EvSet oldEvs;
Sim_EvSet newEvs;
Sim_EvSet frozenEvs;
Sim_EvSet freezeEvs;

HereSim_EvSet is a utility class which efficiently implements various set operations
on integer valued members. The sets are used to express the behavior at a state transi-
tion according to the GSMP formulation. The significance of the first four sets should
be obvious from the discussion in appendix B. The latter two sets are related to the
rate at which event clocks run. In GMSim event clocks are restricted to run normally
(rate1.0) or being frozen (rate0.0). The frozenEvs is the set of events which are
currently frozen. ThefreezeEvs is used to mark which events to freeze after the
state transition.

To indicate which events are initially scheduled for an object, thenewEvs set
should be set as a part of theobjInit hook. Foreach of the initial events the
initOccur hook is called in order to get the corresponding scheduling time.

At each subsequent state transition the nextState hook is called. This isthe
most important hook as it implements the behavioral model for a class. Specifically,
oldEvs , newEvs , freezeEvs and the state variables should be modifiedaccording
to the contents oftrigEvs , actEvs , frozenEvs and the current value of the state
variables.

By default, the assignmentsoldEvs = actEvs andfreezeEvs = frozenEvs
are made just before visiting the object. Immediately after visit thenextOccur hook
is called for each event innewEvs . This determines when the actual events is to be
scheduled. Scheduled events may also be canceled at this point.

The final feature of alive classes is that measures can be declared. A measure is
concerned about how to make an observation of the present state of an object. The
observation is in turn redcorded in terms of an assigned statistics as explained below.
Whereas measures operate in the binary domain, statistics are accessible from the script
domain. The assignment of statistics was discussed in section 4.8.

1By convention we use uppercase letters do denote events.
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Figure 5.1:Illustration of how thecore maintains an association between a measure and a
statistics.

For a measure namedMes, its name must first be supplied as an argument to the
sim_measures macro of the alive class construct. Next, a measure hook
bool Mes (double &dat) {

...
};

must be defined in terms of a member function of the same name. The measure is
activated for an object by assigning a statistics as depicted in figure 5.1 The measure
is considered by calling (1) the hook function right aftereach visit to the object. The
dat parameter is a reference to a data area of the associated statistics. If the hook
decides to take an observation, the referenced data area should be updated (2) and a
true value returned. The latter informs the core that the statistics need to be invoked
(3) in response to the new observation. Then the appropriate actions can be taken
according to the nature of the statistics.

Note that a measure hook will only be called if at least one statistics is actually
assigned . If more than one statistics are assigned, the hook will be called once for
each statistics.

5.6 Statistics class

A statistics class is declared by the following construct.
sim_rsclass(name) sim_use(...) {
sim_data:

...
sim_hooks:

<std. hooks>
void reset(void);

sim_body:
...

};

Normally, thesim_data section declares variables according to the kind of statistics
being implemented. The function of thereset hook is simply to reset these variables
to an initial state.

It is important to note that every statistics class is actually inherited from a common
base class
class Sim_StatsBase {
protected:

double sdat;
public:

virtual bool handleDat (void) = 0;
virtual EString report(void) = 0;

};

When a statistics is assigned to a measure as explained in section 5.5, it is a reference
to the variablesdata that is passed to the measure hook. If the measure hook re-
turns true, it is assumed that a new value is written. Then thecore invokes the virtual
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(abstract)handleDat function so that the modified value can be handled in any par-
ticular way by the actual statistics class. The usual action is to update some variable in
response to the new data.

ThehandleDat function is also responsible for signaling whenever a new sample
is formed by the actual statistics. This is accomplished in terms of returning a true
value. If there is a one-to-one correspondence between measurement data and samples,
handleDat should always return true. Otherwise, this function should only return
true only if the newly written data area means that a new sample is formed. What is
meant by a sample depends on the nature of the actual statistics, of course.

Note that thehandleDat function isnot classified as a hook. It does not make
sense to invoke more that one instance of this function in a class hierarchy. The same
applies for the virtualreport function. The latter function is expected to report the
content of the actual statistics in textual form.

5.7 Parameter class

The concept of parameter classes was introduced in section 4.4. To declare such a class
the following construct is used

sim_rpclass(name) sim_use(...) {
sim_data:

...
sim_hooks:

<std. hooks>
sim_body:

...
};

Keep in mind that this is how to handle global configuration parameters and that these
classes are instantiated only once. If a parameter classParClass is declared, then a
corresponding global identifier

extern ParClass *Sim_ParClass;

is made available. This is a reference to the instantiated class. In this way global
configuration parameter can be accessed from the binary domain.
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Chapter 6

Development issues

6.1 Script hooks

The package system represents a way to extend the modeling capabilities of GMSim.
In this section we discuss how the behavior of the tool itself can be extended by script
programming. The idea is to permit the user to specify Tcl procedures that will be
evaluated by GMSim at specific points during operation. We refer to such procedures
as script hooks. This is completely different from the C++ hook functions discussed in
chapter 5.

Figure 6.1 shows an elaborated view of how GMSim operates It suggests that there
are three kinds of script hooks available. System hooks are invoked at every return to
the Tcl command loop. Object hooks and statistics hooks are referred to as a call-
back hooks for obvious reasons. Note that object hooks only make sense for alive
objects. Hooks are added and deleted by thesim_hook command, and more than one
procedure can be specified for any kind of hook.

Object hooks are invoked from thecore at everyvisit to an alive object. In con-
trast, statistics hooks are invoked only if certain conditions are met. This is related to
the discussion in section 5.6. First, a statistics must be affected by the state transition in
the sense that thesdata member is actually updated by the associated measure func-
tion. Next, thehandleDat function must return true indicating that a new sample is
now ready. Finally, the current sample number must match a next sample designation
specified by the user. We return to the latter issue in a moment.

An object script hook is assumed to take at least two arguments

proc objHook {id time args} {
...
return <msg>

}

The first argument will be the numeric identifier of the object from which the call-
back takes place. The second argument corresponds to the current simulation time.
The return value from an object hook is also of importance. If a non-empty string is
returned, control returns to the command loop immediately after the visit is completed.
The returned value is in turn indicated in the status line together with the hook name.
The trailing field of the status lines is used for this purpose. E.g. the example taken
from figure 3.4

... {{simDumpHook 1}}
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Figure 6.1:Elaborated view of the operation of GMSim. The tool is extendible by script pro-
gramming in terms of systems hooks, object hooks and statistics hooks.

tells that a hook with namesimDumpHook was invoked and yielded1 as its return
value.

The key point is that a non-empty textual value returned from an object hookalways
forces a return to the script domain. The opposite case is if all hooks return an empty
string. Then the object dispatched loop proceeds with the next visit, unless the speed
designation is slow in which case control return to the script domain in any case.

The verboseness feature outlined in section 4.2 is implemented in terms of an ob-
ject hook script. Unless the speed designation is quick, in which case verboseness is
bypassed, a dump is prepared when this hook is invoked. The hook then returns a
non-empty string so that control returns to the script domain. At this point the dump is
ready and can be written to an associated report.

A statistics hook is expected to be defined as

proc statsHook {id num args} {
...
return [list <nextSample> <msg>]

}

where the first parameter is the numeric identifier of the statistics from which the call-
back takes place. The second argument is the current sample number. The return value
from a statistics hook is expected to be a two-element list. The significance of the
second element is similar to the return value for object hooks. If one of the invoked
statistics hooks return a non-empty second element, a forced return to the script domain
takes place.

The first element in the return list is what was called the next sample designation.
This is used to specify the sample number at which the hook should be invoked next.
E.g. the hook is invoked ateach new sample if[expr $num + 1] is returned. If
a value less than the current sample number is returned, the statistics hook will never
gain control again. The careful reader may ask what will be the first visit to a statistics
hook. The point is that a statistics hook is always invoked withnum equal to zero
whenever the statistics is reset. In this way the hook is itself responsible to tell what
should be the first invokation.
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Note finally that a system hook takes no arguments but information about the cur-
rent object is always available in term of thesim_curr command.

