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Chapter 1

Introduction

What, then, is time? I know well enough what it is, provided that nobody asks

me; but if I am asked what it is and try to explain, I am ba�ed.

Saint Augustine in the `Confessions',

Book XI, Section 14. [8, page 36].

Most computerized information systems are formed from general purpose

components, such as databases, GUIs, etc. Whenever properties of, and

operations on, these components are generic they are in principle reusable

for di�erent purposes and in di�erent contexts. Time and time support may

also be regarded as a generic information system component. In fact, most

applications have requirements that involve dynamics, and a time-varying

nature of both data and processes used by these applications. Temporal

databases are means to capture some aspects of the required time support,

and are mainly used to manage historic data, present data, and predictive

data within the same framework and model. To be more speci�c, in our

context time acts as an intrinsic part of objects denoting when these objects

are de�ned related to the built-in time dimension(s) support of the system.

A common name of such objects is temporal objects, i.e., objects capturing,

besides other properties, time and time dependencies of their values, e.g. an

address history of a person.

1.1 `What, then, is time?'

Time has been a topic of philosophical and natural scienti�c study since the

ancient Greeks (including Plato, Aristotle, and Diodorus Cronus), through

Saint Augustine in the Middle Ages and many later Medieval logicians, to

Newtonian physics, Einstein's theory of relativity, and on to present [61]. In

the second half of our century logicians, computer scientists, and others have

1



2 CHAPTER 1. INTRODUCTION

showed signi�cant interest in the task of understanding time in both more

formalized, linguistic, mathematical, and technical terms.

The material presented in this report is founded on the above results, in

particular, and not surprisingly, mainly of those results utilized and devel-

oped by computer scientists.

Time is a human construct. Although it is useful for describing and

prescribing changes to the systems and objects under study, as we will see

later on, time is in the day to day life most often understood as something

which is ever increasing, or is continuously moving in one direction � into the

future. This perception of time is more (or only) re�ecting human memory.

That is, we are able of memorizing the past, e.g. as facts and experiences,

but we know nothing about a given time in the future. Still, we may have

expectations for and predictions about the future. But, it is only when we

reach that time in the future, which in the past was a future time, we can

say anything, for example, about the validness of our predictions at the time

when the predictions were �rst stated.

Another model presented by Rucker [73] incorporates time and space into

a 4-dimensional space where all �points� are prede�ned. In such a model we

are not �moving� in any speci�c directions; humans and things are objects

de�ned within the hyperspace. Hence, each 4D object is always showing us

when and where we were, are, and (possibly) will be. So, both past, present

and future exist simultaneously. Although some points may be regarded as

�facts� and others are �predictions�, we are within that hyperspace all the

time � �going� nowhere � because all entities are de�ned by their extent in

this 4D-space. Rucker elaborates on this 4D view most elegantly in his book:

�Geometry, relativity and the fourth dimension� [73].

1.2 Time and databases

In this report we are aiming at an understanding of time as an integral part

of properties of data objects. Basically this reduces to understand how prop-

erties (or objects) change and behave over time. A common name of such

objects is temporal objects, i.e., objects denoting, besides other properties,

time and time dependencies. There are di�erent �times�, and di�erent no-

tions of time for data management may denote whether phenomena in reality

are regarded as events, facts, or processes.

An intuitive interpretation of time objects in a system would be to let

events be represented by time points, facts by time periods (or intervals)

and processes with time functions. Why these interpretations? To follow

this more or less common sense notion of time a bit further: An event is

often taken as happening at a time instant, i.e., a point in time with no

duration. A fact is a truth about some static aspects of reality but does not

last for ever, i.e. a valid-time period de�ning when the fact was, is, or is
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believed to be de�ned (i.e., valid) in reality. A process like an event denotes

or refers to a dynamic aspect of reality, and which, unlike an event, does

have a duration. Thus, a process may be a function describing some �cyclic�

or repeating behavior like a tide or a continuous behavior like an expanding

desert or disease. A process and a fact may for example be de�ned to last

forever, or until terminated or changed, respectively.

We will primarily treat time related to facts because our concern is tem-

poral data and how such data could be used to integrate facts of di�erent

kind and/or of di�erent databases. We easily see that if an object changes its

value(s) this is in the �rst place caused by an external/real event triggering

some action to do the change (e.g. database update operation). The event

itself may have been initiated by a process object. So in a overall setting

objects of facts, events and processes are inter-linked. We deal only with the

former of these objects, i.e., data management of facts, but will treat the

other two whenever they relate to issues discussed.

We also present time and temporal data in a broader sense than is usu-

ally the case with temporal databases. We de�ne the notions of schema

versioning/evolution, object versioning and con�guration management to be

part of a broad scope of temporal data. De�nitions and examples of these

notions are given and we show how they are related to times such as valid

times and transaction times, respectively.

For de�nitions of concepts and glossaries related to temporal databases

see Jensen et al. [48].

1.3 About this report

This report is one out of two reports describing the approaches, proposals

and other issues within the �eld of temporal database research. This report

deals with temporal object-oriented databases, and the other deals with tem-

poral relational databases [83]. The reports give a survey of their respective

sub�elds, and they classify the proposed models according to structural char-

acteristics and present representatives of every class in more detail. How-

ever, equally important is that the fundamental concepts de�ned by the �eld

is presented, therefore, this introduction chapter and the next chapter are

included in both reports to give all potential readers an introduction and

hopefully a sound understanding of the fundamental temporal concepts as

de�ned and utilized within the temporal database �eld.

After �fteen years of active research in the �eld of temporal databases,

about 800 papers published, the �rst international workshop was held in

Arlington, Texas, 1993 [84, 64]. This workshop showed the diversity of issues

and topics covered by the �eld, and the same tendency is documented by the

follow-up workshop held in Zurich, Switzerland, 1995 [27, 79]. We are not

aiming at covering all the research related to temporal databases, and will,
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of course, only refer to those research publications that are relevant for our

purpose. The reader who are interested in temporal database bibliographies

is referred to Tsotras and Kumar's bibliography [94], and also the electronic

bibliography, authored by Kline, containing nearly 1100 entries as of January

1996 [57].

1.3.1 Report Structure

This report is organized as follows: In Chapter 2 we presents some basic con-

cepts that are generic to most temporal database models. Chapter 3 presents

a survey of temporal object databases and models, with a classi�cation of

the di�erent approaches presented in the literature. The summary, Chap-

ter 4, gives perspectives on both the classi�cation and object-orientation in

general in context of temporal databases.

1.3.2 Acknowledgments

I would like to thank Amela Karahasanovic, Ragnar Normann and Dag

Sjøberg for comments and suggestions to a previous version of this report.

This research was supported by the Norwegian Research Council through

grant MOI.31297.



Chapter 2

Temporal Data � Basics

In this chapter we introduce some generic properties and de�nitions which

are relevant in most settings dealing with temporal data.

2.1 Perception and Construction of Time

A philosophical view of time will probably pin point that an event is not

(or necessarily not) an instant of or point in time, and could never be an

instant of time because an event happens and something that happens has

to have some sort of duration. Otherwise, it would not happen. In natural

languages the term event is (in an informal sense) a homonym because it may

denote the implicit semantics of time di�erently: 1) `the concert was quite

an event', e.g. meaning an experienced duration of joy and pleasure, and

2) `at the event he sat down he had a stroke', e.g. meaning that something

happened at a sudden (or an instant).

So, what is an instant of or point in time? In life and thought we often

regard time as continuous say like a river. Thus, a point in time is non-

existing or is not an appropriate notion if we want to grasp what continuous

time is. However, a point in time is a (mathematical) construct and a notion

that gives a su�cient structure of time when it comes to formal reasoning,

data management, etc.

