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Abstract

This document gives an overview the standard methods used to model and analyze
the performance of queuing systems. This includes both analytical techniques and
simulation methodology. Simulation must be used when the complexity of the system
makes mathematical analysis intractable. This normally happens when the underlying
model fails to have Markov behavior.

Attention is restricted to single-queue systems and\fié//1 queue is used as an
illustrative example regarding analytical work. A number of specific results concerning
performance figures can then be derived. Simulation is discussed in the setting of the
GIGI1 queue and various sampling-strategies are central to the discussion. The need
to perform statistical output analysis is also emphasized.
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Chapter 1

Introduction

This document gives an overview the standard methods used to model and analyze the
performance of queuing systems. Queuing is always due to unpredictable demands for
a limited set of resources. Itis customary to use an abstraction where “customers” are
being “served”. Typical performance figures are the mean number of customers in the
gueue and the expected waiting time befaceess to the service fhty is granted.

Unpredictability is best described in statistical terms and stochastic modeling is
central to the discussion. Depending on the complexity of the model, qualitative or
guantitative results can be derived by mathematical analysis. If the performance figures
of interest cannot be determined by analytical means, simulation is inevitable.

Both analytical techniques and simulation methodology are discussed in this docu-
ment. For simplicity attention s restrictedsimgle-queusystems. Thé//M/1 model
is used as illustrative example for analytical work. Due to mathematical tractabil-
ity fundamental principles and notions can be introduced in a clear-cut way. These
concepts carry over to more general situations where results are otherwise often ob-
scured by mathematical complexity. Simulation is discussed in the setting of a more
generalz/G/1 queuing model.

It is important to be aware that the tractability of thé/AM/1 system is due to
simplifying assumptions. We point at what makes the model tractable and what will
typically break the tractability in more complex models. Based on the analysis of the
MI/M]/1 queue we also outline some principal extensions applicable to more complex
systems.

Note that simulation issues are restricted to experimental design, sampling strate-
gies and output analysis. Discussion of appropriate modeling and simulation tools are
outside the scope of this report. Note also that we discuss performance evaluation
under the assumption that there is no real systems available for measurements.

The reader is assumed to be familiar with basic mathematical probability and statis-
tics. This includes the concept of stochastic processes and statistical inference. For
unfamiliar readers [3, 21, 33] is a suite of introductory references. Any prior exposure
to stochastic discrete-event simulation methodology is also useful. Pointers to general
texts on this subject are [1, 2, 8,23, 28]. In addition to reading this document the reader
is urged to taking a look at textbooks on queuing theory. Two useful references in this
respect are [6,19]



1.1 Single-queue systems

Consider a system where customers arrive at some service facility. The reader may
think of an post-office. After being served the customers depart from the system. By
assumption the customer inter-arrival intervals and also customer service periods are
subject to statistical fluctuations. Hence, a queue will occasionally form in front of
the service facility. If there are no customers waiting to be served the system is said
to be idle. Otherwise the system is busy. Under normal circumstances the system
will cyclically alternate between idle and busy periods. A customer arriving at an
empty system terminates an idle period and a busy period begins. Correspondingly, a
customer leaving an otherwise empty system terminates a busy period and initiates an
idle period.

A single-queue system is characterized by having a single waiting line organized
according to some queuing discipline. We restrict attention to FIFO queues with no
priorities among customers. It is also assumed that customers will not balk from the
gueue once they have arrived. Equipped with these assumptions, a single-queue system
is classified according to the notatidinB/s/ N. Here A characterize the input process
and refers to the probability distribution of inter-arrival times of customers. Likewise,

B characterize the service process and refers to the probability distribution of service
time for customers. The component is the number of parallel stations at the service
facility. Finally, V specifies the capacity of the waiting line in front of the service
facility. For infinite capacity systems thé component is normally omitted.

1.2 Organization

The rest of this document is organized as follows. Chapter 2 establishes the idea of
a birth-death Markov process which is at the core of analytical queuing theory. A
number of key concepts like transition probability, memoryless property and transient
vs. steady-state behavior are also introduced.

This is followed by an analysis of th&f/M/1 system in chapter 3. Assuming that
both inter-arrival and service times are independent and exponentially distributed gives
the simplest example of a birth-death process. The most important parameter for this
system is the normalized load. The performance figures subject to analysis are the
number of customers in the queue and the expected waiting time. The former is based
on a state-based view whereas the latter builds on a transaction-based formulation.
Little’s law which relates the two views is also discussed.

Chapter 4 looks beyond the/M/1 model and discusses how analytical tractabil-
ity depends on the memoryless property of Markov models. For intractable systems
stochastic simulation must be used. This is addressed in chapter 5. Estimators, point
estimates and confidence intervals are central to the discussion.

In chapter 6 steady-state simulation of a genétl/1 queue is considered. This
provides an opportunity to discuss various sampling strategies like replicate-runs, equally-
spaced observations, asynohous observations and regenerative cycles. The former
is time-consuming but always work. The other are more efficient single-run strategies,
with asynchronous sampling being most efficient. Regenerative sampling is conve-
nient as it has no problems associated with the transient warm-up period. The chapter
is closed with a discussion of indirect estimation by way of Little’s law.

Issues related to run-length control and estimation efficiency are discussed in chap-
ter 7. The report is concluded in chapter 8.



Chapter 2

Birth-death Markov processes

Stochastic birth-death Markov processes turns out to be a highly suitable modeling
tool for many queuing processes. Several examples will be considered throughout
this document. In this section we shortly preview the general features of birth-death
Markov processes. More information on the subject can be found in [4,6,19,33].

Let N(¢) be an integer-valued continuous-time stochastic process. The discrete
state space of the process comprises non-negative integer values. , co. At this
point we discuss thé/(t) process without any particular physical meaning attached.
However, as a conceptual aid the reader may think @ as being the random number
of members in some population as a function of time.

By assumption the classical Markov property is imposed as a restriction on the
processN (t). l.e. given the value oV (s) the values forN (s + t) for ¢ > 0 arenot
influenced by the values d¥ (u) for u < s. In words, the way in which the entire past
history affects the future of the process is completely summarized in the current state
of the process. Expressed analytically the Markov property may be written as

PIN(tms1) = nomrs | N(tm) = nms o+ 3 N(t1) = na] =
P[N(tm+1) = ning1 | N(tm) = nim]  (2.1)

and it should be valid for al, < t2 < - -+ < t,, < tp1 and anym.

2.1 Transition probabilities

In equation (2.1) set,, = s, Ny, = 4, tmt+1 = s+t andn,,1 = j. Then theright-hand

side of the equation expresses the probability that the the process makes a transition
from statei at time s to statej in time ¢ relative tos. Such a probability, denoted
pi.i(s,t), is referred to as a state transition probability for the Markov process. In this
document we only consider transition probabilities being independent of absolute time
s. L.e. for alls > 0 we have

Pii(s,t) = pij(t) = PIN(t) = j | N(0) = 4] = P[N(s +1) = j | N(s) = 1]

This is called time-homogeneous or stationary transition probabilities. Henceforth
time-homogeneity is tacitly assumed. It is generally assumed that the transition proba-
bilities p; ;(t) are well behaved in the sense that they are all continuous and the deriva-
tive exists.



For a Markov process with time-homogeneous transition probabilities the so-called
Chapman-Kologomorov equation applies

pii(t+ ) = pig(t)pr,;(s) (2.2)
k=0

This equation states that in order to move from stétej in time (¢ + s), the queue size
processN (t) moves to some intermediate staten time ¢ and then fronk to j in the
remaining times. It also says how to compute the long-interval transition probability
from a sum of short-interval transition probability components.

An infinitesimal transition probability, denoted ;(dt), specifies thémmediate
probabilistic behavior of a Markov process in tliat— 0. By help of equation (2.2)
it turns out that any transition probabiliy ;(¢) can in principle be determined if the
infinitesimal transition probabilities are known. Hence, the overall probabilistic behav-
ior of a Markov process is ultimately given by the infinitesimal transition probabilities.
Together they define the transition kernel of the process.

A birth-death Markov process is characterized by the fact that the discrete state
variable changes by at most one, if it changes at all, during an infinitely small time
interval. Reflecting this fact, the following postulations specify the transition kernel of
a general birth-death Markov process

pi7i+1(dt) = MNdt+ O(dt) t=0,1,...,00

piﬂ'_l(dt) = u;dt+ O(dt) t=0,1,...,00 (2.3)
pi(dt) = [1—(Xi+p)ldt+o(dt) i=0,1,... 00 '
pi7j(dt) = O(dt) |Z—]| =2,3,...,00

Here ddt) is a quantity such thatm;_,o o(dt)/dt = 0. The first equation handles the

case when the state variable increases by one. This is referred to as a single birth. Here
A; is a proportionality constant such that the produett should reflect the probability

for a single birth to happen during the infinitesimal time interval. We may fxrgas

a parameter without any particular meaning attached to it. However, it is customary
to interpret); as the instantaneous birth rate. Likewise, the second equation is for the
case when the state variable is reduced by one. This is referred to as single death.
The productu; dt signifies the probability that a single death takeascpl Thenu;

denote the instantaneous death rate. The third equation handles the case when the state
variable does not change. I&.— (A; + p;)]dt reflects the probability that neither a
single birth nor a single death occur during the infinitely small time interval. Multiple
births, multiple deaths and simultaneous births and deaths are taken care of @itjhe o
terms in the equations. This should be interpreted such that the probability for these
events to happen is negligible é&s— 0. We say that multiple events are prohibited.

Note that the infinitesimal transition probabilities from (2.3) are in general state
dependent. This is so since the instantaneous birth\iaded also the death raje
may depend on the departing staté\ small comment also applies to the second and
third equations. Since no deaths can occur if the state variable is already zero, i.e. if
1 =0, we always defingy = 0.



2.2 Model equation

By combining equation (2.2) with the infinitesimal transition probabilities from (2.3),
we may write

pii(t+dt) = pij 1 (N1 dt + p; j(£)[1 — (N\j + pj)]dt +
Pij+1(t)pj+1 dt + o(dt)

where all ddt) terms from (2.3) are now summarized in a single term. By rearranging,
division bydt and taking the limit agt — 0 we arrive at the following where the time-
derivative of the transition probability now appears on the left-hand side.

i () = Aj1pij—1(t) — (Aj + )i (t) + pj+1pij+1(t) (2.4)

This is the general model equation for a birth-death Markov process and it essentially
captures the probabilistic dynamics of the process. The equation is a differential equa-
tion in the continuous time variabteand a difference equatiémn the discrete state
variablej.