6.2 Debugging

The sim_dump command and the verboseness feature discussed in section 4.2 is a
helpful debugging aid. The standard information included in a dump is the time since
last visit, the contents of the various event sets and also the scheduled time, if any. In
addition, interfaces and alive classes are all equipped with a C++hook

void verbose(ostream &os);

which can be used to extend the verboseness. It is a good habit to always supply such
a hook since it is often of great help in tracking programming errors.

In the development version of thecore some run-time overhead is incurred. This
is basically due to tracking of inter-object communication. In turn, this information is
available from the dumps being prepared. It includes which links are activated by an
object and also any incomming interface data. In the production version of thecore ,
such features are turned off.

The GMSim environment also allows for low-level debugging by embedding asser-
tion statements

Sim_assert(...);

in the code. This works together with the Tcl environment so that any errors are re-
ported in the script domain. For efficient reasons, checking of assertions is turned off
if the production version.

6.3 Deadlock detection

The GMSim tool implements a generic interface for detection of deadlocks in simula-
tion models. Loosely speeking a deadlock arise in a system if no progress is really made
even if the simulation is scheduled to continue. Routing deadlock in packet-switched
networks is the typical example of this.

Deadlock checking takes place in terms of a specific C++ hook function

bool isDead (void);

which exists for alive classes. The default implementation simply returns false. In
deadlock sensitive models this hook should be overridden and return a statusaccording
to the current state. The idea is that this hook is called at every visit to a object in
order to see if the status has changed. If going from false to true a global counter is
incremented. The counter is decremented when the status changes from true to false.
A global deadlock is said to occur if this counter reaches a certain limit. The limit is
settable by the-deadCheck system parameter documented in appendix D.

Note that the value returned by theisDead hook is available in the dump prepared
for an object.
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6.4 Granularity

An important development issue is how much a simulation model should be decom-
posed in terms of objects. We use the term granularity to reflect this. A highly granular
model has many interacting objects but the behavior of objects themselves are simple.
If the granularity is low there are fewer objects but the actions performed by each object
is more complex.

The granularity involves a tradeoff between modeling simplicity and execution ef-
ficiency. There are mainly two advantages of high granularity:

• The modeling task is simplified as a combinatorially large state space is decom-
posed into managable parts.

• It is reasonable to expect that the behavioral code executed at each visit to an
(small) object has few conditional tests. This is efficient with respect to execution
time.

The disadvantages of high granularity is mostly related to efficiency:

• The administration cost for scheduling queue grows with the number of objects.

• It is reasonable to anticipate heavy interactions between object. Since some over-
head is associated with inter-object communication, the execution time grows.

In general it is impossible to say what is the appropriate level of decomposition for
a simulation model. However, quite often the granularity follows from the natural
structure of the system being modeled.
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Chapter 7

Scheduling

7.1 Two-level strategy

Scheduling of events is an intrinsic part of the GSMP formulation. Since objects in
GMSim are essentialy sub-models, each object is responsible for proper scheduling of
its own events. This is referred to as local scheduling. As the number of events per
object is expected to be small a linear-search strategy is used for this.

The objects are in turn arranged by a global priority queue [33] as illustrated in fig-
ure 7.1. Information about the global scheduler queue is available by thesim_sched
command. This includes both the actual contents and also various statistics.

Each entry in the global queue comprises an object identifiern and a time designa-
tion t. If there are more entries with the same time value they appear in arbitrary order.
The timet corresponds to when the triggering event(s) for the associated object is due.
Consequently, the same object identifiedn will neverappear in two different entries.

The two-level scheduling strategy restricts the number of entriesN in the global
queue. This is advantageous since the cost of a queueing operation typically depends
onN . Here cost refers to the execution time of acompletequeueing operation. This
includes both an insertion and a removal of an entry.

For every iteration through the object dispatcher loop the frontmost record is re-

Current Pending Future

Sleep External

12

Obj : n1
Time: t1

Obj : n2
Time: t1

Obj : n3
Time: t2

Obj : n4
Time: t3

Obj : nx
Time: tx

Obj : n1
Time: tx

Self Self

Figure 7.1:Illustration of how global scheduling takes place.

27



moved from the global queue and becomes the current entry. The corresponding cur-
rent time is denotedtc. If there are more records scheduled for timet = tc they are
referred to as pending entries.

Control is relinquished to the current object in terms of calling itsnextState
C++ hook. If the object has any locally scheduled events1 on exit from this hook, a
new entry will be inserted into the global queue according the next triggering event(s).
This is called self-scheduling and corresponds to the case labeled1 in the figure 7.1. If
there are no scheduled events, the object goes asleep at this point. Thus, an object is
said to be sleeping if it does not have an associated entry in the global queue.

An entry will also be inserted in the global queue when inter-object communication
takes place. A receiving object needs to be scheduled so that the appropriate actions
can be taken in response to the written interface. This is called external scheduling and
corresponds to the case labeled2 in the figure.

Compared to the compositional formulation developed in appendix C, we use a re-
stricted approach for external scheduling. The point is that an entry is always prepended
to the future list at theparticular time tn = tc + ∆t where∆t defines the time res-
olution. We calltn the next time since this is the most immediate time value being
recognized. The concept of resolution effectively discretize time and helps to ensure
proper synchronization of interacting objects. Using any other time thantn for external
scheduling is troublesome for two reasons.

• Scheduling at the current time2 t = tc < tn is prohibited since the object may
already have been visited. An inherent assumption of the GSMP formulation is
that there should be a unique state-transition at a particular time. Hence, multiple
visits to the same object is not permitted.

• Using t > tn is destructive due to the fact that the interfaces of the object can
possibly be overwritten in the interval(tn, t].

External scheduling takes place as just described if the written object is currently
sleeping. The inserted entry then leads to awakening of the object. In the case that
the object is already due at timetn there is no need to proceed. The final case is
that the object is scheduled for some future timet > tn. External scheduling is then
completed but only after the future entry is removed from the queue. Removal is a
safe operation since the associated future event is also stored locally as the triggering
event of the object. The entry will eventually be reinserted as a result of a subsequent
self-scheduling operation. This happens unless the event is canceled at the next visit.q

7.2 Implementation

Dynamic allocation and release of scheduler queue records become costly if a standard
C++ storage allocator is used. For efficiency reasons GMSim implements its own
system for management of a pool of queue entries.

Apart from this there are several ways to implement the priority queue used for
global scheduling [16–18, 23, 25, 39]. The methods can be classified depending on
whether they use time-mapping [3,20] or maintain a balanced tree structure [19,37].

The former class employs the principle of hashing [33]. It has the potential of
performing a queueing operation inO(1) time, thus being independent of queue sizeN .

1I.e. if either the set of old events or the set of new events is nonempty.
2This is often called now-scheduling.
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Figure 7.2:Illustration of a well-balanced (left) and a badly balanced heap (right).

Unfortunately, this works well only ifN and the scheduling distribution does not vary
too much during the course of a simulation. The latter refers to how an arbitrary time
designationti is distributed3 at insertion. The point is that an efficient time-mapping
strategy depends on an almost uniform hashing into a fixed set of underlying bins. I.e.
the number of bins should be kept constant, witheach bin holding approximately the
same number of entries. The number of entries per bin should also be bounded.

The tree based methods are more robust to dynamic variations inN and the schedul-
ing distribution. The provision is that a proper balancing strategy is used. This next
section will elaborate on this issue. The motivation for balancing is to keep a queue-
ing operations bounded byO(logN). SinceN can often be quite large in complex
simulations, logarithmic behavior is essential. One way to achive tree balancing is to
impose a structural constraint and reorganize the tree accordingly at each access. A
less strict approach is to use restructuring heuristic which do not guarantee that the tree
is always balanced. However, amortized over a large number of accesses the tree will
be sufficiently balanced for theO(logN) bound to apply.