With proper models and operations we may su�ciently approximate or

describe phenomena by computer systems by time points or other constructs

derived from time points, e.g. intervals and periods. Euclidean geometry

does the same with natural spatial primitives like for example an extended

body that could be approximated by means of theoretical notions like points

and lines. That is, the notion of extended body is described in terms of points

and lines. See van Benthem [8, chapter I.1] for a more in depth presentation

of the above problems, including a discussion of �The Fleeting Now�.

5
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2.2 Some basic de�nitions

Before presenting the di�erent subjects and issues raised and discussed we

will clarify some concepts which are used throughout the text (and without

any further explanations if not the context de�nes them separately or relates

them to more speci�c structures). The term temporal data means the concept

where data or say an object is de�ned to have some time related information

associated with it, e.g. a �built-in� timestamp1. For example, in a person

object with an property attribute address, and whenever the person changes

his/her address the new address value is timestamped. More important,

though, is that the previous address values are still accessible, in the sense

that an application (or user) may retrieve the whole or a part of the address

history of a person. Thus, an address contains both the current and previous

addresses (and possibly a future address), as well as the time information

associated with each address value. Hence, by means of a temporal data

model we may get an integrated knowledge of both where a person lived and

when this was. The time (or periods) when a person has addresses is called

the lifespan of the address object (see below). The relationship between

facts, e.g. a person's addresses, and times is shown in Figure 2.1.

time 

now

historic facts 

current
 facts 

predicted facts 

Addr. i−1 Addr. i+1Addr. i
Person’s
Addresses

Figure 2.1: Facts and Times

The time information may be given di�erent semantics depending on

the time dimensions a particular system supports. For example, temporal

database models usually de�ne one or two of the following time dimensions:

the valid-time dimension (see Section 2.3.1) supports information on when

a fact was, is, or is believed to be valid (true) in reality, on the other hand

the transaction-time dimension (see Section 2.3.2) supports information on

when a fact was or is stored/current in the database. The transaction-

time dimension has always its upper bound set to the (moving) time now

and its lower bound is always set to the time when the system was �rst

in operation, i.e., the time when the database was created. Whereas the

1A timestamp is a time value (point in time, time period, or time interval) associated
with an object [48]. It is the key time representation in temporal databases. But, qual-

itatively di�erent timestamps represent di�erent notions of time. Hence, an object may

have several orthogonal timestamps.
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valid-time dimension's upper and lower bounds are set by the application,

such bounds for the transaction-time are independent of applications. These

two dimensions constitute an object's �real world� history and registration

history respectively. In addition several database systems support primitive

data types such as DATE, TIME, DATE-TIME, which are used to model

what is called user-de�ned time, and its semantics is de�ned and only known

by the application. For example, an object of type DATE is used to model

the property of a person's date of birth, whereas a valid-time timestamp

on that persons address property is used to handle the di�erent times a

person is associated with di�erent addresses in the modeled reality. Thus, the

built-in semantics of valid-time and transaction-time bound objects to the

respective dimensions. That is, a time dimension provides more information

of being only a value domain, i.e., a time related order of an objects values

is maintained and this ordering is utilized, for example, by query processing.

Our concern is valid- and transaction-times and modeling their seman-

tics as part of the database, and not only as structures and semantics of

one particular application. Although valid and transaction-times are or-

thogonal temporal concepts there exist several applications where these two

dimensions collapse into one dimension. Many (if not all) real-time database

(RTDB) applications have this characteristic. For example, in a cash-line

application a bank account is the temporal object of interest. A customer's

withdrawal of an amount of money from his/her account means that the reg-

istration of this database transactions happens (approximately) at the same

(instant of) time as the customers account is changed in reality, i.e. the time

when the real money is withdrawn from the account and the time when this

withdrawal is registered coincide, and only one (say valid-transaction-)time

dimension may su�ce for recording both times. Such an database is called

degenerated if both valid- and transactions times are captured by one time

value [49]. On the other hand when using an ordinary check the times when

money is spent and when usage is registered, respectively, could vary form

days to weeks, i.e., the valid-time (when spent) and transaction-time (when

registered) do not coincide.

Further, a temporal data object is said to have a lifespan, and the time

periods or intervals constituting the lifespan are not necessary contiguous.

In the address example above, there could be a period when a person does

not have a known address. Hence, the address object for this person was not

de�ned for this period of time. Thus, the person had no address (or possibly

an unknown address) for a period of time, e.g. see the �gap� between the

address values i-1 and i in Figure 2.1. So, the lifespan captures the time

when an object is de�ned. That is, a valid-time lifespan is the time when

the object is de�ned to exist in the modeled reality. On the other hand a

transaction-time lifespan is the time when the object is de�ned to be current

and accessible in the database [93, page 625].

We have referred to the concepts point in time and instant as synonyms.
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Another important concept is chronon. A chronon, which is the shortest du-

ration of time supported, for example, by a database is a non-decomposable

unit of time or the smallest granule of time. Based on the notion of a chronon

a time period is a set of (total) ordered time values, of which each is sepa-

rated by a chronon. If a time dimension is discrete and linear the concepts

of point in time, time period, and time interval are equivalent constructs for

representing time [8]. Although this is true for the semantics of time, one

construct may be preferred because applications interpret these semantics in

context of the modeled reality. We return to this issue in a later chapter.

In most temporal models the chosen time dimension is discrete [58, 62], and

therefore it is isomorphic to (some subset of) the integers, or isomorphic to

(some subset of) the natural numbers when it has an exact lower bound.

2.3 Time Dimensions and De�nitions

Time dimensions are (usually) classi�ed into valid-time and transaction-time

dimensions. Both dimensions can be de�ned separately, and, hence, they are

orthogonal.

2.3.1 Valid Time

The valid-time dimension supports not only management of histories and

current data, but also planned or predicted data. Histories are data de�ned

for previous times compared to the time now. Current data are data valid

at the time now (i.e., present time), as opposed to predictive data which is

data believed to be valid in the future. Figure 2.2 illustrates these proper-

ties of valid-time data. Thus, valid-time of some fact is the time when the

fact was/is (believed to be) true in reality. Thus, a fact may have several

instances, each with an associated timestamp recording changes of that fact

[48].

Object
salary: 

t2 t3 t4t1 t5

now

time t

15000     17000                 19000     25000

Figure 2.2: Valid-Time Data

Figure 2.2 shows an object salary. It could be an object recording the

salary evolution of an employee of a company or a general salary object

de�ning the salary of a particular professional category of a company, e.g.

an assistant researcher, an engineer. Despite the di�erence in possible inter-

pretation of the actual object say by an employee or a professional category

application, the temporal semantics of this object remain the same. That is,
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the object salary had from time t1 to time t2 a value of 15000, from time t2
to time t3 a value of 17000 and so on. Some interesting facts are also stored

or are part of the semantics of the temporal object salary.

Firstly, between times t3 and t4 no value was recorded. We say that

the object was not valid (or unde�ned) during that period. For the fore-

mentioned applications this could be interpreted as follows: 1) the actual

employee in question had no salary (or even more likely s/he was not an

employee) during that period, 2) the company had not a �xed salary for this

professional category (or the professional categories did not exist) during

that period.

The second interesting fact says something of what is planned or what is

believed to be true (or be a fact) in reality, namely that the salary will be

raised from 19000 to 25000 at time t5 and will be �xed until some uncertain

(unknown) time in the future. This could be interpreted by an application

along the line of the employee and professional category examples above.