Depending on the particular values)Xyfandy; in equation (2.4) it may be possible
to solve the model equation so as to get a closed-form expressign f@). This is
referred to as the transient solution of the stochastic process model. The transient
solution completely characterizes the time-dependent probabilistic behavior of a birth-
death Markov process. In the next section we consider a different kind of solution of
the model equation. As opposed to the transient solution this is called a steady-state
solution.

Note that the model equation (2.4) is valid for- 0 and: = 0,1,...,00. For
t = 0 we have a boundary condition and it is customary to define

pi,;(0) = d;; (2.5)

whered; ; is the Kronecker delta defined &sf ¢ = j and0 otherwise. Hence, in zero
time the process will certainly not move.

2.3 Steady-state solution

Consider an arbitrary poistin time at which the proces¥ (s) = . From this point
on the time-dependent probabilistic behavior of the process is given by the transient
solutionp; ;(t) wheret is taken relative ta. In this context the transition probability
pi,;(t) represents the probability that the process will be in statiéer an incremental
time ¢t. Henceforth we refer tp, ;(¢) as astate probabilityand it is tacitly understood
that it is conditioned on the fact that the observation of the process started in atate
times.

By now considering the limit of the transient solutiontas> oo it is interesting to
see if the state probabilities eventually settle down. I.e. for a given departing state
are interested in a family of limits

hm pi,j(t) :pi,j (26)

t—o0

1Also often called a recurrence equation.



forj = 0,1,...,00. If such a family exists in the sense that; > 0 for all j and

if Z‘;‘;O pi; = 1, thenp; ; represents the limiting probability distribution of the state
variableN (t), given that we started in stateAlternatively we may say that as— oo

the stochastic proced§(¢) converge in distribution [3, 24] to a random variatie
havingp; ; as its probability distribution ovef. This is written

In some cases it may be that a family of limits does exist but that every member ap-
proaches zero. Them ; is called a degenerate limiting distribution. Henceforth is it
tacitly assumed that a limiting distribution refers to the non-degenerate case.

If N(t) = N, for some random variabl&; we say that a statistical equilibrium
or steady-state is associated with the process. The corresponding limiting distribution
p;.; is referred to as a steady-state solution of the stochastic process model.

It should be emphasized that based on the above discussion weteaonclude
thatp;, ; = pi,,; for i1 # i and allj. The possibility exists that that the limiting
distribution is not unique but depends on the initial staté-ortunately, for a birth-
death Markov process model it can be shown that if a limiting distributaexist then
itis unique. l.e.

Pij = Dj (2.7)

for all < and the process converges towards the same limiting distribution regardless
of initial statei. In other words the effect of the initial state is not apparent under
steady-state.

The limiting distribution is always asymptotically stationary or invariant in the
sense that

(oo}
i =D pipi(t)
k=0

for all t when steady-state prevails. This equation follows easily from equation (2.2)
by taking the limit ass — oo and then employing the definitions from equations (2.6)
and (2.7). This tells us that when the state probabilities first equals the stationary dis-
tribution, then at any additional timénto the future the state probabilities will remain
unchanged. The reader is warned at this point. A stationary distributiomobesan

that the process has lost its probabilistic behavior. Even if the state probabilities be-
come time-independent constant values, they are still probabilities.

Note carefully that the concept of statistical equilibrium relates not only to the
properties of the process itself, but also to the observer’'s knowledge of the process. In
the above discussion we have assumed that an observer finds the procesg ihteate
were to look at any time. If he were to look again at a later tinfe + ¢), wheret is
a finite incremental time, the probability that he will find the process in gtatgiven
by the transient solution. As opposed to this, if equilibrium had prevailed atstianel
the observer hadotlooked, then the corresponding probability would be given by the
associated steady-state solution.

Assuming the existence of a limiting distributipn we may consider the corre-
sponding transient solutign_;(¢) and take the limit a¢ — oo in order to arrive at
an expression for the limiting distribution. In many cases, however, it is impossible to
solve the model equation (2.4) for the transient solution. Then we must use the follow-
ing approach to find the limiting distribution eRall that the derivative; ;(t) appears



on the left-hand side in equation (2.4). Under steady-state conditions this derivative
must be zero. Consequently, we have

Jim pi(8) = Hm [Noapigoa(8) = (A + p)pi g (8) + pgapi g (t)]
0 = Ajoapj—1 = (N + p)pj + 1P (2.8)

so that for steady-state the original differential-difference model equation reduces to a
time-independent difference equation which is in general much easier to solve.

2.4 Memoryless property

Since the future probabilistic behavior of a Markov process depends only on the cur-
rent state as expressed by equation (2.1), it is customary to say that a Markov process is
memoryless. This fact is clearly illustrated if we consider the holding times or sojourn
times [33] of a Markov process. At entrance to a specific state the corresponding so-
journtime is defined as the time spent in that state before the process makes a transition
to a different state.

For a transition to an arbitrary state, Igtbe a random variable denoting the cor-
responding sojourn time in that state. By help of the Markov property alone it can be
shown [19, 33] that any sojourn tinfemust be distributed according to axpenential
function

P[S<s]=1—e 7 (2.9)

where~; is generally left as an unspecified parameter which may depend upon the
sojourning staté. In the case of birth-death Markov processes it can be shown that
this parameter relates to the infinitesimal transition probabilities;by (A; + ;).
Figure 2.1 shows a plot of the exponential probability distributiomfor= 1 along

1
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Figure 2.1: The rising curve is a plot of the (cumulative) exponential praligiaistribution
function1l — e~ 7° for v = 1. The falling curve is a plot of the correspondingerential
probability density functiom—"7°.

with the corresponding probability density function.



The exponential distribution of sojourn time is amazing in the sense that it is truly
memoryless. To see this, consider the following argument. Say that a transition to
statei has just occured for the Markov proce$$t). The associated sojourn tinseis
then exponentially distributed as expressed by equation (2.9). Now let some time pass,
say sg, during which no transition away from stat®ccurs. At this point lefS’ be a
random variable signifying theemainingsojourn time so that = sy + .5’. With this
at hand the following identity can be established [19]

P[S' <s|S >s0]=P[S <4 (2.10)

showing that the distribution of remaining sojourn time, given that a time,dfas
already elapsed, is identically equal to the unconditional exponential distribution of
the total sojourn time. The impact of this statement is that our probabilistic feeling
regarding the time until the termination of the sojourn period is independent of how
long it has been since the sojourn period was actually initiated. This clearly illustrates
the memoryless property of the underlying Markov process.



Chapter 3

Analyzing the M/M/1 queue

The M/M/1 queue is characterized by the features of its arrival and service processes.
These processes are discussed in the next two subsections, respectively, and we will
see that both processes are modeled as memoryless Markov processa$.d€kig-

nation in M/M/1 actually refers to this memoryless/Markov feature of the arrival and
service processes. Then in section 3.3 we consider an analysis of how the number of
customers in the queue behave probabilistically. If we are interested in other features
of the M/M/1 queue we must change our stochastic process view of the system. At
the end we briefly consider some important cases.

3.1 Arrivals

The input process of th&f/M/1 queue is modeled as a pure Markov birth process with
state independent birth rates. An arrival plays the role of a birth¥gy(d) denotes the
number of arrivals in time. With respect to (2.3) we now defing = 0 and\; = A

for all 4. In this case the model equation (2.4) can be solved for the transient solution
giving [4,19, 33]

j>i>0

)

e iasdpe
Pl =

This is the celebrated Poisson distribution. Hence, the arrival process is a Poisson
process. For a fixed departing statend a specific time interva) the above equation
gives the (discrete) distribution of the number of arrigls- ¢) in that time interval.

Note that this distribution is independent of the departing stated depends only on

the differencej — ¢). In figure 3.1 we have plotted the Poisson distributiotjof ¢)

for A = 0.5 and two different time intervals. The applicability of Poisson processes in
practical arrival situations is well proven [21, 33] thereby justifying the model.

With the Poisson distribution at hand it can easily be shown [19, 33] that the inter-
arrival times of customers are represented by mutually i.i.d. random varialied
denote the time between any two customer arrivals we havedhstexponentially
distributed

PA<t]=1—-e* (3.1)

IHere i.i.d. denotes “independentand identically distributed”.
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Figure 3.1:Plot ofthe Poisson probability distribution of number of arrivgls i) for A = 0.5
andtwo different time intervals= 10 andt = 20. The darkestcurve correspondsto the shortest
time interval.

where )\, denoting the instantaneous arrival rate, now appears as a parameter to the
exponential distribution. The mean inter-arrival timekigd] = 1/A. The significance
of independent and exponentially distributed inter-arrival times will become apparent
later.

Up to this point we have considerédas an instantaneous arrival rate. This may
seem fictitious to the reader. The following result for a Poisson process [4, 19, 33]
explains the rationale of this interpretation

E[Na(t)] = At

We see thah reflects the expected number of arrivals in an interval of unit length, or
in other words is the arrival rate.

Since the number of arrival®, (t) clearly grows without bounds a@s— oo the
arrival process never reaches statisticalil@mium and no limiting distribution is as-
sociated with the process.

3.2 Departures

The service process of thd/M/1 queue is modeled much the same way as the arrival
process. Specifically, the service process is modeled as a pure Markov death process
with state independent death rates. A service completion plays the role of a death. With
respect to (2.3) we now defing = 0 for all i andu; = pfor: =1,2,...,00. Note

that the instantaneous service ratis only defined for a busy system.

There are two minor complication with the service process. The first arise from the
fact that the service process is typically intervened by idle periods in which the system
is empty and no departures take place. This problem is resolved simply by freezing
the running time variable, denotegd during idle periods. The service process is then
essentially built by merging the busy periods. The second complication has to do with
the fact that the state variable is monotonically decreasing in a pure death process.

10



This problem is resolved by a redefinition of the discrete staeespHence, leN,(t.)
denote thenegative(integer-valued) number of service completions as a function of
effectivebusy timet..