7.3 Pairing heaps

The heap [33] is a tree structure which is well-suited for priority queues. The heap
condition states that any entry in the tree should be smaller than all its subordinate
entries. Or to put it another way, that the father of any entry is no greater than the entry
itself. The ordering of entries depends on some key, of course. In our case this is the
time designation.

Figure 7.2 gives two examples of heap-ordered trees. Both heaps comprise the
same entries, but they are very different with respect to balancing. Intuitively we would
say that the leftmost heap is well-balanced whereas the balance of the rightmost heap
is bad. Specifically, there are two structural requirements to consider regarding balance

• Each node should have approximately the same number of childrens. Further,
this number should not be too larger.

• Each leaf of the tree should have almost the same depth.

Linking is used a primitive for combining two heap-ordered trees. This is illustrated
in figure 7.3. The smallest root becomes the father of the larger root and also the root
of the combined tree. If strict balancing is imposed, the combined tree may need to
be further restructured. This is accomplished in terms of subsequent split and link

3E.g. it is often assumed that an exponential distribution yields a good aproximation in the general case.
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Figure 7.3:Linking two heap-ordered trees. The triangles deonte trees of arbitrary structure.

operations. Splitting refers to the oposite operation of linking and should be used at
points where bad balance occurs.

In GMSim a pairing heap [8] strategy is used. Rather than keeping the tree strictly
balanced, a simple restructuring heuristic is employed. The idea is best explained by
comparing figure 7.4 and figure 7.5. Both figures consider the case when four heaps
are to be merged. Combination of more than two heaps occurs frequently in practice.
The typical case is to combine the subtrees rooted by the children of a removed father.

In figure 7.4 the heaps are combined sequentially in three steps by starting from the
left and linking the next sub-heap with the combined tree from the previous step. In
figure 7.5 the sub-heaps are linkedpairwiseuntil a single rooted tree is obtained after
the second step. The point is that the pairing strategy results in a heap with is better
balanced.

Even if this example is deliberatly choosen to highlight the difference, is can be
argued [8] that pairing is generally a better strategy. This is especially true when the
resulting heap isnot further restructued to obtain perfect balance. This is called partial
restructuring and is the basis for the pairing heap algorithm. Provided that the insertion
order is preserved, it can be shown that a pairing heap is sufficently balanced to obtain
a O(logN) bound in the amortized sense. Hence, the partial restructuring heuristic
leads to a self-adjusting data structure.

To explain what is ment by insertion order it is most convenient to use the sibling
representation of a heap. This is shown in figure 7.6 and corresponds to the balanced
heap in figure 7.2. The point is that the childrens of a node are orderedaccording to
the sequence in which they were attached to their father by linking operations. The
first (youngest) child should always be the one most recently attached. Note that this
ordering of children is independent of the key order.

The pairing heap algorithm implemented by GMSim uses lazy or late combination
of sub-heaps. This means that combine operations are never performed before actually
needed. This has the consequence that littleeffort is required for insertion. Rather, most
of the work is associated with retrival of the minimum entry. The entries of the pairing
heap will move closer to their proper place each time this operation is performed. To
put it another way, the administration cost associated with an entry increases gradually
with its lifteime in the queue. This is a nice feature as it keeps the waste at a minimum
if entries are exceptionally removed from the queue. In GMSim this happens when a
future entry is removed in response to external scheduling. We conjecture that this will
happend quite frequently in complex simulations.

External shceduling at the next timetn can efficiently be incorporated in the pairing
heap algorithm as a special case. This is important as scheduling at this particular time
is most probably a very frequent operation in any simulation application.

In sum, the paring heap algorithm is efficient in most operational environments. In
particular, GMSim is insensitive to dynamic variations in the scheduling distribution
and the number of entries in the queue. We also think that a pairing heap strategy fits

30



4 3 2 1

4

3
2 1

4

3

2

1

4

3

2

1

Figure 7.4:Sequential combination of heaps.

well with a compositional GSMP view.
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Figure 7.6:Sibling representation of a heap.
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Chapter 8

Summary

The GSMP framework provides the theoretical foundation for the GMSim develop-
ment. The framework builds on the successful heritage from Markov chain analysis.
Generalized Markov behaviour is obatained by adding suplementary variables in a sys-
tematic way.

One immediate consequence of the GSMP view is that theoretically sound and
computationally efficient methods for experimental design, sampling and output anal-
ysis are readily available. E.g. asynchronous sampling [2, 7], which is generally con-
sidered to be efficient, follows easily from the GSMP view [12].

The GMSim development takes the GSMP framework one step further and pro-
vides a corresponding simulation environment. The novelity is that this is based on a
compositional GSMP view which fits with an object-oriented formulation. The result-
ing programming environment is in close resemblance with the underlying formalism.
We conjecture that this leads to a consistent and efficient implementation.

Model development takes place in terms of C++ programming augmented by a set
of M4 macros. As these macros are expanded code is automatically generated to fit
with the core. This reduces the programming efforts. Rather than letting objects call
the core, the core invokes objects in terms of predefined hook functions. This provides
a structured programming interface.

Another utility is that application specific packages are incorporated by run-time
linking. Hence, the basic capabilities of GMSim can be extended in arbitrary ways
without recompiling the core. The fact that binary code are build for new components
contributes to reduced execution time.

Flexibility is further enhanced by an embedded Tcl command interpreter. In fact,
GMSim itself comprises an enriched set of script commands enabling simulation. Hence,
simulation setup, reporting and control take place entirely in terms script programming.
Debugging facilities and a convenient system for setting of configuration parameters
are also available from the script domain. The interpretative nature makes GMSim
suitable both for interactive use and for batched runs. The GMSim tool itself is also
extendable by script programming. A small set of predefined script hooks which are
invoked from within the core opens for modified behaviour.

In GMSim each object is responsible for proper scheduling of its own event. In fact,
local scheduling is an intrinsic part of the GSMP formulation. The objects are in turn
arranged by a global priority queue. Hence, GMSim is characterized by a two-level
scheduling strategy. This is efficient since the number of entriesN in the global queue
is reduced. Nevertheless,N can become large and logarithmicO(logN) bounds for
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the basic queueing operations are essential.
In GMSim a tree based pairing heap [8] algorithm is used to maintain the global

queue. The algorithm employs a lazy restructuring heuristic for the heap-ordered tree
rather than strict balancing. The algorithm is insensitive both to dynamic variantions in
N and also in the scheduling distribution. In the amortized sense a queueing operation
will be bounded byO(logN). A salient feature is that the administration cost associ-
ated with an entry depends mainly on itslife-timein the queue and less on the number
of entriesN at any particular time. Hence, insertion is bounded byO(1) and the waste
is kept at a minimum when an entry is exceptionally removed from the queue. We ar-
gue that this is a nice feature since exceptional removal will most likely be a frequently
occuring case when GSMP modeling is used. In sum, we argue that the paring heap
strategy fits well with the compositional GSMP view and that it performs well under
various operation conditions.

Finally, the GMSim source code is distributed to the public and depends only on
freely available standard components. Thus, it is an open-ended system and should be
suitable for experimental research on new simulation methods.
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Appendix A

Basics of Tcl/Tk

The Tcl/Tk environment [27] has gained increasing popularity in recent years and is
used for a variety of applications. The interested reader should take a look at

<http://sunscript.sun.com>

which is an excellent collection on information.
Tcl is a versatile scripting language for controlling and extending applications; its

name stands for “tool command language”. It is aninterpretedlanguage and the ba-
sic capability of an interpreter is to expand, parse and evaluate sequences of textual
commands.

In some respect Tcl is similar to Lisp since a command is always a list. The first
element is the name of the command and the remaining elements are arguments. The
elements are subject to expansion before the list itself is evaluated as a command.
Hence, the structure of Tcl is simple but yet powerful. The standard application for
evaluation of Tcl scripts is calledtclsh which stands for Tcl-shell.