And last; the time now is in our example currently between times t4
and t5. We will discuss the issue concerning now and other variables in

Section 2.3.4.

We have presented some of the goodies of a valid-time database, and

given several examples of the semantics captured with this approach. A

nice property with valid-time is that its basic semantics are independent of

applications and their interpretations of the data. Thus, the basic tempo-

ral semantics are only managed by the built-in valid-time support of the

database. This is true even when the valid times are usually given by the

user. Hence, we distinguish on one side what valid-time is, and on the other

for what it is used (or how it is used) by a user. The former concerns the

database semantics the latter concerns some speci�c application's interpre-

tation of it.

Below we discuss the transaction-time support where both semantics

and usage are given and controlled by the database system. Valid- and

transaction-times support increases the data independence of databases from

applications. This aspect is the main technical argument for extending a

database model to a temporal database model.

2.3.2 Transaction Time

The other time support in temporal databases is the so-called transaction-

time. A transaction-time timestamp registers the time when an object (or

say a fact) is current in the database, and may be retrieved [48]. As with

valid-time a fact may have several value instances and timestamps associated

with it. Although transaction-time never exceeds the current transaction-

time (or time now) a fact has also associated with it transaction timestamps

for predicted valid-time data when both time dimensions are supported by

the database.
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t2 t3 t4t1 t5
Valid
time t

Transaction
time kk1 k2 k3 k4

k5
now

now

15000     17000                 19000     25000

Object
salary:                               19000

  15000     17000             25000

Figure 2.3: Transaction-Time Data

Figure 2.3 shows how the instances of the fact salary are associated with

transaction timestamps. At time k1 the salary value 15000 was �rst recorded
in the database. And it was current in the database until transaction-time

k2. At transaction-time k3 the fact was logically deleted but restored at

transactions-time k4 with the new value 19000. At the same time there is

another transaction-time k5 (equal to k4) which records that the fact has

value 25000, but not valid before t5. Both values are current until the time

now, which is always an upper-bound constraint on transaction timestamps.

With transaction-time alone this information makes no sense besides saying

something about when a particular value was stored. However, together

with the valid-time support it will be interpreted as that both the current

salary of 19000 and the planned/predictive salary of 25000 were recorded

in the database within the same transaction or by concurrent transactions,

respectively, but at the same time. This makes of course sense for both the

employee and professional category applications above.

Transaction-times associated with facts have a property or restriction

not shared with valid-times. That is, they are not to be altered when �rst

stored. Put di�erently, we cannot change what already has happened, i.e., at

previous transaction times. The transaction-times are in an one-to-one cor-

respondence with the actual database transactions or operations performed,

i.e., they register the modi�cations activities of the database.

2.3.3 Bi- and Multi-Temporal Dimensions

If a database captures both valid-time and transaction-time, we will have

the relation shown in Table 2.1. This relation is the representation of the

object salary shown in Figure 2.3. For convenience and hopefully to make

the illustration more intuitive we think of this relation recording the salary of

a professional category, and all symbolic times, ti and kj, are replaced with

month-year timestamps, still, representing a similar information as above.

A database that supports both valid- and transaction-times is called a

Bi-temporal Database [28]. In principle there are no limitations of how many

time dimensions a database may support, and multi-temporal databases are

in fact possible. In other words the 2D time associated with database facts
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Salary Valid-Time Trans-Time

15000 Jan88 Dec89 Apr88 uc2

17000 Jan90 Mar92 Mar90 uc

19000 Sep94 Dec97 Oct94 uc

25000 Jan98 ∞ Oct94 uc

Table 2.1: Object Salary represented as bi-temporal data

in Table 2.1 could easily be extended to capture n dimensions.

Jensen and Snodgrass present application scenarios of multi-temporal

databases [49]. The multiple dimensions are based on a taxonomy where a

valid timestamp is de�ned relatively to transaction timestamps. For exam-

ple, a valid timestamp is restricted not only to one but several transaction

timestamps, say when data is de�ned and stored both locally and globally

by several databases. For one valid time there may be several transaction

times and these times have restriction imposed on them. All such restrictions

could be de�ned in a schema. A generalization of the multi-temporal nature

of [49] is provided by STSQL, a spatio-temporal extension to SQL�92 [11].

In STSQL both multiple valid-times and transactions-times may be de�ned

for a table. That is, multiple valid-time dimensions are associated with an

object, where each dimension either denote a separate temporal aspect of

an object or a possible world of an object. For example, if we have tasks

to be planned and scheduled, one valid timestamp may denote the aspect of

when the data stored about a task is true in reality, whereas another valid

timestamp may denote the aspect of when the task itself should be executed,

i.e., when it is scheduled. If we have possible world semantics, a third valid

timestamp would possibly denote an other time when the task should be

scheduled, because this time is estimated with some other parameters.

The value-added property of having bi- or multi-temporal relations is

that these dimensions capture inter-dimensional semantics which are impor-

tant for deducing information about the facts stored in the database. It

requires, of course, that if such inter-dimensional semantics exist (i.e., their

relationships are expressible), each dimension has to be identical, equiva-

lent or compatible with some underlying notions of time. For example, the

relation in Table 2.2 illustrates some of the relationships.

The second of Paul's rows, in Table 2.2, represents a so-called pro-active

change of the database stating in December 1990 (start of trans-time) that

Paul will be �re-hired� as an assistant from March 1991 (start of valid-time),

i.e., the fact is stored before it is expected to be valid in reality. Paul's

has a retro-active change of its position (row 4), i.e., in December 1991

the database registers that Paul was an engineer from August the same

year. At this time it is also known that the information that Paul was an

assistant until November 1991, in fact, was misleading information current
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name department position Valid-Time Trans-Time

Paul design assistant Jan90 Sep90 Feb90 uc

Paul design assistant Mar91 Nov91 Dec90 Dec91

Paul design assistant Mar91 May91 Dec91 uc

Paul design engineer Aug91 uc Dec91 uc

Mary design manager Jan90 Feb91 Jan90 uc

Mary HQ AD Dec90 Dec93 Feb91 uc

Table 2.2: Bi-temporal Employee Data

in the database until December 1991 (row 3), i.e., Paul was an assistant

only until May 1991. That is, all data retrieved before December 1991 may

have resulted in inaccurate information. To restore a consistent database

regarding Paul's position the following is done: The second row is logically

deleted from the relation marked with a deletion time as the upper limit of

the transaction timestamp. The information (as best known of December

1991) when Paul was an assistant this year is shown by the third row. The

following row captures the present information that Paul is an engineer,

and has been so since August 1991. Note that Paul was not an employee

during the periods of October 1990 until February 1991, and in June and

July of 1991, or Paul had no known position in the company during these

two periods.

In the �rst of Mary's rows the two times coincide for her being a manager,

i.e., the database and the reality modeled by it are synchronous in some sense

on the fact that Mary was a manager during that period. The last row,

together with the previous one, shows that during a speci�c period Mary

held two positions in the company, i.e. from December 1990 until February

1991 Mary was both a manager and an AD.

There are a number of relationships between time dimensions such as

those mentioned above. See Jensen and Snodgrass's discussion and taxon-

omy on temporal specialization and generalization for a more exhaustive

presentation of this issue [49].

2.3.4 NOW and other variables

The time now, as de�ned by [26] and [39], in our example in Figure 2.2 is

currently between times t4 and t5. A function with domain time could re-

turn the salary of the object at a particular time-value. In particular, the

function now will always return the current salary of the object. Notice

that the notion of now, and its like, makes temporal databases becoming

variable databases. That is, we may store a salary say 10000 with a times-

tamp [ti, now] as a variable temporal object (not shown in Figure 2.2 and

Table 2.1). However, now is a (continuously) moving target, so whenever

now changes the timestamp changes and then the temporal interpretation
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of the object changes. The same applies for queries: �what is Mary's posi-

tion now�, which obviously would give di�erent answers when now varies.