With this in mind, the features of the service process is completely analogous to
that of the arrival process. Specifically it is a Poisson process and the service times of
customers are represented by mutually i.i.d. random variablésdEnote the service
time of any customer we have thatis exponentially distributed

P[B<t]=1—¢ Wt (3.2)

wherey, denoting the service rate, appears as a parameter to the exponential distribu-
tion. The mean service B[B] = 1/u.

3.3 Queue size

In this section we pay attention to the statistical fluctuations ofstheof the queue
in the M/M/1 model. Let the continuous-time stochastic procad&g) denote the
(integral) number of customers in the system. Note that the number of customers in the
system is defined as the number of customers qupliesthe one in service, if any.
The processV(¢t) is modeled as a birth-death Markov process now incorporating both
customer arrivals and service completions. By assumption the arrival proGéss
and the departure proced§ (¢t) are mutually stochastically independent. Then the
processN (t) essentially becomes a superposition of Migt) and N, (t) processes. It
should be emphasized that the fact that we can mddeé) by the proposed Markov
process is a direct consequence of the memoryless property possessed by both the
arrival and service processes.

Equipped with these definitions the general model equation (2.4) now becomes

i () = Api j—1(t) — (A4 p)pi j (t) + ppi j 1 (1), J=L2... (3.3)

Note that this equation is not defined fpr= 0. This particular case, corresponding
to the fact that customers will not depart from an empty system, leads to a boundary
condition

Pio(t) = —=Apio(t) + upia(t) (3.4)

3.3.1 Traffic intensity

We will soon see that the ratio between the arrival pa#ad the service rate plays an
important role in the analysis of the queue size process. Therefore, we define the new
parameter

p=— (3.5)
i

which can be interpreted as the load on the system. Thedaa@lso referred to as
offered load or traffic intensity and providesedative measure of the demand placed
on the system. Recall thatis actually not defined for an empty system. Consequently,
the traffic intensity parametershould be interpreted as the load conditioned on the fact
that the system is already loaded. During idle periods in which the system is unloaded
an arrival can always be served immediately.

11



3.3.2 Transient solution

To completely characterize the time-dependent probabilistic behavior of the queue
size processV(t) we should find the transient solutign ;(¢) from the appropriate
model equation. Proceeding from this point on typically involves transforming equa-
tion (3.3) with associated boundary conditions (equation (2.5) and equation (3.4)) both
by a Laplace-transform step and a generating function transform step. The transformed
equation is then algebraically manipulated before it is inversely transformed twice. The
details of this procedure are beyond the scope of this document, though. We merely
state the result [19]:

pi(t) = e” AW G021 (at) 4 pU==D/2 0 (at) +

(RS SRS A T

k=j+i+2
where
a = 2u/p
[ee]
.13/2 k+2m
Ie@) = (k +m)!Im!

O

Here I, (x) is the modified Besseffunction of the first kind of ordek. The traffic
intensity p is previously defined in equation (3.5). At this point the following quote
from [19] concerning equation (3.6) is appropriate:

This last expression is most disheartening. What it has to say is that an
appropriate model for the simplest interesting queuing system leads to an
ugly expression for the time-dependent behavior of its state probabilities.
As a consequence, we can only hope for a greater complexity and obscu-
rity in attempting to find time-dependent behavior of more general queuing
systems.

Consider theMl/M/1 system at start-up where the queue is assumed to be empty
at times = 0. Thenpy_ ;(t) denote the probability that there afecustomers in the
system at time from start-up. In this context we refer g ;(¢) as a state probability
instead of a transition probability. Now it is very instructive to plot the time-dependent
behavior of the state probabilitieg ;(¢). This is showA in figure 3.2 for the case
p = A/p=05/1.0 = 0.5and forj = 0,1,2. The topmost curve corresponds to
po,0(t) signifying the probability that there are no customers in the system atttime
Initially we certainly* have no customers in the system. Then this probability gradually
decreases and seemingly approaches a constant levgt@ss. The curve in the mid-
dle corresponds tgg 1(¢) and the bottommost curve correspondgda(t). Initially
these probabilities are both zero, of course. Then they grow gradually before they both
seem to flatten. The fact that the state probabilities seem to converge towards distinct

2Bessel functions often appear in the solution of differential equations. Consult any text book on ad-
vanced calculus

SNote thatp; ;(t) from equation (3.6) contains infinite sums. In plottipg; (¢) such sums must be
truncated. The plots in this documenthave been generated Mattematica program performing such
numerical truncations automatically.

4].e. the probability is 1.
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Figure 3.2:Plot of state probabilitiego ; (t) for j = 0,1,2 andp = A\/u = 0.5/1.0 = 0.5.

The topmost curve correspondio (t) and the bottommost tey 2 (t). The onset of statistical
equilibrium is easily identified.

constant levels indicate that statistical equilibrium or steady-statathed. We will
return to the issue of steady-state solution in the next section.

An interesting point about figure 3.2 is the time it takes befmeh state proba-
bility settles down. We clearly see thgg 1(¢) converge faster than both o(¢) and
po,2(t). Hence, the rate of convergence varies among the state probabilities. To get an
aggregated view of the time it takes before steady-state prevails we therefore consider

E[N(t)] = ijo,j

being the mean number of customers in the system as a function of.tinate that
E[N(t)] takes all transient state probabilities isccount. Under the same conditions
as infigure 3.2 the middle curve in figure 3.3 is a ploEgiV (¢)]. Taking the different
time scales of the two figures into account we concludefiat(t)] converges slower
than the individual state probabilities. The steady-state level suggests that for this case
there is on the average one customer in the system when statistical equilibrium prevails.
The bottommost curve in figure 3.3 is also a plotEJiV(¢)] but this time for the
casep = A/ = 0.25/0.5 = 0.5. Note that the traffic intensity is unchanged from
the preceding case but that the absolute valug afid . has now changed. The fig-
ure suggests an unchanged steady-state level but a slower rate of convergence for the
latter case. From this we conclude that convergence is slower with decreasing arrival
intensity and service intensity. Assuming the same traffic intensity, it is intuitively rea-
sonable that a slowly operating system reaches steady-state more slowly than a quickly
operating system.
The topmaost curve in figure 3.3 corresponds to a pld¥ ()] for the case =
A/p = 0.7/1.0 = 0.7. Compared to the other two cases the traffic intensity is now
higher. The figure illustrates two points. First, the steady-state level for the average
number of customers in the system increases with increasing traffic intensity. We return
to this fact in the next section. Next, the rate of convergence is slower with increased
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0 5 10 15 20 25 30
Figure 3.3:Plot of expected number of custonigfN (t)] as a function oftime. The uppermost
curve corresponds to the case= \/u = 0.7/1.0 = 0.7. The middle curve is for the case

p = Ap = 0.5/1.0 = 0.5. The bottommost curve corresponds to the case \/u =
0.25/0.5 = 0.5. Note the rate of convergence for each case.

traffic intensity. It is intuitively reasonable that it takes more time for a highly loaded
system to settle down (probabilistically) than it takes for a less loaded system.

Before leaving the transient behavior, consider figure 3.4 shopgné) for j =
0,5,10,15. In this casep = \/u = 1.0/0.8 = 1.25. Compared to figure 3.2 note
that the time scale has now changed and that different state probabilities are plotted.
Anyway, we observe that the characteristics of the curves are now quite different in that
they cross each other and do not seem to converge. This indicates that a steady-state
does not exist for the latter case.

3.3.3 Steady-state solution

As suggested by the plots from section 3.3.2 Mig) process seems to settle down
probabilistically under certain circumstances. In this section we focus on the issue of
statistical equilibrium and steady-state behavior.

Assuming the existence of a limiting distributippwe may use the general method
from section 2.3 to arrive at an expressiongor This time, however, we must take the
model equations (3.3)-(3.4) as our starting point. The resulting set of time-independent
difference equations is easily solvable by several methods [19, 33] and the result turns
out to be

pj=(1-p)p (3.7)

Henceforth the limiting; distribution is alternatively referred to as thalistribution.
Note that the limiting distribution componept = (1 — p)p’ is recognized as a term
in the transient solution from equation (3.6). This is not accidental. In taking the limit
of equation (3.6) as — co we should end up with;, of course.
If figure 3.5 we have plotted the limiting; distribution forj = 0,...,10 and
for two different traffic intensities.  The steepest curve corresponds to the lowest
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Figure 3.4:Plot of state probabilities ; (t) for j = 0,5,10,15 andp = A\/u = 1.0/0.8 =
1.25. The crossing curves suggests that statisticailibqium does not exist in this case.

traffic intensity. As intuitively expected we see that the probabjlityhat there are no
customers in the system under steady-state is greater for the less loaded case. At the
other end of the range we see that the probabhjlitythat there are ten customers is
greater for the higher loaded case.

From the limiting distributiorp; the steady-state mean number of customers in the
systemE[N] = 3~ ; jp; can be found. This yields [19]

p
E[N] = - p (3.8)
In figure 3.6 we have plotteff[N] for traffic intensitiesp in the ranged — 1. We
see that the steady-state mean number of customers in the system is comfortable for
moderate traffic intensities. As the traffic intensity approadhtee mean number of
customers in the system increases dramatically. The knee-like curve profile shown in
the figure is characteristic for many queuing systems.

For the sake of the discussion we have up to this pméstimedhe existence of
steady state for the queue size process. Now it is time to consider the condition un-
der which a statistical equilibrium actually exists.ed?ll thatp = A/u denote the
instantaneous traffic intensity. Clearlypif> 1 sustained, the queue will grow without
bounds. Then arrivals sustain-ably occur more rapidly than departures. In that case
it is reasonable to expect that steady-state will not exists. It can be shown [19, 33]
that this is actually so. Likewise it can be shown that the condition for existence of a
non-degenerate steady-state is

p=2<1 (39)
i
for the M/M/1 queue. The boundary cape= A\/u = 1 corresponds to a degenerate
kind of steady-state.
Note that existence of steady-state, and also the corresponding limiting distribution
from equation (3.7), depends only pror theratio of A and . As opposed to this
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Figure 3.5:Plot of limiting distribution probabilitieg; for j = 0, ... ,10. The steepest curve
correspondstp = 0.5. The other curve correspondste= 0.8.

the transient solution from equation (3.6) also depends oraliselutevalues of A
and u. The latter was commented on when we discussed the rate of convergence to
steady-state.