In addition to generic programming facilities like variables and control structures,
the standard Tcl interpreter recognizes primitive commands like file based input/output
and textual manipulations of strings and list. The built-in commands can be combined
in terms of procedures to accomplish more complex tasks. Each procedure defines a
new command. Local variables with restricted scoping is supported and procedures
can be nested in arbitrary ways.

To give an idea of programming in Tcl, consider the following script which is
suitable for evaluation bytclsh .

#!/usr/bin/tclsh

# Returns reverse of list
proc reverse {list} {

set res ""
foreach element $list {

if {$res == ""} {
set res $element

} else {
set res [concat $element $res]

}
}
return $res

}

# Hello, world example
set hw [list Hello world]
puts "$hw, [reverse $hw]"
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The script illustrates some of the built-in commands. Variables are expanded if the
name is preceded by$. Bracketed expressions[ . . . ] are used to request command
expansion. In contrast, anything embraced by{ . . . } is protected from expansion.

If the standard Tcl commands are insufficient for a particular application, new com-
mands can also be defined in terms of C programming. In fact, Tcl is completely
embeddable. Its interpreter is a library of C functions which can be linked with any
application. This opens for extending the basic capabilities of Tcl in arbitrary ways.
E.g. the following program sets up an interpreter and defines one new command called
myecho .

#include<tcl.h>

/*-----------------------------------------*/
int myecho_cmdProc(ClientData clientData, Tcl_Interp *interp,

int argc, char **argv) {
Tcl_SetResult(interp, argv[1], TCL_VOLATILE);
return TCL_OK;

};

/*-----------------------------------------*/
int initProc(Tcl_Interp *interp) {

Tcl_Init(interp);
Tcl_CreateCommand (interp, "myecho",

myecho_cmdProc,
(ClientData) NULL,
(Tcl_CmdDeleteProc *) NULL);

return TCL_OK;
};

/*-----------------------------------------*/
int main(int argc, char **argv) {

Tcl_Main(argc, argv, initProc);
};

The Tcl_Main function prepares the interpreter whereas theinitProc func-
tion registers the new command. The command itself is implemented by the function
myecho_cmdProc . The action of themyecho command is simply to return its first
argument. If this file is compiled and linked with the appropriate libraries1, Tcl be-
combes embedded in the application.

The most useful extension to Tcl is called Tk. It defines a set of primitive com-
mands for building user interfaces in a windowing environment. The utility is that GUI
development may take place in terms of script programming rather that writing Ccode.
The standard application for evaluation of Tk script is calledwish . It is a windowing-
shell which is linked with the appropriate libraries for the underlying graphics system.

1In particular the Tcl C-librarylibtcl.a or libtcl.so .
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Appendix B

Basic GSMP formalism

A generalized semi-Markov process (GSMP) belongs to the class of discrete-event
stochastic processes. It is based on the notion of a state, and makes a state transition
when an event associated with the occupied state occurs. Several possible events com-
pete with respect to triggering the next transition andeach of these events has its own
distribution for determining the next state. At each transition new events may be sched-
uled. For each of these events, a clock indicating the time until the event is scheduled
to occur is set according to an independent mechanism. If a scheduled event does not
trigger a transition but is associated with the next state, its clock continues to run. If
such an event is not associated with the next state, it ceases to be scheduled and its
clock reading abandoned.

The standard definition of a GSMP [9, 10, 12, 30–32, 35] assumes that the set of
scheduled events is uniquely determined by the current state. It is also assumed that
there is a unique triggering event for each state transition. We use an extended defini-
tion where the set of scheduled events is explicitly given and where multiple triggering
events is allowed. The former is based on [13] and the latter on [36].

Formal definition of a GSMP is in terms of an embedded Markov chainXk that
describes a continous-time processS(t) ∈ S at successive epochs of state transition.
A one-dimensional illustration is provided in figure B.1. Note thatS signifies an
application specific state space which is assumed to be finite or countable. A GSMP
process is multi-dimensional in the general case, hence the vector notation.

State

Time

S(t)

Xk

Tk

Wk

Figure B.1:One-dimensional illustration of a generalized semi-Markov process.
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At entrance to a new stateXk at timeTk we associate a set of active (scheduled)
eventsIk ⊆ E . HereE = {e1, e2, . . . , em} is taken to be a set of events defined
specifically for the application. For each active eventei ∈ Ik the product of an as-
sociated clockci and running speedri gives the time until the event is scheduled to
occur. The scheduled events compete with respect to triggering the next transition at
timeTk+1. The winner(s) are the event(s) with the minimum remaining time. This is
the set of triggering events denotedD∗ ⊆ Ik. The eventsej ∈ (E − Ik) are classified
as inactive. The inter-event timeWk = Tk+1 − Tk is called the sojourn time in state
Xk.

The embedded state description arises from augmenting the natural state vector
S(Tk) with event clocksCk = (c1, . . . , cm), henceXk = (S(Tk),Ck). This approach
is related to the supplementary variable technique [5] often used to obtain Markov
behavior in stochastic models. As always, Markov behavior simplifies analysis. A
Markov-renewal condition [4] is in turn imposed on the compund chain(Xk,Wk).
In addition time-homogenity [4, 10] is assumed. The details are beyond the scope of
this document but there are two major implications. First, a time-invariant Markov
transition kernel is associated with the embedded chain. Next, the sojourn times are
conditionally independent given the embedded chain and with the distribution ofWk

depending only onXk andXk+1. This ensures semi-Markov behavior of the process
S(t).

Due to the inherent stochastic restrictions of the GSMP formulation, the embedded
chain is completely characterized by a time-invariant single-step behavior. For a de-
parting statex = (s, c) the probabilistic transition into the next statex′ = (s′, c′) can
be expressed [13] by the joint probability distribution function

P (x,A) = p(s′; s,D∗, c∗)
∏
ei∈N

F (ai; s
′, ei, s,D

∗)
∏
ei∈O

I[0, ai](c
∗
i ) (B.1)

HereA is a subspace forx′ corresponding to the case that natural states′ is entered
and the clock reading associated with active eventei set to a valuec′i ∈ [0, ai]. Hence,

A = {s′} × {c′ : 0 ≤ c′i ≤ ai for ei active,c′i = 0 otherwise}

The setD∗ in equation (B.1) refers to the triggering events andc∗ is the vector of
updated clock readings just prior to the transition. Further,N = N (s′; s,D∗, c∗) is a
set of new events becoming active due to the transition andO = O(s′; s,D∗, c∗) is the
set of old events remaining active. For each old eventei ∈ O we setc′i = c∗i keeping
the updated clock reading after the transition. New clock readings are generated for
each eventei ∈ N . A family of probability distribution functionsF (·; s′, ei, s,D∗) is
defined so thatF (ai; s

′, ei, s,D∗) is the conditional probability that eventei is sched-
uled with a new clock valuec′i ∈ [0, ai].

Each remaining eventei ∈ (E −N ∪O) is cancelled by setting its clock and speed
c′i = ri = 0. Finally,p(·; s,D∗, c∗) is a family of probability density functions so that
p(s′; s,D∗, c∗) denotes the probability that the next state iss′.

Note the product form of equation (B.1) suggesting that independence is at play.
This contributes to the analyticity of a GSMP.

To complete the GSMP formulation, a probability distribution functionP̃ (·) con-
cerning the initial state is defined by

P̃ (A) = p̃(s)
∑
I

h̃(I; s)
∏
ei∈I

F̃ (ai; ei, s, I)
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where

A = {(s, c) : 0 ≤ ci ≤ ai}

An initial natural state components is first picked according to a probability density
function p̃(·). Then an initial setI of active events is selected according to a condi-
tional probability density functioñh(·; s). Finally, for each initially active eventei the
corresponding initial clock readingci is set (independently) according to a probability
distribution functioñg(·; ei, s, I).
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Appendix C

Compositional GSMP view

The basic GSMP formulation outlined in appendix B is tractable for simple applica-
tions. However, as the number components in the state description and the number of
events grow, combinatorial explosion quickly arises. This means that the number of
significant state/event combinations to consider become too numerous to handle. This
is especially due to the fact that multiple triggering events is allowed. As always, the
solution is to decompose the problem.