In contrast, what is Mary's position as of May 1992 always yield the same

answer.

Thus, it is a semantic di�erence between models supporting only �xed

timestamp(s) and those who support variable timestamp(s). It could be

thought of as a di�erence between extensional and intensional models as

Cli�ord and Isakowitz point out, but without overloading these terms they

named them variable databases [28].

2.3.4.1 Variables and Semantics

Alternatives and supplements for now are variables such as uc � until changed

� [97], and distinguished individuals such as∞3 [86]. They all denote di�er-

ent semantics, but we will not discuss these issues here. However, it should

be apparent that now, uc, and∞ by their names denote di�erent semantics.

Although such variables may be intuitively understood and used for the

same purpose in di�erent contexts/applications (and in fact they are used

that way), we need a formal model to de�ne them precisely. So, if the vari-

able semantics managed by the database are unambiguous at the database

level, the interpretation of what a variable denotes in a speci�c context is a

transformation based on the database semantics but done by an application

only.

For example, a personnel application and a project application would

most presumably interpret the data of Table 2.2 di�erently because they

operate in di�erent contexts. A personnel �user� could interpret the data

about Paul being an engineer (i.e. the variable uc) that he is still an em-

ployee. On the other hand a project �user� could interpret uc that he is a

suitable candidate for a project. The semantics of uc are the same in both

cases, but it gives rise to di�erent information.

An interesting discussion on the issues concerning temporal variable databases

and their semantics is found in [28].

2.3.4.2 Formal Issues on Variables

The function of now have been studied in several �elds, for example in logic

and philosophy. The pioneering work of A.N. Prior on time, modality and

logic in the 1950's [67] and onwards [66] laid the ground for the formal study

of now. Kamp gives a formal discussion and analysis of the English word

now [53]. He studied now -calculi � L(N) � and their semantics in which now

is an operator, and, hence, not a distinct individual. Not to be too technical,

though, Kamp's main result is on completeness of the L(N)'s axiom sets;

3Intuitively forever is the same as, and is also used as a synonym for, the distinguished

individual ∞.
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Such an axiom set is said to be semantically complete if a �same� calculus �

L � without the now -operator has a semantically complete axiom set, and

if L(N)'s axiom set is �closely� related to L's axiom set. This is obtained

easily in the propositional case, where every formula containing now in L(N)
is proven equivalent to a formula not containing now in L. For the predicate
calculi the results are stated to be less general because (some) formulae of

predicate calculi may not have any equivalent formulae without now. Hence,

the completeness has to be proved by other means in this case.

Both Rescher and Urquhart [68, pages 35�37], and van Benthem [8, pages

6�7] have another interesting observation concerning the matter of now and

temporal structures. The observation is by van Benthem stated as a �global

property of temporal structures�. The property is called `homogeneity' and

its de�nition imposes that all temporal individuals are formally indistin-

guishable. van Benthem requires no ontological di�erence between any time

value ti and for instance the time now. He argues that because the role

of a/any point in time (e.g. now) can be played by any temporal individ-

ual, so when formalizing temporality the only interesting notions are those

that are interesting in the general case. It seems to us that both Rescher

and Urquhart, and van Benthem see in certain situations the necessity of

a separate notion of for example now. Thus we interpret them such that

distinguished individuals and their semantics have only interest in a context

of an application domain, i.e., where a speci�c emphasis on such variables

and distinguished individuals is required.

2.3.4.3 Databases � Application of Variables

We regard databases as a representative of an application domain of now and

other distinguished individuals where it is crucial to de�ne the semantics of

such notions precisely. The term individual is somewhat loosely used here,

what it really means is that it is a function value. The importance of a

formal semantic is that a database has to respond unambiguously on the

meaning of any access to (temporal) data. So, for now and other variables,

the meaning of them should be uniformly and unambiguously for all access

of the database. The database aspects of now are treated by Cli�ord et al.

mostly relative to the temporal relational model [24]. The same authors have

in particular discussed these issues in context of TSQL2 [25].



Chapter 3

Time and Object Databases

3.1 Introduction

In this chapter we present a survey of temporal object-based or object-

oriented databases1 (TODB). A main di�erence between research undertaken

in temporal relational databases (TRDB) and TODB is that the object-based

approaches presented in the literature have been tailored more by speci�c

needs and requirements of di�erent application domains, such as software en-

gineering databases, medical databases, statistical and scienti�c databases,

design databases in CAD, etc. The key reason for this may have to do with

the object-based paradigm's ability to model the reality more closely to what

it �is� and how it �changes� dynamically according to users decisions com-

pared for instance to what is possible with the relational model in many

applications. Therefore time and temporal features have been associated

with special needs of these domains. We also see that both historical and

versioning object models2 are two sides of the same coin for these applica-

tions. That is, we may informally state that historical data and versioned

data are much more related in the developments of temporal object mod-

els. However, some proposals of TODB have taken a more general approach

and for example extended existing models with generic temporal capabili-

ties. Hence, such proposals follow the line of research that has been the main

research tradition in the �eld of temporal relational models and languages.

We present di�erent approaches to how time is incorporated into object

databases. The proposals seem to have di�erent rationales in the way they

incorporate time as a separate notion into object models. We de�ne three

main classes which they fall into. They are:

• extending an existing model and language(s) with temporal aspects

1We will use the terms object, object-based, and object-oriented interchangeably as a
quali�er for the models and systems presented.

2Informally versioning is a mechanism to de�ne and manage alternatives, variants, and

con�gurations of objects.

15
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at the interface level as user-de�ned types (with properties and/or

functions), thus, without a�ecting the underlying model and system.

These are called Temporal Extensible Object Models.

• extending an existing model and languages with temporal features and

built-in semantics, such as time dimension(s), types, operators, query

language extensions, temporal query optimizer, temporal indexing, etc.

These are called Temporal Extended Object Models

• managing time in conjunctions with speci�c needs of di�erent applica-

tion domains. These are called Temporal Application Tailored Object

Models .

This classi�cation tries to capture a broad scope of what we regard as

temporal object models. The three classes are divided accordingly to the

rational and objective behind the developed models. Of course, this classi�-

cation may be debated, but its main purpose is to separate di�erent models

based on origin. Because models are developed by di�erent and orthogonal

requirements, and decisions are taken on di�erent grounds and falls into dif-

ferent classes, it does not necessarily mean that models or model features

proposed exclude each other. That is, features of one model may be compat-

ible or equivalent, or even incorporated with another model of another class

without a�ecting its basic ideas.

The �rst class is illustrated by for example Wuu and Dayal who show

by means of the OODAPLEX datamodel, [98, 99], that this model is ca-

pable of managing and handling time-varying information by its existing

non-temporal features. That is, an existing non-temporal model manages

uniformly non-temporal and temporal data.

In the second class the main idea is to de�ne time as an integral part

of the basic object model(s) and language(s). There has been two ways of

doing this. The �rst is to extend an existing object datamodel. The second

is to de�ne its own object model based on the most accepted object-oriented

characteristics, i.e. a generic object model.

By the third class models are typically tailored to handle some kind of

application demands. Even though this kind of models are de�ned to meet

some speci�c goals the basic characteristics of the models also take into

account time in a more general or generic fashion, i.e. classifying versioning

as some sort of (implicit) temporal information.