3.4 Queue size: arefined view

Consider the following question: assuming that steady-state prevails, what is the prob-
ability that an arriving customer fingscustomers already in the system? Intuitively
the answer ip; as defined by thg-distribution from equation (3.7). This is initially
wrong, however, since we are now asking for the state probabilityedtecteddis-

crete set of time points, namely at the arrival instants. gHaéstribution originating

from the stochastic procedé(t) reflects the number of customers in the system at a
totally arbitrary instant in continuous time

To properly analyze the situation we must therefore consider a entirely new stochas-
tic process\, (k) denoting the number of customers in the system immediatiyre
the k'th arrival. Note thatM, (k) is a discrete-time stochastic process as opposed to
the continuous-time proce$$(¢). Without going into details it can be shown [6, 19]
that ask — oo a unique steady-state exists for th&, (k) process under the same
circumstances as for th€(t) process. Thed/,(k) = M, wherel,, is the limiting
random variable. The distribution éf, is denoted byr; and is referred to as the
distribution. Thus, the probability that amriving customer findg customers already
in the system is given by;. In the case of the//M/1 system it fortunately turns
out [6,19] thatr; = p, for all j, but this is in generatottrue for an arbitrary queuing
system.

The instants of service completions is another restricted set of points in time at
which the queue size is often of special interest. Hence, let the discrete-time process
M (k) denote the number of customers in the system immediafedythe departure
of thek’th customer. Concerning the existence of steady-state the same applies for this
process as for th&/,, (k) process. Consequently,s+ co we have thal/, (k) = M,
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Figure 3.6:Plot of steady-state mean number of customers in the syst&fas a function of
0<p<l1

whereM; is the limiting stochastic variable. The distributiondf, is referred to as the
g-distribution. I.e. in steady-statg represent the probability that a departing customer
leaves behing customer in the system. Again we have that= p; for all 5.

To conclude this section we have in case of Mi&\//1 queue that the identity

T =P =45

holds for allj. For a more general single-queue system it can be shown [} thaty;
still holds for allj. Thep; distribution may be significantly different, however.

3.5 Waiting time

The waiting time of arriving customers is a very important feature of a queuing system.
After all, if we arrive at a queue we are essentially more interested in a probabilistic
feeling of how long we have to wait to be served than we are interested in the number
of customer in front of us. However, the latter is clearly an indication of the former. By
convention the waiting time of a customer often refers to the time spent in the queue
plusthe service time of the customer. This convention is tacitly assumed throughout.

For the M/MI/1 queue at least three different approaches can be taken in order to
describe the probabilistic behavior of waiting time.

e We can model the time spent in the system for each individual customer by a
stochastic procesd’ (k). This process will be indexed by a discrete parameter
k =1,2,...,00 corresponding to the subsequently arriving customers. Since
W (k) signifies waiting time its range will be the continuum of non-negative
real numbers. If we are interested in waiting time under steady-state we assume
thatW (k) = W and then consider the (continuous) distribution of the limiting
random variablé?’.

o If we are only interested in steady-state conditions we can consider an arbitrary
customer arrival assuming that statistical equilibrium already prevails. By help
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of thew-distribution and the service time distribution we can then derive an ex-
pression for the distribution d¥.

o If we are only interested in steady-state conditions and if we are satisfied in
knowing the mean waiting tim&[17] without knowledge of the distribution of
W, we can employ the so-called Little’s law. We will return to this issue in a
moment.

3.6 State-orientation vs. transaction-orientation

Compared to the queue size proc@sg) discussed in section 3.3, note that thék)
process from section 3.5 radically changes the stochastic process view of the system.
This is so sincéV (k) directly accounts for thendividual customers whileV (¢) sum-

marize the history of arrivals and departures istate variable Hence, W (k) is re-

ferred to as a customer-oriented stochastic process as oppoAgd)tbeing a state-
oriented stochastic process. In general simulation literature [2] the terms transaction-
oriented or process-oriented are used to distinguish it from a state-oriented view.

3.6.1 Little's law

As already pointed out, the number of customers queued in front of an arriving cus-
tomer clearly gives an indication of the time the arriving customer has to wait in order
to be served. Little's law in its classical form [6, 19] make use of this fact, and applied

on theM/M/1 queue the following relationship concerning steady-state variables can
be established

E[N] = AE[W] (3.10)

By now substituting foZ[ V] from equation (3.8) we arrive at the following expression
for mean waiting time in thédZ/M/1 queue under steady-state conditions.

EW] = Ln (3.11)
I—p

As a function ofp the mean waiting time shows a knee-like profile similar to that in

figure 3.6 for the mean number of customers in the system. Note howevd? [ffigt

depends on the absolute value ofn addition to the traffic intensity. The mean

number of customers in the system depends only on the latter.

The utility of Little’s law is due to the fact that the state-oriented stochastic pro-
cessN (t) is more tractable than the customer-oriented stochastic pré€éss. By
focusing on the more tractable process we can by Little’s law indirectly say something
about the features of the less tractable process. The amount of information about the
less tractable process is limited by this indirect approach, however.

Note that the applicability of Little’s law go beyond th/M/1 queue. For ar-
bitrary queuing systems there exists generalized results that entail a deep relation-
ship [11,12,29, 31] between the state-oriented and transaction-oriented views.
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Chapter 4

Beyond the M/M/1 model

The analytical tractability of théZ/M/1 queuing model is primarily due to the follow-
ing (assumed) features.

e The independence between inter-arrival intervals.

e The memoryless property of the arrival process.

e The independence between service periods.

e The memoryless property of the service process.

e The mutual independence between the arrival and service processes.

For other queuing models the typical case is that one or more of these features are not
longer automatically applicable thereby complicating the analysis. Nevertheless, the
M/MI1 model make an excellent point of departure for two reasons.

First, the analysis of th&//M /1 model establishes variopgrformance measures
for a queuing system. E.g. the steady-state mean waiting time, the steady-state
distribution and the transiept ;(¢) probabilities are all useful performance measures.
There is no reason why the definition and significance of such measures do not carry
over to more general cases.

Second, the stochastic process models ofM¥é//1 queue is a natural starting
point from which generalizations and extensions can be made. In the following we
consider two such extensions. The first extension models a restricted form of depen-
dency. The second extension deals with lack of memoryless property.

4.1 Dependency

The independency features of th& M /1 model are unrealistic in many queuing situ-
ations. E.g. most people are discouraged by long queues and it is reasonable to think
that customer inter-arrival intervals generally increase with growing queue size. This
simply means that the customer inter-arrival intervals are not independent; a sequence
of short intervals tends to generate longer intervals.

One readily available approach to model this kind of dependence arise from the
definition of a birth-death Markov process.e&all that the instantaneous arrival rate
A; is in general state dependent as expressed by (2.3). We may therefore\gefine
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A/ (i + 1) to model discouraged arrivals. In this way we model dependency amongst
arrivals via the state variable. Note that the analytical tractability is principally retained
by this approach.

As another example consider a “Russian queuing discipline” where customers are
encouraged by queue length and tend to arrive more rapidly as the queue grows. For
this case we may defing = (i + 1) to model the dependency inherent in the arrival
process.

In a similar way we may define the instantaneous serviceugate (i + 1)u to
model a situation where service completions generally occur more rapidly as the queue
grow. This may be a reasonable scenario for a stressed clerk at an post-office.

Note that a combination of state-dependent arrivals rates and state-dependent ser-
vice rates is also feasible within the framework of a birth-death Markov process. Such
a combination effectively also models a mutual dependency between the arrival and
departure processes.

In the general taxonomy of single-queue systems the notafign/*/1N refers to
a system where dependency are modeled via the state variable as explained here.

4.2 Supplementary variables

Recall that the xponentially distributed inter-arrival intervals and service periods of
the M/M/1 queue made it possible to model the queue size pragéssby a Markov
process as discussed in section 3.3. This is due to the memoryless property of the
exponential probability distribution. If the arrival process and/or the service process
fails to be memoryless we get into trouble siméét) can no longer be modeled as a
Markov process. Then mathematically difficulties arise immediately. A conceptually
simple method to escape from this situation is to reestablish the Markov property by
augmenting the state description with one or more supplementary variables [6,19].

To illustrate the supplementary variable technique say that the service periods are
no longer exponentially distributed but instead distribwwecbrding to a general prob-
ability density function. Then th&'(¢) process becomes intractable due to the missing
Markov property. At this point we introduce a new random varidble) denoting
the remaining service timéor the customer in service at tinie Then (N (¢),Y (¢))
denotes a vector-valued stochastic process. NoteXiiatis still discrete bult”(¢) is
a non-negative continuous-valued stochastic variable. The point is that by augment-
ing the state description by the supplementary variaf(l§ it can be shown that the
compound two-dimensional stochastic proce&%t), Y (¢)) becomes a Markov pro-
cess. By considering this augmented process the memoryless property is reestablished
and this new process is more tractable as opposed to the now non-Markovian process
N(t). Based on an analysis of the compoy®(¢), Y (t)) process certain features of
the component proce$$(t) can then be derived indirectly.
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Chapter 5

Stochastic simulation

Queuing models beyond tiié/M /1 system often turn out to be analytically intractable.
Then stochastic discrete-event simulation [1, 2, 8, 23, 28] is a useful tool for gaining
insight. A stochastic simulation is characterized by the fact that the same (correct) pro-
gram produces different (but correct) output data from each run. Tdona nature

of the output data can not be ignored and procedures for making statistical inferences
from the output data are of absolute necessity [18].

Output analysis from a stochastic queuing simulation is most often concerned about
estimating various quantities of the underlying stochastic process machinery. This in-
ferential problem is almost always casted in terms of a point estimate along with an
associated confidence interval [3]. The next subsections outline the prototypical steps
taken and also discuss associated problems. It should be emphasized that statistical in-
ference procedures are strongly problem dependent. The effectiveness of any particular
inferential method depends on the level of a priori knowledge of the system behavior.
Therefore, the establishment of an underlying (at least approximate) stochastic process
model is often crucial to any inference methodology.