In this appendic a compositional GSMP view is developed. This is based on estab-
lishing a particularseparabilitycondition. It starts with regarding the state spaceS in
terms of three components indexed bya, b andc:

S = Sa ×Sb ×Sc

Hence, we write the natural state vector ass = (sa, sb, sc). Accordingly, we partition
the set of eventsE in three disjunct subsets

E = Ea ∪ Eb ∪ Ec

and writec = (ca, cb, cc) for the clock vector. Finally, the set of triggering events is
decomposed in the same way

D∗ = D∗a ∪ D
∗
b ∪ D

∗
c whereD∗j ⊆ Ej for j = a, b, c

For convenience we will use double-indexing to refer to two components simultane-
ously. E.g.cb,c = (cb, cc) andEb,c = Eb ∪ Ec.

In order to arrive at a separable process we impose certain independence restric-
tions. Our interest is independence in the sense that componentsa andb are conditioned
on a only, whereas componentc is conditioned on bothb andc. This is illustrated in
figure C.1. The underlying idea is to facilitate an object-orient view. Component
a takes the role of a sending object whereas componentc corresponds to a receiving
object. Componentb is used to capture one-way inter-object communication. It corre-
sponds to the concept of an interface as discussed in section 4.7. The figure suggests
that the interface is considered to be part of the receiving object. This explains why
componentc is conditioned on bothb andc. That componentb is conditioned ona
only, reflects the fact that an interface has no self-driving capabilities.

Formalistically, the separability condition translates into the following list of re-
quirements
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Figure C.1:The idea of a compositional GSMP view.

• The probability density functionsp(·; s,D∗, c∗) are separable in the sense that

p(s′; s,D∗, c∗) = p(s′a; sa,D
∗
a, c
∗
a) · p(s′b; sa,D

∗
a, c
∗
a) · p(s′c; sb,c,D

∗
b,c, c

∗
c)

• New events are generated component-wiseaccording to

N = Na(s′a; sa,D
∗
a, c
∗
a) ∪Nb(s

′
a; sa,D

∗
a, c
∗
a) ∪Nc(s

′
b,c; sb,c,D

∗
b,c, c

∗
c)

• Decision about which old events to retain are made component-wiseaccording
to

O = Oa(s′a; sa,D
∗
a, c
∗
a) ∪ Ob(s

′
a; sa,D

∗
a, c
∗
a) ∪Oc(s

′
b,c; sb,c,D

∗
b,c, c

∗
c)

• New events are scheduled according to component-wise probability distribution
functions

Fa(·; s′a, ei, sa,D
∗
a)

Fb(·; s
′
b, ei, sa,D

∗
a)

Fc(·; s
′
b,c, ei, sb,c,D

∗
b,c)

• Initial state and initial events are set independently for componentsa andc in the
obvious way. For componentb no events are allowed to be scheduled initially.

The decomposition strategy just described can be applied repeatedly, of course. In
sum, arbitrary complex models can be developed in a compositional setting. This is the
theoretical foundation for the object-oriented implementation of GMSim.
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Appendix D

System parameters

The following sections document the global configuration options recognized by the
SysPar parameter class. These parameters are related to generic simulation control.

D.1 -seed

Sets the seed used for pseudo-random number generation. Using the same seed ensures
reproducibility. Note that this is only valid for distributions implemented as a part of
the GMSim tool.

D.2 -doneTm

Sets an unconditional stop time for the simulation. When this time is reached control
always returns to the script domain with a responseS SysDone. A simulation cannot
proceed from this point. If a zero value is supplied the simulation continues until there
are no more scheduled objects.

D.3 -breakTm

This is similar to-doneTm except that is responds withS SysBreak and breaks. A
simulation can always proceed from this point.

D.4 -deadCheck

As discussed in section 6.3 this parameters sets the threshold defining a global dead-
lock condition. Deadlock checking is turned off if a zero value is supplied. When-
ever deadlock is encountered control returns to the script domain with as responseS
SysDeadlock and breaks. A simulation can always proceed from deadlock.

D.5 -regVerbInt

If this parameter is set to a non-zero value, control return to the script domain at the
specified regular interval. The response isS SysRegVerbInt . This feature is nor-
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mally used in conjunction with a system hook to do regular reporting. Note that a
continuous run will not be breaked when this condition occur.

D.6 -regBreakInt

This is similar to-regVerbInt except that the response isS SysRegBreakInt
and the the run is always breaked.
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Appendix E

The mm1package

To get an idea of package development for GMSim, this appendix contains listings
for the mm1package considered in chapter 4.3. The package defines three classes:
ExprArr , Queue andExpSrv . Their function should be obvious from the names.
Together they form a model of a discrete-time M/M/1 queuing system. For background
information on classical queuing theory see [21].

Note that the M/M/1 queuing system could very well have been implemented in
terms of a single class. However, when arrivals and serving are handled by separate
classes, we get the opportunity to illustrate linking and interfaces. In section E.4 we
consider a specific example using themm1package. The involved objects, classes,
links and interfaces are as shown in figure E.1 for the example.

E.1 Header filemm1.h

The header file is associated with the source filemm1.cc listed in the next section.
The distinction between real and virtual classes is illustrated by the empty real classes
ExprArr , Queue andExpSrv which are based on the corresponding virtual classes
ExprArrB , QueueB andExpSrvB . The virtual classes contain the body of declara-
tions in terms of hook functions.

Three interfaces are also defined:QArrIfc , QDepIfc andSrvIfc . The first
two are used by the queue class. The latter is used by the server class. The queue
link of theExpArrB class match theQArrIfc interface of theQueueB class. Like-
wise, there are two matching link/interface pairs between theQueueB andExpSrvB
classes.

The ExpArrB class defines one arrival event and also one measure function de-
signed to count arrivals. TheExpSrvB class defines one departure event. TheQueueB
class has no events defined. Its action depends on information written to one of its in-

1 ExpArr 2 ExpSrv3 Queue

queue

queue

srvQArrIfc SrvIfc

QDepIfc

Figure E.1:The involved objects, classes, links and interfaces for theex.tcl example.
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terfaces. Hence, this class has no self-driving capabilities. Note finally that the variable
numof theQueueB class comprises the state description for the model. It reflects the
number of customers in the queue at any point in time.

// This may look like C code, but it is really -*- C++ -*-

/*
GMSim/mm1: M/M/1 queue model
Copyright (C) 1998 Frode B. Nilsen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

A copy of the GNU General Public License is available in the file
COPYING at the root of the GMSim source distribution tree.

*/

//
// Note: se the README file for information on this sample package
//

#ifndef mm1_mm1_h__
#define mm1_mm1_h__

#pragma interface

#include "core/sim.h"

/*---------------------------*/
sim_ifc(QArrIfc) {
sim_data:

bool arr;
sim_hooks:

void verbose (ostream &os) {
os « Sim_Indent("arr") « toStr(arr) « endl;

};
void ifcClear(void) {

arr=false;
};

sim_body:
void arred(void) {

arr = true;
};

};

/*---------------------------*/
sim_ifc(QDepIfc) {
sim_data:

bool dep;
sim_hooks:

void verbose (ostream &os) {
os « Sim_Indent("dep") « toStr(dep) « endl;

};
void ifcClear(void) {

dep=false;
};

sim_body:
void deped(void) {

dep = true;
};

};

/*---------------------------*/
sim_ifc(SrvIfc) {
sim_data:

bool srv;
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sim_hooks:
void verbose (ostream &os) {

os « Sim_Indent("srv") « toStr(srv) « endl;
};
void ifcClear(void) {

srv=false;
};

sim_body:
void srved(void) {

srv = true;
};

};