This chapter gives a presentation of proposed models and their languages

which characterize the above mentioned classes. This presentation is slightly

based on, but di�ers also from, the presentations of Snodgrass [87], and by

Bertino et al. [9, 10]. The former's emphasis is on temporal aspects of tem-

poral object-based (query) languages and to some respect their underlying
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models, whereas the latter compares only temporal data model characteris-

tics. Our objective is to classify the rationale for the proposals and to some

degree put the previous comparisons together, and in an informal way focus

on which characteristics of the models are compatible and/or incompatible.

By forcing the latter focus we believe that we are better capable of identifying

what is required so we are able to integrate di�erent temporal object-based

data models. Jensen et al. [50], and Cli�ord and Croker [23] have to some

degree, though implicitly, set their foci on integration of temporal relational

models.

The former [50] de�nes a Bi-temporal Conceptual Data Model (BCDM)

which is said to capture the essential semantics of time-varying data. The

BCDM is used as a bridge, by means of the notions of snapshot equivalence

and a de�ned set of functions, to map relations and operators of existing

temporal models into equivalent relations and operators of some speci�c

temporal relational models.

On the other hand, in [23] a more formal approach is applied. It de�nes

the notions of historical relational completeness, though, it is stressed that

these notions represent a minimal set. It is distinguished between grouped

and ungrouped temporal models3 and completeness for their corresponding

query languages, respectively. Completeness is a �metric� to what degree

di�erent query languages may be said to be equivalent, i.e. in the sense

of having the same expressive power. The di�erence between completeness

in [23] and the relational completeness proposed by Codd [30], is that Codd

de�nes completeness for di�erent languages over the same relational model.

Whereas completeness in [23] extends to completeness of di�erent languages

over di�erent temporal relational models.

In the following we will be rather technical and very close to the presenta-

tion of the proposed models. This is due to the fact that object models do not

have any common, formal basic de�nition like that of the relational model.

Although some object-oriented proposal are formally de�ned they also more

or less de�ne their own notation and basic notions. By that they may also

have native de�nitions of the concepts of type, object, class, etc. Still, these

concepts capture characteristics that we intuitively would expect an object

model to support. Thereby, making the di�erent models comparable and

even to some extent compatible, though, not necessarily equivalent in a more

strict and formal sense.

3An ungrouped model obeys the First Normal Form, 1NF, restriction on relational

model, whereas an grouped model, N1NF, does not, i.e. it allows multi-value attributes.
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3.2 The Object-Oriented �Paradigm�

Object-Orientation has its origin in the sixties, and from the development

of the programming language Simula [31]. However, object-orientation4

was �rst widely known from the development of the programming language

Smalltalk [42]. At present the ideas from object-orientation are adopted and

further developed in many areas of computer science, among where we �nd

object-oriented databases.

A key di�erence between relational database systems and object database

systems is that the former are based on one common, and formally de�ned,

model, namely the relational model by Codd [29]. Object databases have no

such commonly de�ned model of fundamental notions and concepts. That

is, each object database model de�nes its own basic object model. Moreover,

the vast set of object models vary in the number of concepts supported, and

to what degree the concepts are formally de�ned.

However, there have been attempts to de�ne a consensus among re-

searchers and developers on what an object database system should sup-

port, see for example [7, 15, 16]. The �rst attempt was the `Object-Oriented

Database Manifesto' by Atkinson et al. [7], where they describe 8 object-

oriented rules. That is, if a database system supports complex objects,

object identity (OID), encapsulation, types or classes, inheritance, dynamic

binding, extensibility, and computational completeness, then it can be called

object-oriented. In addition also more generic database requirements are in-

cluded, such as persistence, disc administration, concurrency, recovery, and

ad-hoc queries.

There are e�orts that are concerned with unifying these concepts in stan-

dard object models. The ongoing standardization on SQL, called SQL3 [60,

59], is an attempt to incorporate both the relational and objects-oriented

�worlds� into one model. The SQL3 e�orts have to be considered as a long

term project, where some of the already announced features most likely

are postponed to a `SQL4' standard, e.g. fully user-de�ned object types

and encapsulation. A more interesting project, though, is that of the Ob-

ject Database Management Group, ODMG [15]. ODMG is a consortium

founded among object database vendors and other interesting parties, e.g.

people involved in standardization5. Their strategy is to de�ne a (mature)

object model and languages, and submit their de�nitions to the standards

bodies, such as ISO and ANSI, without following the cumbersome and slow

development procedures within these standards organizations. However, the

4The term object-oriented was coined by Alan Kay in the Smalltalk-project, even

though the Simula team used the term object in the general sense known today, and

as it was adopted by Kay in the seventies.
5ODMG has an objective not only to unify and harmonize the concepts and notions

of object-oriented databases, ODMG should also utilize portability of database schemas,

and thereby increase interoperability among object database systems.
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success of ODMG has still to be proven6.

In the following we use the ODMG-93 standard as an example of what

an object database model is.

3.2.1 ODMG's Object Model

The main principle is that the basic modeling primitive is the object. An

object has a type that de�nes its interface, an interface de�nes the charac-

teristics of objects of a type, i.e. the kind of operations and the kind of

properties de�ned for the type. Properties are de�ned either as attributes of

the object, or as relationships between the object and other objects. The

operations and the properties capture the possible behavior and states of an

object, respectively. Properties can either be de�ned to be type properties

or instance properties, where the former denotes values shared by all objects

of the type, and the latter denotes values of distinct objects. Thereby, types

are themselves objects.

ODMG supports inheritance as a super - and subtype hierarchy, i.e. a

subtype inherits all de�nitions of its supertype(s). ODMG de�nes what is

denoted as the extent of a type. An extent imposes that a database system

maintains the set of instances of a type. The extent declaration of a type is

optional. ODMG also supports a type-class dichotomy where a type is the

speci�cation and a class is a implementation of the type, and a type may

be implemented by several classes. The class concept is de�ned both to

implement the common behavior and range of states of a type, and maintain

the set of objects of that class. In that sense a class realizes the notions of

type and extent.

The set of object types supported by ODMG is divided into mutable

and immutable object types. Instances of the former type could be created,

modi�ed, and later destroyed, instances of the latter are not allowed to be

modi�ed. ODMG denotes these as Objects and Literals, respectively, where

objects are identi�ed by their unique OIDs, and literals are identi�ed by their

values. Both object types and literal types are subtypes of the type Deno-

table_Object. Moreover, subtypes of object types or literal types are either

atomic or structured. Atomic object types are de�ned by an arbitrary set

of used-de�ned characteristics, and correspond to the notion of an abstract

data type (ADT). Atomic literal types are typical integers, �oat, character,

and boolean. Structured object or literal types are either collections or struc-

tures. Collections are of type set, bag, list (e.g. string or bit_string), and

array, where the elements of each collections are of the same type. Struc-

tures are similar to records or tuples, where a structure has a �xed number

of slots of name-type pairs. Access to a slot is through its name. All of the

6The present Object Database Standard, ODMG-93, was published in 1993. A Release

2.0 is expected sometime in 1997.
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above mentioned types are built-in types of the ODMG object model, and

each type has a set of prede�ned properties and/or operations.

3.2.2 ODMG Languages

ODMG has, besides the object model, de�ned three languages; namely an

object de�nition language (ODL), an object query language (OQL), and

�nally an object manipulation language (OML). Both ODL and OQL are

separately de�ned languages that supports the ODMG object model. The

OML is solely de�ned through and by the programming language bindings

speci�ed for ODMG7.

ODL is the language used to specify the interfaces of the object types8.

It is programming-language independent and could be used to specify the

database-schema semantics for a vast set of ODMG compliant database sys-

tems.