5.1 Point estimate

Let (X1, X, ..., X,) denote (random) observations gained from a stochastic simula-
tion. At this point we discuss inference methodology generically without any particular
meaning attached to the observations. Later we shall see several examples of what may
comprise an observation in a queuing simulation. Initially we assume nothing special
about the observations. In the most general case they are correlated and have different
distributions. In the most trivial case they are i.i.d. For simplicity we consider the
X, observations to be univariates in this section. Generally the observations may be
multivariates, however.

Now, letd denote some quantity of interest subject to estimation. Basedsam-
ple data the objective is to estimatéyy some statistic8(n) = h(X1, Xo, ..., Xn)
referred to as the estimator. Note that the estimétaj being some function of the
random observation variables is itself a random variable. As a prototypical example,
consider the case when the observations are i.i.d. with mgaand variance% . Then
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the ordinary sample mean
X(n)=1/n>_ X; (5.1)

is a statistics serving as an estimatorigf. Throughout this is referred to as the
classical case.

There are three important figures of merit for the goodness or quality of an estima-
tor.

Bias defined by Bia@(n)] = E[f(n) — 6] measures the systematic deviation of the
estimator from the true value of the estimated quantity. Ideally the estimator
should be unbiased so thaff(n)] = 6 for all n. E.g. for the classical case,

X (n) is an example of an unbiased estimator.

Variance of the estimator itself Vd6(n)] = E[(A(n)— E[0(n)])?] measures the mean
(squared) deviation of the estimator from its expected value. The smaller vari-
ance the better, of course. For the classical case we have tHaf (W3] =
o% /n. Note that in this case the variance of the estimator is directly related to
the variance of the individual observations.

MSE (Mean Square Error) is defined by M@ )] = E[(A(n)—6)?] = Biagf(n)]*+
Var[f(n)]2 and is an aggregate measure incorporating both bias and variance. A
small mean square error is desirable, of course.

The asymptotic features of an estimator are of special interest. With respect to the
above figure of merits the quality of an estimator, should improve g®ws. Various
laws of large numbers [16] are central in this respect. Particularly, an estié(at))r
is said to be (weakly) consistent if it converges in probability [3, 24] to the estimated
quantityd asn — oo. A stronglyconsistent estimator converges almost surg8y24]
to the estimated quantity. E.&(n) is a strongly consistent estimator pf; for the
classical case discussed above.

For a particular finite sequence of observations, i.e. for a particular realization of
the random variableSX;, X, ... , X,,), the corresponding realization of the statistics
é(n) is called a point estimate @f Depending on the quality of the estimator and also
the number of observationswe expect the point estimate to be “close” to the true
value of the estimated quantiy To determine “how close”, however, it is essential to
assess the precision of the point estimate. This is the purpose of the confidence interval.

5.2 Confidence interval

The natural way to assess the precision of a point estimate is to consider the (random)
difference(d(n) — 0) reflecting the estimation error. Assuming that the estimtoy
is consistent and behaves according to some law of large numbers, we expect this error
to become smaller asgrows.

Computing confidence intervals requires knowledge of how the random(é¢rgr-
0) itself is distributed. Hence, we are seeking second order results about some law of
large numbers which by assumption is at play. Such results are generally referred to
as central limit theorems [15]. The point is that working with the exact distribution

1Also called convergence with probability one.
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of ((n) — @) is in general complicated, if at all possible. Thus, approximations must
be employed. Specifically, the condition of asymptotic normality [17] is usually im-
posed. Then itis either proved or conjectured that

Vn(f(n) —6) = o N(0,1) (5.2)

holds asymptotically wher@/ (0, 1) refers to the standard normal distribution. The
parameter appearing at the right-hand side is called an asymptotic variance parame-
ter. Note that for the asymptotic normality assumption to be useful the above equation
should become approximately valid for fairly large The exact definition of is gen-

erally strongly problem dependent. However, an asymptotic statement of the following
form [7] can usually be established

lim nVar[f(n)] = o (5.3)
n—oo
relating the asymptotic variance parameteo the asymptotic variance of the primary
estimatord(n). For the classical case discussed in the previous section equation 5.3 is
in fact true for alln ando = o x reduces to the common variance of the i.i.d. observa-
tions. In this case equation 5.2 also reduces to the ordinary central limit theorem [3,21].
Even if the variance parameterfrom equation 5.2 is left unspecified at this point,
note that it neatly reflects the asymptotic efficiency of the estimator. E.g. sa that
andds(n) are alternative estimators fér Now if o, ando signify the corresponding
asymptotic variance parameters anarif < o5, then the former estimator is more
efficient than the latter since it leads to a more compressed distribution in equation 5.2
for the same (asymptotie).
With equation 5.2 at hand an asymptotic confidence interv@l(ﬁm} is easily given

by

(é(n) —§/2,0(n) + 5/2) (5.4)
where
g
6=2 Zl—a/Q % (55)

refers to the width of the confidence interval. Here o < 1 and(1 — «) specifies the
level of confidence. The quantity _,, /- refers to thel00(1 — «/2) percentile of the
normal distribution. .e. ifb(z) is the (cumulative) distribution function of the standard
normal, theme; _, o = (1 — o/2).

For fairly largen we expect the confidence interval given by equation 5.4 to be
an approximate confidence interval for the estimafar). The interpretation of the
confidence interval is as follows. If the wid#a of the confidence interval is found for
a specified confidence level ¢f — o) and the simulation experiment were repeéted
a number of times, the confidence interval would contain the unknown quéritity
(approximately)l00(1 — «)% of the cases and would not100a:% of the cases.

An small but important point escaped so far is that the general process dependent
variance parameter is almost always an unknown quantity. To peed then, we must
use an estimatat(n) in its place. E.g. for the classical case previously discussed the

2Note that asymptotic normality and central limit theorems only applies when the primary estimator is
given as some sum of the observations. This is almost always the case, however.
3Do not confuse the number of repetitions with At each repttion n observations are collected.
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unknown variance parameter is consistently estimated by the ordinary sample variance
of i.i.d. observations

1

[72(”) - n—1

>_(Xi = X(n)? (5.6)

In any case, using a consistent estimatér) in place ofs, the conclusions from
equation 5.2 and 5.5 remains.

5.3 Inferential errors

In making statistical inferences as outlined in section 5.1 there are many sources of
errors. Here we emphasize the most prominent ones.

e As already pointed out the effectiveness of any particular inferential method de-
pends on the level of a priori knowledge of the system behavior. Hence, at the
outset it is important to have a good model of the underlying stochastic process.

e Itisimportant to use a high-quality primary estima@c(m). Ideally, an estimator
should be unbiased, consistent and having a small varianceafdrn. The
unbiasness and small variance requirements translate into a small mean square
error. Especially, the asymptotic variance parametehould be small so as to
give an efficient estimator. Any deviation from these requirements leads to point
estimates of lower precision.

e Inimposing an asymptotic normality assumption on the distributigéef) —6)
recall than an approximation is really made for finite

o If the problem dependent asymptotic variance parameteunknown and must
itself be estimated, care must taken. First, it is again important to use a high-
quality estimatois(n). Next, recall that the resing confidence interval speci-
fication is really a twicely approximated confidence interval.

To conclude it is important to be aware that a confidence interval specification po-
tentially suffers from several errors and should be considered only ap@oximate
statement of the precision of the actual inference procedure.
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Chapter 6

Steady-state simulation

To illustrate some of the questions associated with a simulation approach in queuing
theory, we use thé&/G/1 queuing model as an framework. Thedesignation refers

to general inter-arrival time and service time distributions, respectively. EGA1

gueue it is implicitly assumed that there is no dependency between the arrival and
the service processes. Likewise the inter-arrival times and service times are mutually
independent. Thé//M/1 queue is a special case of tGéG/1 queue, of course.

In the following we use the same notational conventions as we did in discussing
the M/M/1 queue. SpecificallyN (t) denotes the queue size process. Assuming the
existence of statistical equilibrium we focus on inference methodology associated with
the steady-state behavior 5¢t) = N. For an excellent general overview of this
subject the reader is referred to [27]. Specifically we discuss four different inferential
methods referred to as

¢ Replicated runs

Equally spaced observations

Asynchronous observations

Regenerative cycles

As opposed to the first method, the latter three methods are based on making inferences
from a single simulation run only.

Note that making inferences about the transient behavior from simulations are
methodologically simple since we can always conduct a seriesreplicated finite-
simulations [2, 10]. Classical estimation procedures can then always be employed due
to the assumed independency of the replicated runs.

The reader may argue that inference about steady-state features based on simula-
tions will always fail since any simulation must be stopped in finite time while steady-
state is asymptotically defined. Strictly speaking this is true, of course. However, the
notion that a simulation eventually reaches steady-state afteita transient warm-
up period can be regarded as a convenient fiction that is at least approximately true.

Finally, note that we will say nothing about implementation issues associated with
the various inferential methods in this document. This not to neglect the importance
of the subject but rather as a result of limited scope. The interested reader is refered
to [27] and references therein.
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6.1 Replicated runs: Ensemble averages

Consider the following definition of the expectation of a functiofiaf the limiting
random variableV.

er = EIf(N)] = p; f(5) (6.1)
7=0

Two examples are illustrative here. ff = I wherel denote the identity function,
equation 6.1 reduces to the ordinary mean number of customers in the system under
steady-state. If = I; wherel; signifies a (discrete) indicator function, equation 6.1
reduces tg; being the probability that there ajecustomers in the system at an ar-
bitrary point in time when steady-state prevails. Note that equation 6.1 in any case
reflects some property a¥ that can be interpreted as an average measure over the
complete sample space comprising the ensemble of all possible trajectories the process
may take. Hences; is referred to as an ensemble average.

In a steady-state simulation we are essentially interested in estimating various en-
semble averages;. The obvious way to proceed with estimation is to perform
replicated independent simulation runs. For each: rume observation

X; = f(N(t:)) (6.2)

of the quantity of interest is sampled at timewhen steady-state is assumed to pre-
vail. By assumption then, the observatiokis are independent all having the same
distribution, namely that of (V).

With respect to the inference procedure outlined in section 5.1, the classical case
now applies due to the independency. |.€;ifn) denotes an estimator for the ensem-
ble average we are seeking, we employ the ordinary sample mean from equation 5.1

é5(n) = X(n) (6.3)

The corresponding asymptotic variance parameter, now deagtes simply defined
by the common variance of the individual observations

o2 = Var[X;] (6.4)

As suggested by the discussion in section 5.2, it is usually difficult to find an explicit
expression fow,. Hence, an estimataf,(n) must be used in its place. Due to the
independent observations, (n) is naturally given by the the ordinary sample variance
from equation 5.6.