/*---------------------------*/
sim_vaclass(ExpArrB) {

sim_events(ARR);
sim_links(queue QArrIfc);
sim_measures(ArrCnt);

sim_data:
int marr;
Sim_Geometric arr;

sim_hooks:
void objParSet (Sim_Opt &opt);
void objParGet (EString &lst);
void objInit(int mode);
void nextState (void);
Sim_UsrTime initOccur (int ev) {

return nextOccur(ev);
};
Sim_UsrTime nextOccur (int ev);
bool ArrCnt (double &dat);

sim_body:
};

/*---------------------------*/
sim_vaclass(ExpSrvB) sim_use(SrvIfc) {

sim_events(SRV);
sim_links(queue QDepIfc);

sim_data:
int msrv;
Sim_Geometric srv;

sim_hooks:
void objParSet (Sim_Opt &opt);
void objParGet (EString &lst);
void objInit(int mode);
void nextState (void);
Sim_UsrTime initOccur (int ev) {

return nextOccur(ev);
};
Sim_UsrTime nextOccur (int ev);

sim_body:
};

/*---------------------------*/
sim_vaclass(QueueB) sim_use(QArrIfc,QDepIfc) {

sim_links(srv SrvIfc);
sim_data:

int num;
bool insrv;

sim_hooks:
void verbose (ostream &os) {

os « Sim_Indent("num") « toStr(num) « endl;
};
void objInit(int mode);
void nextState (void);

sim_body:
};

/*---------------------------*/
sim_raclass(ExpArr) sim_use(ExpArrB) {
sim_body:
};
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/*---------------------------*/
sim_raclass(ExpSrv) sim_use(ExpSrvB) {
sim_body:
};

/*---------------------------*/
sim_raclass(Queue) sim_use(QueueB) {
sim_body:
};

#endif

E.2 Source filemm1.cc

This file contains the implementation of the hook functions declared inmm1.h. Note
that the#siminclude statement at the beginning is really a M4 macro call indicating
that that the included header file should be expanded. Files incorporated by an ordinary
include directive are not expanded.

Each of the arrival and server classes recognizes one configuration parameters cor-
responding to mean inter-arrival time and mean service (departure) time. The parame-
ters are set and read by theobjParSet andobjParGet hooks, respectively.

Otherwise, the implementation is to a large extent self-explanatory. A thorough
understanding requires that the full source distribution is consulted. It is beyond the
scope of this document, however.

/*
GMSim/mm1: M/M/1 queue model
Copyright (C) 1998 Frode B. Nilsen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

A copy of the GNU General Public License is available in the file
COPYING at the root of the GMSim source distribution tree.

*/

#pragma implementation

// Plain C Header files

// Sim includes
#siminclude(mm1/mm1.h)

/*---------------------------*/
void ExpArrB::objParSet (Sim_Opt &opt) {

if (opt.take("-marr")) {
double d = opt.val;
if (d < 0)

opt.errVal();
else

arr.mean(d);
};

};

/*---------------------------*/
void ExpArrB::objParGet (EString &lst) {

LAPP(lst,"-marr");
LAPP(lst,toStr(arr.mean()));

};
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/*---------------------------*/
void ExpArrB::objInit(int mode) {

if (mode == 2)
newEvs.set(ExpArrB_ARR);

};

/*---------------------------*/
void ExpArrB::nextState (void) {

// Arrival: send to queue and prepare next
if (trigEvs[ExpArrB_ARR]) {

newEvs.set(ExpArrB_ARR);
sim_tell(queue[0], arred());

};
};

/*---------------------------*/
Sim_UsrTime ExpArrB::nextOccur (int ev) {

if (ev == ExpArrB_ARR)
return Sim_UsrTime(arr.rnd());

return Sim_noTime;
};

/*---------------------------*/
bool ExpArrB::ArrCnt(double &dat) {

if (trigEvs[ExpArrB_ARR]) {
dat++ ;
return true;

};
return false;

};

/*---------------------------*/
void ExpSrvB::objParSet (Sim_Opt &opt) {

if (opt.take("-msrv")) {
double d = opt.val;
if (d < 0)

opt.errVal();
else

srv.mean(d);
};

};

/*---------------------------*/
void ExpSrvB::objParGet (EString &lst) {

LAPP(lst,"-msrv");
LAPP(lst,toStr(srv.mean()));

};

/*---------------------------*/
void ExpSrvB::objInit(int mode) {

// No specific initialization
};

/*---------------------------*/
void ExpSrvB::nextState (void) {

// start service
if (theSrvIfc.srv) {

newEvs.set(ExpSrvB_SRV);
};
// service ended
if (trigEvs[ExpSrvB_SRV]) {

sim_tell(queue[0], deped());
};

};

/*---------------------------*/
Sim_UsrTime ExpSrvB::nextOccur (int ev) {

if (ev == ExpSrvB_SRV)
return Sim_UsrTime(srv.rnd());

return Sim_noTime;
};

/*---------------------------*/
void QueueB::objInit(int mode) {

48



num = 0;
insrv = false;

};

/*---------------------------*/
void QueueB::nextState (void) {

// Arrival
if (theQArrIfc.arr) {

num++;
};
// Server no ready
if (theQDepIfc.dep) {

insrv=false;
};

// Pass to server
if (num > 0 && !insrv) {

num-;
insrv=true;
sim_tell(srv[0], srved());

};
};

E.3 Configuration file ExpArrB.cfg

This file holds information required to build the configuration template for theExpArrB
class. There is a single line corresponding to the recognized mean inter-arrival config-
uration parameters.

1.1 "Mean interarrival time" -marr 100

E.4 Script file ex.tcl

The script file sets up and starts a simulation using themm1package. One object for
each of the classes are instantiated and then linked. A statistics counting the arrival
is also created. The statistics is assigned to the arrival object. An associated statistics
hook is also defined. It will be called whenever the statistics is affected. A dump
window is prepared for each of the objects along with a report window for the arrival
statistics.

The appearing windows will be as shown in figures E.2 and E.3. when the script
is run. The dump windows for each of the three objects are shown in the latter figure.
The bottomost window in figure E.2 is the command interpreter from where GMSim
was launched. The main window shows the log as the script file is evaluated.

The reader is strongly recommended to check the documentation foreach sim the
sim_xxx commands in this example.

# Supress all command in log
sim_log mask ""

# script hook used by arrival statistics
proc arrHook {who num} {

if {$num > 0} {
# write time and current count to report
sim_rep write arep "[sim_curr time]: [sim_stats read $who]"

}
# invoke hook at every arrival
return [list [expr $num + 1] ""]

}

# This example depends on mm1 package
sim_pkg require mm1
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Figure E.2:The main and command windows for theex.tcl example.

# gstats is a standard package for statistics
sim_pkg require gstats

# class parameters
sim_par set ExpArr "-#queue" 1
sim_par set ExpSrv "-#queue" 1
sim_par set Queue "-#srv" 1

# allocate space for 3 objects and 1 statistics
sim_alloc 4

# create arrival, server and queue objects
set arr [sim_new ExpArr]
set srv [sim_new ExpSrv]
set queue [sim_new Queue]
# create count statistics
set arrcnt [sim_new Count]

# link objects
sim_link set $arr queue $queue
sim_link set $queue srv $srv
sim_link set $srv queue $queue

# prepare for run, slow speed
sim_speed slow
sim_run setup

# assign statistics and set hook
sim_stats assign $arr -ArrCnt $arrcnt
sim_hook add $arrcnt arrHook

# open statistics report and dumps for objects
sim_rep open arep -mode w
sim_rep won arep -width 30 -height 20
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Figure E.3:The report windows for theex.tcl example.

sim_dump won "$arr $queue $srv" -width 40 -height 40

# start run
sim_run start »

# peform 3 state transitions
for {set i 0} {$i < 3} {incr i} {

sim_run go >
}
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Appendix F

Core commands

Below is the full documentation of the user significant script commands made available
by thecore package. See figure 4.3 for an overview of mode specific commands. The
remaining commands are general and can be invoked in any mode.

F.1 sim_alloc
sim_alloc <num>

Assumes mode == -2
Allocates space for the specified number of items. An item is a dead object,
alive object or statistics. Items must subsequently be instantiated by
the ’sim_new’ command.