OQL is, as SQL, a declarative query language, and similar to SQL in

syntax. Where SQL deals with sets as relations, OQL deals with with sets

of objects, but unlike SQL, it extends its primitives to include structures

and lists. Since operations are part of the characteristics of an object type,

operations are allowed to be applied to objects in a query. Of course with

the drawback that the query engine looses control of the execution until

the operation terminates. OQL does not support a update mechanism like

those found in relational database systems and SQL-derivates. ODMG-93

let the native database system language deal with issues concerning database

updates.

Neither the ODL nor the OQL are computational complete, i.e. having

the same ability to express computations as programming languages. But,

the ODMG's OML gives in some sense a computational complete database

model. The OML is de�ned by language bindings to C++ and Smalltalk.

Both for ODL and OQL C++ and Smalltalk mappings exist. Hence, OML is

nothing else than ordinary C++ or Smalltalk expressions and commands, e.g.

conditionals, calculations, and updates, that manipulate structures de�ned

in ODL and/or OQL.

A binding to a particular (programming) language also includes the re-

lationship between the concepts of type and a class in ODMG. The target

language implements the interfaces in the sense that the declarations are

mapped to constructs in the target language. For example ODL operation

signatures are mapped to member function declarations in C++ header �les,

and their corresponding bodies are implemented in C++ source �les.

7The language bindings de�ned in ODMG-93 [15] are for C++ and to some degree for
Smalltalk.

8ODL is also said to be compatible with the OMG's (Object Management Group)

interface de�nition language, IDL.
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3.3 Structure of the Presentation of Models

Following this section we �rst present models within each of the classes

Temporal Extensible Object Models and Temporal Extended Object Mod-

els. Then, at the end of each presentation we schematically compare the

(temporal) characteristics of the models presented. The comparison has the

following structure:

Time Structure: Indicates what the underlying time model is; if it is

linear, branching, or cyclic, and discrete, dense, or continuous; or is it user-

de�ned. For example, linear and discrete is isomorphic to the integers,

branching and dense is isomorphic to some partial order of the relational

numbers.

Time Dimension: Here usually three options exist, if the model supports

either valid time or transaction time, bi- or multi-temporal model, or the

time dimension(s) is (are) user-de�ned.

1. Class Objects : Lists the model constructs with unique system gener-

ated and maintained object identi�ers (OIDs).

Temporal Attribute Values : Indicates what a temporal attribute is de-

noted by. Usually there are two options

Versioning On: Lists the model constructs which is de�ned to be tem-

poral. Usually attributes are the construct de�ned temporal.

Lifespan: To indicate if an object has the ability to be created, destroyed,

and subsequently be reincarnated for a speci�c type. If lifespan is contiguous

an object becomes an instance of the supertype of the type it was an instance

of when removed from its extent. Models which support a generic object type

that all other types are subtypes of usually support a contiguous lifespans,

i.e. an object remains an instance of the generic type until explicitly deleted.

Intent & Extent : Indicates what notions the model support to handle

the relationship between a speci�cation (intent) and the implementation of

the speci�cation (extent), e.g. a type-class dichotomy.

Inclusion & Substitutability semantics : Inclusion semantics means that

if T is a subtype of type T ′, then extent of T constitute a subset of extent of

T ′. Substitutability means that an operation de�ned on an supertype, can

be applied to instances of its subtypes.

Query Language: Indicates if a model has a de�ned query language, and

list the name(s).

3.4 Temporal Extensible Object Models

Wuu and Dayal's extensions to OODAPLEX [98, 99], Goralwalla and Özsu's

extensions to TIGUKAT [43], and Cheng and Gadia's use of OODAPLEX [18]

are, as far as we know, the only representatives of this approach where both

the underlying model and query language are unchanged. Furthermore, all
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their extensions are independent of any speci�c application requirements.

3.4.1 T-OODAPLEX9

T-OODAPLEX is based on the object-oriented datamodel OODAPLEX [32].

OODAPLEX is an extension of the DAPLEX functional data model [82]. It

supports the main characteristics of an object-oriented data model (i.e. ob-

ject identity, encapsulation through abstract data types, inheritance, poly-

morphism, etc.).

The main idea behind the temporal extension of OODAPLEX, [98, 99], is

to show that time-varying information may be modeled by means of the ex-

isting features of the non-temporal data model OODAPLEX. Thereby, Wuu

and Dayal argue that the T-OODAPLEX datamodel is a uniform datamodel

both for temporal and non-temporal information. There is no doubt that

on the conceptual level T-OODAPLEX represents a uniform model both for

temporal and non-temporal data. However, the more representational and

access oriented issues concerning temporal data are by no means met by this

approach. That is, such issues are related to special treatment of temporal

data in query optimization, storage and access mechanisms (e.g. paging,

temporal indexing) etc.

The basic characteristics of T-OODAPLEX relays heavily on the notions

of both the functional language paradigm, parameterized types and user-

de�ned types. The time dimension in T-OODAPLEX is user-de�ned, and,

hence, no OODAPLEX intrinsic time functions are available besides those

de�ned by the designers of a particular T-OODAPLEX datamodel. Time is

introduced by an abstract data type (ADT), point. This type is the generic

supertype of all time types. The rationale for a point type is that by the

notion of an abstract point, then, for example, events in reality and time

instants related to a particular clock or calendar may be treated uniformly

on a conceptual level. Hence, the notion of ordering is still relevant to both

time-varying information, i.e., an ordering that is associated with events,

versions and/or dates. That is, all time types in a particular T-OODAPLEX

model are of type point, and for each point time type, i.e. subtypes of type

point, a set type is de�ned through the parameterized type mechanism of

OODAPLEX. The {point} is the corresponding point set of the type point,

and {point} is the supertype of all point sets de�ned. That is, the prede�ned

set structure type of OODAPLEX could be parameterized with a particular

(user-de�ned) point type, T , and the elements of such a set are all of type

T .

This generality of abstract (time) point objects and point sets separates

the issues of modeling time-varying information from the issues of given

these abstract objects a concrete representation. So, implementors have the

9Named T-OODAPLEX by this author.
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responsibility to de�ne the appropriate time representation of an application,

such as a particular ordering (total vs. partial), discrete vs. dense time,

linear vs. branching time, time point vs. intervals, which time dimension to

support, and the metric information of the time elements supported.

T-OODAPLEX represents more a framework or a tool-set for de�ning

a temporal model rather than being a temporal model it self. From this

framework other designers can work out their own basic and specialized set

of temporal types and operators, including those characteristics inherited

from the framework.

The type point de�nes the operators equality (=) between elements, and
order (<) among elements. These operators may be overridden and rede�ned

by its subtypes and their corresponding implementations, respectively. The

point set type, {point}, de�nes operators such as ∈,=, ∪, ∩, ⊂ on sets. In

the same manner as for type point these operators may be overridden and

rede�ned to meet needs and requirements of more specialized types.

Because of the functional nature of the OODAPLEX model all properties

of an object are speci�ed as functions of its corresponding type. But, there is

a distinction between functions which are of the temporal sort and those of a

property sort. The former sort has always the time dimension as its domain,

the latter sort has the set of OIDs of a particular object type. Functions are

also �rst-class objects with function type denoted as (D→ R), whereD is the

domain type and R is the range type. That is, a function instance is a partial

mapping from extent(D) to extent(R)10. In particular a property function

takes an OID as its input and return a temporal function that maps a time

value into a snapshot value of the property. In this case the property function

type is denoted as (D → (T → R)), where D is its domain and (T → R)

is its range. T is the time domain of the temporal function involved. Each

temporal property of an object has a so-called temporal element associated

with it. A temporal element gives the lifespan of an attribute, i.e. it tells

when this attribute was/is valid in the modeled reality.

type employee is person

function name (e: employee→ n: string)
function salary (e: employee→ f: (t: time → m: money))

T-OODAPLEX allows properties of type temporal, immutable and non-

temporal (static) to be de�ned for an object type, but all properties is de�ned

as functions. This is shown above with the name property as a static property.