6.2 Warm-up

There is a problem associated with the inference procedure described in section 6.1.
This is due to the warm-up phase or initial transient period. Ideally this period should
be discarded for each replicated run in the sense that the simufetoldsscan past

it before taking the observatiali; at timet; when steady-state supposedly prevails.
However, if the rate of convergence to steady-state is slow, it may take prohibitively
long time to achieve sufficiently many replications. Few replications usually leads to a
large variance estimate and a correspondingly wide confidence interval. Itis reasonable
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then to try to collect observations prematurely, i.e. before the “real” onset of statisti-
cal equilibrium, so as to increase the number of observations and reduce the variance
estimate within the same time budget. Unfortunately, the sample mean estimator then
becomes biased due to influence from the initial condition. The mean square error of
the estimator includes both bias and variance terms, so in either case the replicated run
approach suffers from having an estimator with a significant mean square error.

It is interesting to note that a steady-state hypothesis simplified the analytical solu-
tion of theM/M/1 queue considered in section 3.3.3. In this section we have seen that
a similar steady-state hypothesis complicates the analysis of simulation results due to
the inevitable influence of the warm-up phase.

6.3 Single run: Time averages

Performing replicated runs as explained in section 6.1 is not the only way to make
inferences. Alternative methods less sensitive to warm-up effects exist. In this section
we discuss one such method. The new method involves long-run time averages of the
processN (t), generally defined by

=

/0 F(N(s)) ds (6.5)

wherer; should be interpreted as an random variable at this point. Two examples
are readily available by considering the same two functiprs I and f = I; as in
section 6.1. Iff = I equation 6.5 reduces to the long-run time-averaged number of
customers in the system. Fgr= I; equation 6.5 corresponds to the long-run fraction
of time there igj customer in the system.

Due to the assumed existence of a steady-state faW{ligprocess, we now have
the following important result

ry — ey = E[f(N)] as. (6.6)

Equation 6.6 states that various steady-state ensemble averagethe process can

be replaced by corrpsnding long-run time averageg. When this relation holds the
process is said to be ergodic [8, 14]. Ergodicity is closely related to (asymptotically)
stationary processes and essentially assures that a law of large numbers applies [16,32].
The utility of equation 6.6 is obvious. By estimating the long-run time averagee
essentially estimate the corresponding ensemble aveyageing the real objective of

the simulation.

6.4 Equally spaced observations

The natural way to estimate a long-run time averagés to sample theV(¢) process
regularly. Hence, let

X, = f(N(id) 6.7)

denote subsequent observations taken from a single simulation iiftdf Here A
signifies the fixed spacing between successive observations. Equally spaced observa-
tions like this is also called a time series.
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As before le€;(n) denote an estimator for the ensemble avekggee ultimately
are seeking. By way of equation 6.6 we now&gtn) = #¢(n) where the right-hand
refers to an estimator for the corresponding long-run time averagén turn we set
7¢(n) = X (n) being the usual sample mean. In sum we have that

ér(n) = X(n) (6.8)

gives a strongly consistent estimator &gt Unfortunately it is also a biased estimator
due to the influence from the initial transient period. However, the biasness becomes
less pronounced with increasimg and asymptotically the estimator is unbiased. The
obvious way to reduce the bias effect is to discard the initial observations from the
warm-up phase. But this leads to fewer observations and possibly a larger estimator
variance which in turn gives a wider confidence interval. Qualitatively we are in the
same situation as discussed in section 6.2 for the replicated run approach. This time,
however, we only have to deal with a single initial transient period and the problems
are significantly reduced.

For the sake of the remaining discussion we make a stationarity assumption. l.e.
we assume that the initial transient period is discarded so that the remaining observa-
tions X; can be considered to be taken from a strictly stationary stochastic process [8].
By assumption then, the observatio¥isall have the same distribution namely that of
f(IV). As already stated the normal sample mean is a suitable estimator for the ensem-
ble average we are seeking. Assuming stationarity the estimator is also unbiased. Note,
however, that the observations are now in general correlated or dependent since they
are taken from the same simulation run. Due to this dependency the classical inference
procedure used for the replicated run approach fails.

Nevertheless, under certain conditions the inference procedure outlined in sec-
tion 5.1 still applies. Hence, if the asymptotic variance parameter is now denoted by
op, We have [2,8]

(oo}
of = VarX;] + 23 CoiX;, X; 4] (6.9)
k=1
Note here that this equation holds for allue to the stationarity assumption. This is
trivial for the Var X;] term. Regarding the infinite sum of covariances, keep in mind
that a strictly stationary process is also wide-sense or covariance stationary [8].

Compared to the corresponding equation 6.4 for the replicated-run approach it
should come as no surprise that the definitiomrgfis simpler tharp;,. This is due
to the fact that the observations are correlated in the latter case while being indepen-
dent in the former case. Anyway, as previously pointed out it is still generally hard to
arrive at a closed-form expression foy, hence a corresponding estimadg(n) must
be employed. Several standard approaches exists, and two commonly used techniques
are batched-means and spectral methods [2, 7, 8,27]. The details are beyond the scope
of this document, though.

Note that the inference method outlined in this section essentially is an applica-
tion of inferential procedures associated with time series from wide-sense stationary
stochastic processes [8]. As already indicated specific conditions must be satisfied by
such processes for the inferential procedures to hold. As an intuitive rule of thumb they
do hold if the correlation between two observations and X;, diminishes with the
distancdi; — i2| between them. In queuing simulations this is typically the case.

In discussing inferential procedures based on long-run time averages we have im-
plicitly assumed that the observatiofi§ comprise a time series sampled at regu-
larly spaced intervald\. More can be said about this. E.g. observations defined by
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X, =1/A fi(:rlm f(IN(¢)) dt may equally well be used. The length of the time in-
terval A is also of significance. Larger spacing generally reduce serial correlation but
also reduce the number of observations, and by that the estimated variance parameter,
within the same time budget.

6.5 Embedded event process

Classically, equally spaced observation$Wdt) collected from a single simulation run
has been used in output analysis of queuing simulations. However, another way of col-
lecting observations from a single simulation run with associated inference procedures
do exist. This new approach arise by changing the stochastic process view as discussed
next.

Figure 6.1 shows a typical sample path of the queue size pra¢gsof a G/G/1
gueue. The piecewise continuous step-like trajectory is characteristic for state-oriented
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Figure 6.1: A typical sample path of the queue size pro@égs in a G/G/1 queuing
simulation. Sojourn times are denoted By and event times b{};. Regeneration
points are denoted hi; and associated regeneration cycledby

gueuing simulations. Now, l&f;, denote the subsequent random sojourn times for the
process as illustrated. Further, define

simply being the random time at which tik&h state change takes place. Note that
each state change corpemds to the occurrence of an event, either an arrival or a
service completion. Consequently, the random time pdijtare refered to as event
times.

The sequence of event times effectively define an embedded discrete-time stochas-
tic process. Hence, le¥f;, = N(T}) take the value ofV(¢) at these selected time
points. The precise relation between the two processes is

N(t> = Z MkI[Tk,7Tk+1] (t)
k=0

where the indicator functiofi4 (¢) is 1 or 0 depending on whether or not A.
Note that the discrete-time compound process forme@\y, S) is only a refor-
mulation of the same phenomenon described by the queue size pfé@gsdn this

29



sense the two process descriptions are really equivalent. Especially, under the same
conditions as théV (t) process has a steady-state, a steady-68die Si.) = (M, S)
will exist for the compound process &s— oo. Another evidence of the fact that
the two processes are inherently equivalent is clearly displayed by a relation between
long-run time averages for the two processes.

The concept of a long-run time averagg for the processV(t) was defined in
section 6.3. For the two-component discrete-time protass Si) this definition do
not carry over directly. Instead we consider the following two kinds of (random) long-
run time averages [2,9, 10]

LS

g = Jim = f(M1)S (6.10)
k=1
R

s = nlﬂﬂloﬁgs’f (6.11)

now for discrete-time but for the same functiénHereq; is the analog to'; but the
average is now computed relative to the the number of state transitions instead of total
elapsed time. The long-run average sojourntime is given biote that by considering
the ratiog;/s we conclude that this ratio ang essentially reflects the same thing in
the long-run.

Analogous to equation 6.6 the assumed existence of a steady-state for the com-
pound process ensures that this process is also ergodic, hence

qr — E[f(M)S] as. (6.12)
s — EI[S] a.s. (6.13)

holds. Il.e. the long-run averages converge almost surely to the corresponding steady-
state ensemble averages. Note here Bj4f is the mean sojourn time in steady-state.
Equipped with these definition the following result [9, 10]

TE— % a.s. (6.14)

shows that theV(t) and (M, Si) processes are really long-run equivalent singe
andgy /s both converge almost surely to the same ratio.

By now combining this statement with the result from equation 6.6 we arrive at the
important conclusion that

E[f(M)S]
€f = E[S] (6.15)
This result states that various steady-state ensemble averagéshe processvV (¢)
can be replaced by the ratio of two associated steady-state ensemble averages averages
on the equivalent proce$3d/, Si). The ensemble averages for the latter process can
in turn be computed from corresponding long-run averages by way of equation 6.12
and 6.13. The utility of this result is obvious, then. By estimating long-run averages
g ands we effectively arrive at an estimate of the corresponding ensemble avgrage
really being the objective of the simulation.

30



6.6 Asynchronous observations

To estimate the long-run averaggsands we must take observations from the com-
pound(Mjy, Si) process. Since this is a discrete-time process the observations are nat-
urally defined by the subsequent readings of the process. However, rather than using
the readings directly, we define the following transformed pairs

(Xi, Si) = (f(M;)Si, Si) (6.16)

and refer to them as the observations of the process. The reason for performing this
transformation is due to equation 6.10 since #j&s now match the summands of the
long-run measurey we are interested in.

Relative to theV (¢) process note that the observations are now taken asynchronously
in that the observations are randomlyaspd by the subsequent sojourn times. There-
fore this is referred to as asynchronous observations [2, 9].