F.2 sim_curr
sim_curr <what>

Assumes mode == -2
Returns information about current status according to specified
tag. The following tags are recognized at all times, i.e.\ both in
the ordinary tcl-command loop and any in hook function

obj Id of object currently in control
class Class tag of object in control
time Current simulation time
trcnt Current state transition. Note that negative transition

designations are used in the initialization sequence.
The following tags only makes sense when called from the tcl-command loop.
The info is prepared as the most recently visited object relinquish
control to the script domain

deadcnt Number of dead objects
dump Any dump information generated
msg Returned messages. This include info about called hook functions
log The log entry, i.e.\ response line, written at return to the

tcl-domain

F.3 sim_dump
sim_dump on <obj-list>
sim_dump off <obj-list>

Turns dump on/off for specified alive object(s). When dump is turned on a
corresponding report is opened.

sim_dump won <obj-list> [-width <width> -height <height>]
sim_dump woff <obj-list>

Opens/close a standard report-window if dump is currently on for specified
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alive object(s).

sim_dump who
Returns list of active dump-reports

sim_dump reset <obj-list>
Resets and opened dump-report

sim_dump print <obj-list>
Prints dump information for specified alive objects. This information
is always avaialble regardless of wheter dump-reporting
is turned on or off.

sim_dump all [<file>]
Prints dump information for all alive objects to specified file. If file
is not specified, stdout is used and less is spawned.

F.4 sim_free
sim_free

Assumes mode == {-1, 0, 1}.
Deletes instantiated items and frees space allocated by ’sim_alloc’.
For a new setup phase, ’sim_alloc’ must be called again.

F.5 sim_h
sim_h [<user command>]

Display available documentation/help for specified command or
variable. The documentation text is retrieved direcly from the
source file. (Try sim_h sim_h) If noe help subject is specified, all
user commands and variables are listed.

F.6 sim_hook
sim_hook add sys <procname>

Adds <procname> as a system hook. A system hook is called each time
control returns to the tcl-domain during a simulation run.

sim_hook add <objid> <procname>
Adds <procname> as a hook for specified alive object. An object hook
is called at each vist to an alive object. If an object hook returns
a non-empty string, the simulation is breaked immediately after the
visit is completed. The returned value is indicated in the status
line together with the hook name. An object hook procedure must be
defined according to ’proc XXX {who time} {...}’. The first argument
is the nummeric tag of the current object. The second argument is
the current time

sim_hook add <statsid> <procname>
Adds <procname> as a hook for specified statistics. A statistics
hook is called whenever a new sample is formed, and the sample
number matches a next-designation specified by the user. A
statistics hook must return a two-element list where the second
element is the next sample number at which the hook should be
executed. This is the next-designation. A statistics hook is always
called at initialization and the returned value gives the first
next-designation. If the first element of the returned list is a
non-empty string, the simulation is breaked immediately after the
current object is completed. The returned value is indicated in the
status line together with the hook name. A statistics hook procedure
must be defined according to ’proc XXX {who num} {...}’. The first
argument is the nummeric tag of the actual statistics. The second
argument is the current sample number.

sim_hook del sys <procname>
sim_hook del <objid> <procname>
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sim_hook del <statsid> <procname>
Delets <procname> as hook

sim_hook get sys
sim_hook get <objid>
sim_hook get <statsid>

Returns current hooks

F.7 sim_info
sim_info sys [-<flag>]...

Returns system info according to following flags. All flags are returned
if no flags are specified.

-nlpkg List of recognized but unloaded packages
-lpkg List of loaded packages
-aclass List of recognized alive classes
-dclass List of recognized dead classes
-pclass List of recognized parameter classes
-sclass List of recognized statistics classes
-naobj # of objects allocated for registery (see ’sim_alloc’)
-nobj # of objects currently registered (see ’sim_new’)
-tres Time resolution
-mem Memory allocated by process from OS.
-hooks System hooks (see ’sim_hook’)
-mode Mode designation
-devel Indicates if developemt or production version is loaded
-win Indicats whether the graphical user-interface is avialble

sim_info <pkg> [-<flag>]...
Returns info about specified packet according to following flags. All flags
are returned if no flags are specified

-depend Packet dependencies
-dclass List of defined dead classes
-aclass List of defined alive classes
-pclass List of defined parameter classes
-pclass List of defined statistics classes
-cdefs List of defined symbols used during compilation
-inst Installation path

sim_info <class> [-<flag>]...
Returns info about specified class (real or virtual) according to
following flags. All flags are returned if no flags are specified.

-type Type of class (dead, alive, par, stats)
-subclass Flat list of constituent sub-classes.
-hsubclass Hierarchical sub-class relationship
-pkg Package who defines class
-num Number of instances
-who List of instance tags
-cpar List of recognized class parameters
-opar List of recognized object parameters

For alive classes these flags are specifically recognized
-interf List of conforming interfaces
-evs List of recognized events
-links List of recognized link-types. Each type comprises a sub-list

formatted as {<name> <interface> [OPT]}. The second element
is the interface requirement for the link. The final element
is OPT if a link of this type is optional. Oterwise at least
one link must exist for an object instance.

-meas List of defined measure.
For dead classes these flags are specifically recognized

-links See above
Note that ’sim_par get <class>’ gives information about significant class
parameter settings and default object instance parameter values.
See also ’sim_xpar’ and ’sim_xvpar’

sim_info <obj> [-<flag>]...
Returns info about specified object instance according to following flags.
All flags are returned if no flags are specified.

-type Type of object (dead, alive, par, stats)
-class Instantiated class

For alive objects these flags are specifically recignized
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-stats Assignments of statistics to measures
-sched Next time when object is due. If this is emty, the object

is currently not scheduled.
-links Actual links
-hooks List of hooks

For dead objects these flags are specifically recognized
-links See above

For statistics these flags are specifically recognized
-hooks List if asociated hooks
-nextHook Next sample number at which to run hooks (next-designation)
-numHook Number of times hook is called

In addition specific flags are recognized depending on the features
of the specified object. Finally, note that ’sim_par get <obj>’
gives information about significant parameters settings. See also
’sim_xpar’ and ’sim_xvpar’. Further, ’sim_link get <obj>’ gives info
about specific links settings and ’sim_stats read <obj>’ gives info
about collected statistics.

F.8 sim_link

sim_link set <obj> <tag> <idx-list> <to-list>
Assumes mode == -1
Sets links of type <tag> emerging from object <obj>. The actual links
set are given by <idx-list> with corresponding objects destinations in
<to-list>. The destination objects must have an interface conforming to
the <tag> link type.

sim_link set <obj> <tag> <to>
A shorthand for ’sim_link set <obj> <tag> 0 to’

sim_link get <obj> <tag> [<idx-list>]
Returns object destinations for links of type <tag> emerging from
object <obj>. If <idx-list> is not given, all links of type <tag> are
are returned. Otherwise only the specified elements are returned.

sim_link get <obj>
Returns object destinations for all links of each type emergning from
object <obj>.

F.9 sim_log

sim_log mask
Returns current log-mask

sim_log mask <mask list>
sim_log mask all

sets log-mask as specified or all recognized levels

sim_log level
Returns recognized level designations for commands

sim_log level <cmd> [<lvl>]
Set level designation for given command. If the level parameter is
left out, the level designation for command is removed.

F.10 sim_new

sim_new <class> [-<parname> <parval>]...
Assumes mode == -1
Instantiates an item, i.e. a dead object, an alive object or
a statistics, of the specified class. The next available identifier is
returned. Items are given nummerical tags with numbering starting at
1. Significant parameters can optionally be supplied.
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F.11 sim_par
sim_par set <class-list> -<parname> <parval> [-<parname> <parval>]...