The immutable type string is a basic data type, and, hence its representation

is pre-given and ever lasting. Although a string value associated with name

may of course be deleted or overwritten in a particular object, the value

10In the T-OODAPLEX case the function t extent(P )(t) returns the instances of type
P at time t, and the mapping could be constrained to this function if temporal. The

OODAPLEX extent(P ) will return all instances of P at all times. Still, inclusion semantics

is retained in both cases.
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itself is always an element in the domain of type string. The temporal

property salary has its range de�ned as a temporal function which maps a

time element into snapshot values of the property.

The above presentation shows how properties or say attributes values

are made temporal. T-OODAPLEX de�nes timestamps on objects as well.

That is, not only attributes are versions also objects are. The typical way

of doing it is to choose an acyclic graph structure of nodes where each node

represents an object version. In the same way as all time types are subtypes

of type point, so are a version type because versions are also represented

by discrete points, e.g. evolution of a design and releases of a software

product. An object captures a structure of its own versions. This structure

imposes parent-child and sibling relationships among object versions, e.g. in

design applications it would typically be modeled as relationships between

the previous and next design versions or as design alternatives respectively.

The (implicit) time of object versioning gives a branching time, because

alternative object versions may obviously exist simultaneously in time, i.e.

an object version graph imposes a partial order.

3.4.2 T-TIGUKAT11

TIGUKAT is called an �object-base management system� [63], and its data

model has much in common with the functional nature of OODAPLEX. Still,

TIGUKAT has a clear distinction between the notions of type and class. A

type de�nes object characteristics as a behavioral description (interface),

whereas a class is used for the implementation of a type, and management

and maintenance of instances of that type. In principle, a type may be

implemented by several classes. T-TIGUKAT's data model [43] di�ers also

fromT-OODAPLEX as follows: T-TIGUKAT does not di�erentiate between

attribute and object versioning, which are handled in a uniform manner. Ob-

ject histories12 are not only restricted to an object being a member of a class,

it also extends to include an objects membership in any collection during its

lifetime or at some particular time. Temporal (attribute) values were in T-

OODAPLEX denoted by functions, in T-TIGUKAT such values are denoted

by sets of pairs (t, o), where t is given by one of the optional user-de�ned

time-models, and o is the object instance as it is at time t. Because T-

TIGUKAT has user-de�ned time-structure it could be of any combination

of linear or branching with discrete, dense, or continuous. The type system

of abstract data types is de�ned to handle these notions of time, as well as

explicit behavioral types which specify how to handle temporal behavior of

objects. With the strong emphasis on modeling behavior all properties of

objects are modeled as behavior. A particular behavior de�nes, in technical

terms, the semantics of an operation. For example if Mary is an employee

11Named T-TIGUKAT by this author
12In T-TIGUKAT this is named behavior histories and/or lifetime behavior.
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(i.e. in T-TIGUKAT terms an object oi named `Mary' is a member of the

class employee), and salary is de�ned as a temporal behavior of the cor-

responding employee type (i.e. interface), then salary.history(oi) returns

Mary's salary history. The operation history() is inherited from the be-

havior type mentioned above, and because Mary's salary is de�ned to be

temporal. All behavior is de�ned as subtypes of a generic behavioral type.

For temporal behavior a speci�c subtype of behavior is introduced which

speci�es the generic behavior of all temporal types. Functions are used to

implement such behavior. By the type and behavior notions for speci�ca-

tion, and class and function notions for implementing type and behavior,

respectively, all data are encapsulated by TIGUKAT.

In [43] which �rst de�nes the temporal extension of TIGUKAT there

are no clear de�nition if the supported time dimension is only valid time.

Whereas is [63] it is stated that both valid and transaction times may be

supported, and even both may be supported simultaneously as for a bi-

temporal database.

The TIGUKAT's query language, TQL [43, 63], also used for T-TIGUKAT,

is an extension of the basic TIGUKAT object model. That is, queries are

de�ned by means of types and behavior as subtypes of the type query. In this

way queries are regarded as �rst-class objects, and, hence managed by the

system as objects. Without going into details, the query language is based

on an object calculus with an equivalent object algebra. The user language

is said to be similar to that of SQL3.

.

3.4.3 OOTempDBM

Even though Cheng and Gadia [18] also use OODAPLEX as a basis for their

temporal object model, OOTempDBM, they do not use the query facility of

OODAPLEX, but rather an object-based query language called OOTemp-

SQL which is based on TempSQL. TempSQL is in turn a temporal extension

of SQL, and it includes new temporal operators and constructs for access of

temporal data.

The OOTempDBM is an object-based extension of Gadia's homogeneous

relational model [39]. That is, the homogeneity assumption is enforced all

temporal attributes of an object13. Moreover, all types need to have a key (in

the relational sense), but if a key is not explicitly speci�ed the type inherits

the key of its supertype(s). Mainly because of this explicit key restriction

(which is used for some unde�ned kind of relationship between extents related

with types) it seems that they misinterpret both the semantics of being

an instance of some type and that of an instance having a unique object

identi�er (OID) in an object based system. Or they mix conceptual issues

13Homogeneity constraints all temporal attribute values of each state of an object to

have identical timestamps [39].
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with those issues concerning the representation of the data. To be more

speci�c; In general an instance of a type is by de�nition also regarded as

a member of all its supertypes. Let object o be an instance of type T ,

then in OODAPLEX terms o is an element of the extent of type T , i.e.

o ∈ extent(T )14. If T is a subtype of type S, then o ∈ extent(S) as well,

and consequently extent(T ) ⊆ extent(S). However, in OOTempDBM this

is not explicitly de�ned by the model, e.g. by using their example [18,

page N-11], an employee type is a subtype of type person, but an employee

instance named `John' has a di�erent OID than the person instance named

`John'. Both instances model the same real world entity named `John'.

In object databases, because of the subtype relationship, we conceptually

expect that the database object corresponding to the real world entity `John'

is managed only as one logical object with one unique OID. In OOTempDBM

it seems that this conceptual information is managed by several objects and

OIDs, and the application has to keep track at any time instant of whether

`John' is regarded as both a person and an employee. This information

is only implicitly given by the model. The OID mechanism supported by

OOTempDBM is better compared with some (system internal) foreign key

mechanism like that of a relational system.

Like T-OODAPLEX, properties are of type temporal, immutable or non-

temporal (static), and their temporal values are functions.

3.4.4 Models Characteristics and Summary

Table 3.1 lists some of the main characteristics of the three proposals.

T-OODAPLEX [99] and TIGUKAT [43] both explicitly de�ne a set of

basic temporal constraints which should be enforced by the systems, e.g.

a temporal inclusion semantics constraint. In the case of T-OODAPLEX;

Important functions for de�ning the temporal constraint are the functions

of lifespan, extent, and t_extent. A lifespan is telling either when an object

is valid (exists), a type is de�ned, or a database is operative. An extent of a

type tells which objects are instances, and which are members15 of this type.

A t_extent does the same but at a speci�ed time. The constraints de�ne

temporal extensions to the inclusion semantics, substitutability, and refer-

ential integrity, etc. OOTempDBM has only a limited, informal descriptions

of its temporal constraints.