As previously leté;(n) signify an estimator for the ensemble averageve ulti-
mately are seeking. Due to equation 6.15 combined with equations 6.12 and 6.13 we
now define

ér(n) = =— (6.17)

being a strongly consistent estimator tor. Keeping in mind the definition of an
observation pair from equation 6.1&,(n) and S(n) denote the usual sample mean
estimators corresponding to the long-run averageand s, respectively. They are

both strongly consistent estimators. Note, however, that in the same way as discussed
in section 6.4 these estimators are also biased due to initial warm-up effects. Likewise,
the same tradeoffs applies regarding deletion of initial observations in order to reduce
biasness.

For the sake of the discussion we again assume that the initial observations are
discarded so that we can impose a stationarity condition on the remaining observations.
By assumption then, th&;’s are identically distributed. The same applies for fhe
observations. In addition, the observations are in general correlated since they are taken
from the same simulation run.

Assuming stationarity the estimatai§(n) and S(n) now become unbiased. De-
spite this the primary estimator from equation 6.17 is still biased. This is so since the
expectation of a ratio is in general not equal to the ratio of the expectations. Neverthe-
less, the estimator is consistent and we continue to use it.

Taking the correlated observations into account [9] shows that an inferential proce-
dure similar to that described in section 5.1 applies. This time, however, the width of
the confidence interval is given by

Oc

E[S]vn

Compared to equation 5.5 note that the steady-state mean sojourB tihaow ap-
pears in the interval specification. The asymptotic variance parameter, dendted
this case, may be expressed as [9]

(6.18)

0 =221 a2

o2 =c, —ep(ca+ 63)6?64 (6.19)
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where

¢ = Var[X;]+2 Z CoviX;, Xtk
k=1
co = COV[Xi, Sz] + 2 Z COV[Xi, Si—i—k]
k=1
c3 = COV[Si, Xi] + 2 Z COV[Si, Xi—i-k]
k=1

cy = Var[Si] +2 Z COV[Si, Si—i—k]
k=1

Again, due to the stationarity assumption, these equations holds foAatbrrespond-
ing estimator is given by

Ge(n) = é1(n) — &7 (n)(E2(n) + &3(n)) (&4 (n))* éa(n) (6.20)

whereé;(n) is given by equation 6.17 and each of the tef(®), é2(n), és(n), és(n)
can be consistently estimated by standard techniques like bathed-means and spectral
methods [2,7,8,27].

6.7 Regenerative method

A key part of the inference procedure outlined in section 6.6 was estimation of the long-
run averageg; ands by the estimators{ (n) and S(n), respectively. In this section

we consider yet another inferential method in which these estimators are replaced by a
new pair. This is called the regenerative approach [2,27,30] and relies on identification
of an embedded renewal process [5,33] in the compdMid S;) process.

The G/G/1 queue-size process is regenerative and the regeneration points are asso-
ciated with arrivals at an otherwise empty system. This is illustrated in figure 6.1 by
the random time pointR;. At these instants in time the process becomes memoryless
and restarts probabilistically. The random length of an regeneration cycle is denoted
by Uj = Rj1 — R,

Note that a regeneration poift; is always associated with an event tiffig In
the following letk(R;) denote the indeX of the event timél}, corresponding to the
regeneration timer,;. E.e. with respect to figure 6.1 we havgR,) = 1 andk(Rz2) =
5. With this at hand we may express the length of ttie regeneration cycle by

k(Rj+1)

U= > S

k=k(R;)
Correspondingly we define

k(Rj+1)

V= Y X

k=k(R;)

as the sum of th&(;, observations over the same regeneration cycle. For each regener-
ation cycle note that these variables are easily computed from asynchronous observa-
tions(Xj;, S;) collected during the actual cycle.
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Due to the regenerative property we have thatlflis are i.i.d. random variables.
The same applies for th€ variables. In addition, if we define

75 = k(Rj41) — k(R

as the number of state transitions within a regenerative cycle, we have thatvire-
ables are also i.i.d. Note however, that for gnye have that/;, Y; andr; are depen-
dent variables.
The regenerative property permits us to re-express the long-run limigg #omds
from equations 6.12 and 6.13, respectively. Specifically, it can be shown [10, 30] that
the following important equalities holds

E[f(M)S] = l;[[TY]] (6.21)
E[S] = l;[[g]] (6.22)

(6.23)

whereE[Y] refers to the common mean of tlgvariables E[U] signify the common
mean of thel; variables and®[r] denote the common mean of thevariables. A
substitution into equation 6.15 in turn yields

E[Y]
= 6.24
which essentially says that the ensemble aveeagee ultimately seeks is determined
by the behavior of the process within a single regeneration cycle. This equation also
lays the foundation for the regenerative inference methodology. A strongly consistent
estimator forey is now naturally given by

éf(n) = ﬂ (6.25)

whereY (n) andU(n) denote the obvious sample mean estimators. Note that these are
both strongly consistent and unbiased due to the independency amongst regeneration
cycles.

Utilizing the regenerative structure of the process we now have arrived at equa-
tion 6.25 as an estimator fer; instead of the original equation 6.17. Effectively, we
have replaced the original estimatdrgn) and.S(n) with a new pairY’ (n) andU (n).

As commented on when discussing the former pair, they are both biased due to initial-
ization effects. As opposed to this the latter pair is unbiased. Hence they do not suffer
from initialization problems and deletion of initial observations is not an issue. This is
the advantageous feature of regenerative simulation methodology. Note, however, that
the primary estimatog (n) itself is still biased for the same reasons as pointed out in
section 6.6.

For the regenerative estimator from equation 6.25 the width of an associated asymp-
totic confidence interval is given by [2,9, 30]

g4

(Sd = 221_a/2W (626)
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Compared to the interval specification in equation 6.18 note that the mean regeneration
cycle lengthE[U] replacesE[S]. For the regenerative method the asymptotic variance
parameter, now denoted, is defined by [2,9, 30]

o = VarY;] — 2e;CoV(Y;, U;] + e Var[Uj] (6.27)

Trivially, this equation holds for alj. Compared to equation 6.19 note that the def-
inition of o4 is considerably simpler thas.. This is due to the identification of re-
generation cycles which in turn gives independency. A corresponding estifpétor

is straightforward. An estimator far; is given by equation 6.24. The ordinary sam-
ple variances are used as estimators fof¥drand VafU;] and the ordinary sample
covariance [21] is used as an estimator for @oyU,]. In [30] elaborate numerical
techniques are given for computing these estimates.

6.8 Waiting time

Up to this point we have only considered steady-state inference procedures associated
with the queue size process &%t) = N. However, as discussed in section 3.5 for

the M/M/1 queue the behavior of steady-state waiting tim&l&ag) = W is also an
important feature of th&/G/1 queue. Recall thal/ (k) is a discrete-indexed processes
denoting the waiting time for the'th customer.

The natural way for making inferences about steady-state waiting time, assuming
its existence, is to perform a discrete-event simulation of the prd¢gdg. As dis-
cussed in section 3.5 note here tiH{(k) is customer-oriented as opposedNdt)
being state-oriented. Hence, the inner workings of a simulation program correspond-
ing to W (k) is rather different from a program correspondingNdt¢). Parallel to
equation 6.1 we define the following steady-state ensemble average as the objective of
the simulation

wf:E[f(W)]:/OOOP[SSWSS—i—ds]f(s)ds (6.28)

Keep in mind thal¥ is a continuous-valued random variable as oppose¥ tueing
discrete-valued.

Estimation ofw; may now proceed in one of two ways. First, a replicated-run
approach completely analogous to that described in section 6.1 can be used if we define
an observation by

Xi = f(W(ki))
Herek; is assumed to be sufficiently large for steady-state to prevails. Compared to the
corresponding definition 6.2call thatk; is discrete as opposed ta Alternatively,

we may use a single-run approach parallel to that described in sections 6.3 and 6.4. In
this case an observation is simply defined by

Xi = f(W (i)

Clearly, both approaches rely on a stationarity assumption and suffer from warm-up
effects in the same ways as previously discussed.
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6.9 Indirect estimation

Little’s law was introduced in section 3.6.1 in the context of diiM//1 queue. As
mentioned the law is very widely applicable and in particular its holds folGthe/1
queue. Properly interpreted the law entails a close relation among the prodégses
and N (t). This is discussed in [11] and in essence it leads to an alternative approach
for making inferences about steady-state mean waiting time. An early reference on this
subject is [22]. More recent references are [11-13].

Note first that by equation 6.1 and 6.28, Little’s law from equation 3.10 can be
written

wr = )\e[

where f = I is taken to be the identity function. Now the idea is to estimatey
way ofe;. l.e. an estimatot; (n) is constructed by letting

’UA)[(TL) = )\é[(n)

In words we can make inferences about steady-state mean waiting time from a sim-
ulation of the state-oriented queue size prod¥$s). Concerningg;(n) any of the
consistent estimators given by equations 6.3, 6.8, 6.17 or 6.25 may be used.

For theG/G/1 queue) is a parameter of the model. Hence it is an a priori known
guantity. However, to emphasize the fact thateed not be known for the outlined
inference procedure to work, we will somewhat artificially threat it as an unknown
guantity. Consequently, we will need an estima?t(m) in its place. As a stand-alone
issue several approaches exist for finding such an estimator [11]. However, depending
on the way in which the estimatdy (n) is constructed, a corresponding natural esti-
mator \(n) can often be identified. E.g. if we for the sake of the discussion assume
that equation 6.8 and equally spaced observations are used for estitpétinghen a
particularly suitable estimator foris due to the following result whe®¥,, (¢) signifies
the (random) number of arrivals up to tihe

N, (t
J — A a.s.

Hence, the long-run average arrival rate converges almost surelyrdfiecting the
instantaneous arrival rate. This is an intuitively reasonable result. By now defining

A; = No(iA) — Na((i — 1)A)

as a second set of observations in additioiXtadefined in equation 6.7, we arrive at
the following strongly consistent estimator

where A(n) refers to the ordinary sample mean of the observations. Once again
we assume that the warm-up period is discarded so that we can impose a stationarity
assumption.