Sets template default parameter value(s) for specified class. Defaults are
settable according to current mode. Multiple classes can be set
simultaneously provided parameters have identical names.

sim_par set <obj-list> -<parname> <parval> [-<parname> <parval>]...
Sets significant object parameters for specified object(s). Parameters
are significant according to current mode. Multiple
objects can be set simultaneously provided they have identical
parameter names.

sim_par get <class> [-<parname>]...
Get template default parameter values for specified class.

sim_par get <class> | <obj> [-<parname>]...
Get significant parameters for specified class or object. Parameters
are significant according to current mode.

F.12 sim_pkg
sim_pkg names [<pattern>]

Returns names of all recognized packages

sim_pkg loaded [<pattern>]
Returns list of packages currently in use

sim_pkg unloaded [<pattern>]
Returns list of packages not in use

sim_pkg require <pkgname>
Assumes mode == -2.
Loads specified package. The <pkgname> should be unqualified (i.e.
without leading Sim_) and is expected to be installed in an equally
named directory which must be a subdirectory of a directory which is
searcable by way of the ’sim_path’ variable. Package dependencies
are resolved automatically at load time.

F.13 sim_rep
sim_rep path

Returns path user for reports. This is based on the value of the
’sim_repdir’ variable.

sim_rep who <pattern>
Returns names of all opened reports with names matching
pattern (glob-style). To check if a specific report exists, do
if {[sim_rep who <repname>] == <repname>} {...}

sim_rep mrk <pattern>
Returns names of all known report marks with names matching
pattern (glob-style)

sim_rep mrkinit <mrk>
Initializes a report mark. Any existing associations with reports
is cleared.

sim_rep mrkbeg <mrk> <rep> [-offs <inc>]
Initiates a new associates of mark <mrk> with report <rep>. Any existing
associtions for the mark is cleared. The new association starts at the
current line of <rep>, possibly adjusted by and offset of <inc> lines.

sim_rep mrkend <mrk> [-offs <inc>]
Ends an association started by ’sim_rep mrkbeg’. The association ends at
the current line (of the associated report), pussibly adjusted by an
offset of <inc> lines.

sim_rep open <rep-list> [-mode w | a]
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Opens a report with specified mode. If mode is ’w’ (default) the report
file is initially empty. Mode ’a’ means append so that any existing
entries in the report file will be retained.

sim_rep close <rep-list>
Close a report. Note that the report file is NOT removed, hence a
report can subsequenlty be opened in append mode. Any existing
report-windows are remowed when a report closed.

sim_rep reset <rep-list>
Clears an opened report.

sim_rep write <rep-list> <str>
Write string to specified report. If a associated report window exists,
the newly written string will appear correspondingly.

sim_rep won <rep-list> [-width <width> -height <height>]
Opens report-windows for specified reports. The
geometry of the window (in text units) can optionally be specified.

sim_rep woff <rep-list>
Close report windows

F.14 sim_run
sim_run setup

Assumes mode == {-1, 0}
Prepare for run by initializing default class parameters and object
parameters.

sim_run start > | »
Assumes mode == 1.
Start a simulation run with specified speed.

sim_run g o > | »
Assumes mode == 2
Continues a breaked simulation run.

sim_run advance > | »
Combines start and go according to current mode.

sim_run break
Assume mode == 2c
Breaks an ongoing continuous simulation run.

sim_run done
Assumes mode == 2
Stops a simulation run by scheduling SysDone immediately. The mode
designation is retained.

sim_run stop
Assumes mode == 2.
Stops a simulation by immediately returning to mode == 1

sim_run reset
Assumes mode == 1.
Resets a prepared simulation run. To start a new run, ’sim_run setup’
must be performed

F.15 sim_sched
sim_sched oprint

Prints contents of global scheduler queue to stdout in ordered format.

sim_sched iprint
Prints contents of the global scheduler queue to stdout in a format
according to the internal datastructure used (currently pairing-heap)

sim_sched <astats | rstats> [-<flag>]...
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Returns statistics, absolute or relative, on the global schduler
queue. Computation of absolute statistics is based on the time
difference between an entry and the _frontmost_ entry. Relative statistics
is based on the time differences between neighbouring entries in the queue.
Note that the statistics is computed when this command is invoked.
The information returned is according to the following flags.
All flags are returned if no flags are specified.

-#pend Number of pending objects (due at current time)
-#queue Number of future scheduled objects
-#scan The number of entries scanned to find the

_first_ entry which is due next.
-max Maximum value for computed statistics
-mean Mean for computed statustics
-distr [<binlist>] Distribution for computed statistics. An optional

argument is parsed as the bins for which the frequency
distribution is computed. If this argument is missing ten
equally spaced bins covering the complete range is used.

sim_sched pstats [-<flag>]...
Returns profiling statistics about the scheduler queue, if
available. It will be available if the core is compiled with the
QPROF symbol defined. Profiling statistics are different from
absolute and relative statsitics since it is updated at every
operation on the queue. The ordinary statistics are computed only
when the command is invoked. The information returned is according
to the following flags. All flags are returned if no flags are
specified.

-del Average number entries removed for each new scheduled time.
This reflects the concurreny of the system.

-queue Average number in queue after each delete operation
-scan Average number of entries scanned per retrieved entry.

F.16 sim_source
sim_source <file>

Sources and evaluates the specified script file. The filename is either a
complete path-name or a name relative to one of the directories in the
’sim_path’ variable. The file is sourced at the global level, and
’sim_srcdir’ is set to the directory component of the file location.

F.17 sim_speed
sim_speed [slow | semi | quick]

Reports or sets current simulation speed

F.18 sim_stats
sim_stats assign <objid> -<mesnam> <statsid-list> ...

Assigns statistics to specified measure(s) for the given alive
object. Note that more than one statistics can be assigned to the
same measure. The statsid-list must hold numerical tags as returned
by the ’sim_new’ command. If the particular designation 0 is used
for <statsid-list>, any previous assignments are removed.

sim_stats assigned <objid>
Returns which statistics are assigned to the measures for the
specified alive object. An assignment of 0 means that no statistics
are assigned.

sim_stats read <statsid>
Returns the reading of the specified statistics. The format and
semantic of the returned information depends on the features of the
actual statistics class.

sim_stats reset <statsid> [<value>]
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Reset the specified statistics. The semantics of a reset depends on
the features of the actual class. If a value is supplied the statistics is
reset to that value.

F.19 sim_xpar
sim_xpar <class> | <obj>

Displays a modal X-dialogbox facilitating setting of parameters.
All non-significant parameters are inactive and their default
values displayed.

F.20 sim_xvpar
sim_xvpar <class> | <obj>

Displays a X-widow showing the current parameters. The window
is inactive, hence multiple such windows may exists simultaneously.
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Appendix G

Core variables

Below is the documentation of user significant global variables that are introduced by
thecore package.

G.1 sim_batch

sim_batch
Is a variable telling whether gmsim is started in batch mode. In
batch mode standard error and standard ouput are redirected to files
’stderr’ and ’stdout’ in the current report dierctory. The user is
responsible for setting this variable prior to startup. After
startup the variable should not be modified.

G.2 sim_path

sim_path
Is a variable holding a list of directories. For each directory listed
the immediate sub-directories are searched for installed packages.
The user can make new packages known to the system by setting the path
variable appropriately prior to startup. The path variable is also used
when searching for script files in response to the ’sim_source’ command.

G.3 sim_repdir

sim_repdir
Is a variable specifying the directory used for reporting. This variable
should be set prior to startup and should not be modified subsequently.

G.4 sim_rephist

sim_rephist
Is a variable specifying how many lines to save for report windows.

G.5 sim_script

sim_script
This variable is expected to be set prior to startup and should contain a
list of names scriptfiles to use a application scripts.
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G.6 sim_srcdir
sim_srcdir

This variable is set by the ’sim_source’ command to the directory location
of the file which is currently sourced. In this way sourced scripts can
determine their own location by considering this variable.

G.7 sim_wdisp
sim_wdisp

This array variable should be set prior to startup in order to indicate
which windows of the graphical user interface to display initially. Currently
two windows with keys ’curr’ and ’queue’ are supported. The former is a
window showing the status of the current object. The latter window shows
statistics concering the scheduler queue.
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