To sum up at this point we have that by setting

wr(n) = A(n)ér(n) (6.29)
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the steady-state mean waiting time can be consistently estimated by a pair of suitable
estimators\(n) andé; (n). It remains, however, to assess the precision of the resulting
point estimate. Fortunately it turns out that an inference procedure similar to that de-
scribed in section 5.1 applies. Specifically, we have that the width of the confidence is
given by

Oc
e =2 —a — .
4 Z1—a/2 W (6.30)
The asymptotic variance parameter, now denetedan be expressed as [11,13]
02 = (cl —wy(cg + c3)wicy) (6.31)
where
c1 = Var[X;]+2) CovX;, Xi]
k=1
o = CovX;,A]+2 Z CoviX;, Ai k]
k=1
co = COV[Ai, Xi] + 2 Z COV[Ai, Xi—i-k]
k=1
ca = Var[Aj]+2) Cov4;, Ai4]
k=1

Note that the form of equation 6.30 and 6.31 is identical to the pair of equations 6.18
and 6.19. This becomes apparent by considering the underlying mathematics for the
two cases [9, 13]. Accordingly, parallel to equation 6.20 we havedh#& estimated

by

Ge(n) = &1(n) — dr(n)(é2(n) + é3(n)) (1(n))* é4(n)
wherew;(n) is given by equation 6.29 and each of the teta(®), é2(n), é3(n), é4(n)
again can be consistently estimated by standard techniques.

Regarding estimation by way of Little’s law some final comments applies. First,
it can also be used in the opposite way. l.e. inferences about mean queug size
can be made from a simulation of the customer-oriented waiting time proZ¢ss.
Second, ifA is an a priori known quantity it turns out that it is asymptotically most
efficient to make inferences from a simulation of t&k) process. However, ik
is unknown and must itself be estimated both inferential approaches have the same
asymptotic efficiency. For more information on the issue of Little’s law and relative
asymptotic efficiency, the reader is referred to [13].
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Chapter 7

Run-length and efficiency

7.1 Sequential procedures

With the exception of regenerative simulation methodology, all inference procedures
previously discussed ideally assume the sequence of observations to be stationary. The
correctness, i.e. the bias, of these methods is sensitive to observations collected during
the non-stationary warm-up period. However, in an attempt to reduce biasness the
problem to discard or not to discard initial observations is a perennial dilemma of
stochastic simulation practice. Thisis so since deletion also leads to fewer observations
within the same simulation-time budget and by that possibly a larger inferential error
as discussed in section 6.2. Hence, there is a tradeoff but usually the question of when
to start sampling is an important issue.

Normally, it is impossible to determine a priori how many observations should be
discarded. The only way is to monitor the running process and start sampling when
a set of specified conditions is first met. This is refered to as a sequential procedure.
Depending on the nature of the particular inference method employed various solutions
to this problem exist. The interested reader is referred to [2, 27] and the references
therein.

At the other end it is also difficult to decide a priori how many observatiois
take before terminating a simulation. Again sequential procedures which automatically
control the length of a simulation experiment must be used, and there are two important
issues. First, with respect to the discussion in section 5.2 we must ensure ithat
large enough for the normality approximation to hold. There exists standard techniques
for testing normality [2]. Next, it is desirable to continue the simulation until a pre-
specified accuracy of the point estimators is obtained. Naturally this is formulated as a
requirement on the relative widt(n) of the resulting confidence interval

The definition of relative widtla(n) should not be confused with the confidence level

(1 — «). The latter says something about the precision of a resulting point estimate for
arbitrary® n. Asn grows, however, the relative precisiefn) of the confidence in-
terval improves but the level of confidence remains. Hence, the simulation experiment

1Assuming the validity of the normality approximation.
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is stoped at the first checkpoint for whiefn) < emax where0 < emax < 1 is the
required relative precision limit of the results at the specified confidence level.

Usually the question of relative interval precision is the dominating one in sequen-
tial termination procedures. Hence normality is often simply assumed and an explicit
test is omitted. In addition such procedures are often also governed by specifying
a maximal simulation-time budget. If the required relative precisigax can not be
met within the budget, the simulation is stopped unconditionally. For more information
on sequential procedures for simulation termination the reader is referred to [2,27].

7.2 Efficiency

We have described four different methods for making statistical inferences from a queu-
ing simulation. Along we have also said a few words about the pros and cons of the
methods. The natural question arises however, which method is generally most effi-
cient? Note that efficiency is naturally defined as the reciprocal product of final relative

precision, denotee and simulation-time

Efficiency = 1 (7.1)

te

Thus, a high efficiency value is desirable. E.g. for a given simulation-time budget the
most efficient method is the one achieving the best predsidgthin the limits of the
budget. For a fixed precision requirement the most efficient method is theactgmg

this level of precision most quickly.

It seems to be no definite answer to the efficiency question and no method can be
rated as universally best. Depending on the situation one method may be more efficient
than the other. It is therefore very useful, if not to say necessary, to develop a notion of
what makes influence of efficiency and how the various methods differ in this respect.
The following subsections point at two major factors refered to as asymptotic efficiency
and observation hardness.

7.2.1 Asymptotic efficiency

The concept of asymptotic efficiency was defined in section 5.2 and refers to the mag-
nitude of the asymptotic variance parameterin essence we have that a smaber
gives a better relative precisie(n) for the same (large). By way of equation 7.1

this in turn leads to a higher overall efficiency.

However,o is usually an unknown quantity and itis difficult to compare the relative
performance of inference procedures in this respect. To illustrate that the melithods
vary, consider the mean queue length of eV /1 system as an example. For this
exceptional case an explicit expressionsdaran actually be found. Particularly, for
the replicated-run approach we have [19] that

oa. = p/(1—p)? (7.2)

corresponding to equation 6.4. In the case of asynchronous observations taken from a
single simulation run we have [13]

or. =2p°(1+4p —4p° + p*)/(1 - p)* (7.3)

2| e. smallest
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corresponding to equation 6.9. For laygé is easily seen that? < ag*. Hence, in

this range the replicated run approach is asymptotically more efficient than the single-
run approach. The reader is warned at making a rushed conclusion at this point. Keep
in mind that other factors also must be taken into account in order to make a statement
of the total relative efficiency of the two methods.

Despite the fact that the asymptotic variance parametir typically unknown
making it difficult to assess the asymptotic efficiency of an inference method, some
reasoning can still be done by shifting focus to the corresponding estifmatpbeing
employed.

Restricting attention to inferential procedures based on a single simulation run, [2,
9] argue that methods based on asynchronous observations, including the regenerative
method,is preferable since such methods operates on the inherent natural time-scale
of the process. It is reasonable to think that the correlation structure of the process is
more suitably or efficiently estimated on the natural time s¢&leT5, . . . ) than some
arbitrary sequencéA, 2A, .. .) of equally spaced instants. E.g. if the time between
events tends to be large then one would prefer a ldxge avoid highly correlated
observations. However, by using tiigs instead one automatically compensates for
this correlation effect, without any need to deal with choice of the parameter

In finding an estimatoé (n) for the asymptotic variance parameter there is often
plenty of room for ingenuity. Variance reduction techniques generally refers to meth-
ods aiming at reducing this variance estimate so as to improve the efficiency. We will
say nothing special about variance reduction techniques here except to emphasize its
impact. Note, however, that such techniques are often closely associated with the par-
ticular inferential approach being used. In addition there are techniques being more
generally applicable. For an overview of the subject, the reader is refered to [2,23].

7.2.2 Observation hardness

As previously pointed out the replicated-run approach suffers from the fact that it must
deal with a new warm-up period for each subsequent observation taken. Clearly, single-
run methods perform better in this respect and we generally expect the time between
observations to be shorter. It must be emphasized that time here actually refers to the
number of simulated events between the takings of two observations. In the following
we use the term observation hardness to describe this. Hence, the observation hardness
of the replicated-run approach is more prominent. Obviously, observation hardness
is undesirable since it leads to an increased real simulation time to achieve the same
number of observations. With reference to equation 7.1 this in turn gives a reduced
overall efficiency.

Another manifestation of the observation hardness problem can be seen by con-
sidering the regenerative method. The point is that the length of regeneration cycles
increases as the traffic intensity grows. This is intuitively reasonable. For traffic inten-
sities close to one the occurrence of a regeneration point, i.e. an empty queue, is really a
rare event. Consequently, the observation hardness becomes high and the efficiency of
the regenerative method drops. Keep in mind, however, that the regenerative method
do not suffer from warm-up effects and under normal circumstances the observation
hardness of thanitial observation is smaller than for the other methods.

Finally, note that the method based on asynchronous observations is naturally adapt-
able with respect to observation hardness. This is so since the number of simulated
events between any two takings is always one. In addition, operating on the intrinsic
natural time scale of the system there is no need to introduce an artificial sample-
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spacing parametek. This gives an computational advantage with respect to data col-
lection.
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Chapter 8

Concluding remarks

The most important conclusion is that analytical methods have limited applicability.
It takes significant efforts to perform a mathematical analysis even of the most triv-
ial M/M/1 queuing system. The key point is that analytical tractability depends on
stochastic independence and Markov behavior. If such assumptions cannot be justi-
fied, simulation is the preferred tool for performance evaluation.

It must be recognized that a mathematical model seldom do an exact job in rep-
resenting the system subject to analysis. This is especially due to the simplifying as-
sumption that are often being made. Hence, an analytical method providesen
solutionof anapproximate modelin contrast, a simulation provides approximate
solution in terms of an estimate, of a moegact model

It is important to be aware thdtoth approaches end up with approximate re-
sults [20]. In general, it is hard to say which approach is most appropriate. After
all, the final test is when the predictions are compared to actual measurements of a real
system. One argument in favor of simulation is that the method is, in principle, applica-
ble to systems of arbitrary complexity. The primary advantage of an analytical method
is that a closed-form expression covers a large parameter space in a bold stroke.

Another point is that we have discussed analytical work under the provision that it
should yield an explicit closed-formed performance expression. There are also general-
ized techniques that prepares a model which can be solved numerically by an algorith-
mic approach [25, 26]. The resulting solution is exact but otherwise this represents an
intermediate case between analytical methods and simulation. It is interesting to note
that [10] argues that simulation is often more computationally efficient. The reason is
that a numerical approach will suffer when the underlying state-space grows. Complex
models are usually characterized by a combinatorial exploding state-space.
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