14OODAPLEX does not support a type-class �dichotomy�, where a type is the speci�-

cation of the intent (interface), and a class is the implementation of some type(s) and acts

as a placeholder of all object instances of that class. Hence, a type may be implemented
by several, possibly non-overlapping, classes. In OODAPLEX there is only a one to one

correspondence between a type T and its extent extent(T )
15A member is an instance of a subtype of a type.
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Model

Charact. OODAPLEX OOTempDBM TIGUKAT

Time user linear & user
Structure de�ned discrete de�ned

Time valid &
Dimension arbitrary1 valid transaction

1.class objects objects

objects functions2 functions2 objects3

Temp. attr. timestamp-

value function function value pair

Versioning attributes &

on objects attributes arbitrary4

non- non-

Lifespan contiguous contiguous contiguous

Intent & type & type & type &

Extent extent extent class

Inclusion &

Substitute. yes no(?) yes

Query

Language OODAPLEX OOTempSQL TQL

1Valid or transaction time. Or both denoted by f : (D → (Tv × Tt → R)), a function

type.
2Since function types is supported functions are �rst class citizens.
3Unclear if both functions and collections are 1.class objects
4No distinction is made between attribute and object versioning.

Table 3.1: A brief summary of OODAPLEX, TIGUKAT, and OOTempDBM

Other Temporal Extensible Object Models In this class of tempo-

ral object models we could include for example other models like TMAD

(and MAD) by Käfer & Schöning [52, 51], and VISION by Caruso and

Sciore [13, 14]. Although both TMAD and VISION support temporal fea-

tures and principles of generic nature, we choose to present these proposals

in Section 3.6 because their developments are more application driven.

3.5 Temporal Extended Object Models

This class of temporal object models incorporate time as an integral part of

the basic object model itself. Two main approaches has been proposed; the

�rst is to choose an existing model and extend it with temporal capabilities,

the second is to de�ne a time model and integrate it into a generic object

model that support the most expected notions of an object model. We

present candidates of both alternatives.

Of the former alternative we choose to present the T_Chimera16 model

by Bertino et al. [9, 10], and for the latter we present the TOODM by Rose

16The T_ stands for Temporal.
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and Segev [69].

3.5.1 T_Chimera

The T_Chimera model [9, 10], is an extension of the non-temporal object-

oriented data model Chimera17 [44].

The type system of the T_Chimera model is where the temporal aspects

are introduced. The T_Chimera model inherits all types of the Chimera

model. First; the set of all Chimera types, CT , is the union of all literal

types (basic and structured types) and the set of all user de�ned types,

called Object Types, OT . The set of T_Chimera temporal types, T T , is
simply introduced by letting every T ∈ CT be denoted as temporal(T). Then

the set of all T_Chimera types, T , is the union of CT , T T , structured types
of temporal types (e.g. set-of(T ), where T ∈ T T ), and the singleton set

time type. These are formal prerequisites of the type structures that extend

the model of Chimera, i.e. a structural extension by which the temporal

information is managed and maintained.

The interpretation of the time type is that it is isomorphic to the set

of natural numbers; T IME = {0, 1, 2, ..., now, ...}, where 0 is the relative

beginning of time and now is the current time. Hence, the time structure is

discrete and linear with only the valid time dimension supported. Timestamp

are associated with attributes of objects. Even though both classes and

instances of classes, i.e. objects, have lifespans they are by no means regarded

as timestamps in the conventional sense18. A timestamp is said to be de�ned

only on attributes. In the case of a class, if any of its class attributes19 are

of type temporal(T ), where T ∈ T , then the class is regarded as historical.

Otherwise, the class is static and records no time-varying information of its

own class attributes. Objects are also time-varying, if any of its instance

attributes are of type temporal(T ), where T ∈ T .

On the other hand, lifespans of both classes and objects are de�ned to

be the time when they exist, and capture the temporality of these notions.

T_Chimera also indicates that both classes and objects are constructed (and

possibly destructed) in the sense that a lifespan has always an absolute begin-

ning (and possibly an absolute ending, respectively). A direct consequence

of this is that T_Chimera does not support a reincarnate function. There-

fore, a lifespan of a class or of an object is a set of contiguous time instants.

T_Chimera only supports valid time, and lifespans are used for di�erent

consistency considerations, for example, on attributes. Thus, it is clear that

17The Chimera data model is originally an object-oriented, deductive and active data

model, but features such as triggers and deductive rules are not extended with time in

this version of the T_Chimera model [10].
18(T_)Chimera regards also a class as a �rst class object
19A class attribute is analogous both to a class variable in Smalltalk [42] and a public

static variable in C++ [90], and is shared by all instances and members of its class.



3.5. TEMPORAL EXTENDED OBJECT MODELS 29

a class (or object) lifespan re�ects when a class (or an object) is valid in the

modeled reality.

Furthermore, according to a type hierarchy an object may belong to dif-

ferent classes simultaneously, but it is an instance of only one class at any

one instance t ∈ T IME. This is called the object history of an object. For

example, take a personnel and project database where employee objects asso-

ciated with projects are also de�ned as project member objects. For simplic-

ity, we regard this as a type hierarchy in T_Chimera, where projectMember

is a subtype of the type employee, i.e. conceptually representing employ-

ees who are specialized to work on projects. When an employee becomes a

project member, the corresponding object becomes an instance of the class

projectMember and only a member of its superclass, i.e., the class employee.

If the same person leaves the project(s), but, still, is regarded as an em-

ployee, the corresponding object instance again becomes an instance of type

employee and is logically deleted as an instance of type projectMember. We

say that an object may migrate between classes according to a type hierar-

chy. Hence, the object's set of properties change accordingly to which class it

is an instance of � at any given point in time. This is the temporal informa-

tion that is managed by the notions of class and object in T_Chimera, i.e.

in practice by their internal property slots called history and class-history,

respectively. The slot history manages at all valid times all objects that

are proper elements (i.e. instances) of a class extent and that are members

according to their subtype relationships. On the other hand the slot class-

history manages at all valid times all the class an object is an instance of,

i.e. a proper element of.

The T_Chimera model has three di�erent concepts of modeling time, i.e.

temporal attributes, lifespans of objects and classes, and object histories. All

three are important for the de�nitions ofT_Chimera's notions of consistency.

The notion of lifespan, and consistency based on that notion, is similar to

that of T-OODAPLEX [99], and is used to de�ne constraints .

3.5.2 TOODM

The TOODM model by Rose and Segev [69] is not based of any existing

object model, but rather it incorporates a time model in a generic object

model. A generic object model supports at least a minimal set of notions

that is expected to classify it as an object(-oriented) model. In TOODM

these notions are multiple inheritance, encapsulation, and object identity.

These are said to give rise to primary language constructors such as object,

class, type, method, message, and collection.

TOODM de�nes a basic type lattice (a directed acyclic graph, DAG),

where all types are subtypes of the type OBJECT. The OBJECT type

has three major subtypes; Class, PTypes, and Collections, where subtypes

of these types are typically abstract data types, primitive types (integer,
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boolean, time, ...), and structured types (set, tuple, sequence,...), respectively.

The type lattice is shown in Figure 3.1.

OBJECT

Class PTypes Collections

NV−Class V−Class

Meta−Class

Time
String

Set[T]

Tuple

Sequence[T]

TS[T]

New features (incorporated for handling of time)

Figure 3.1: TOODM's System Type-Lattice � �gure 2 in [69].

User-de�ned types are de�ned as subtypes of the prede�ned types. They

are either de�ned as subclasses of type Class20 (i.e. subtypes of Class or its

subordinate types), subtypes of PTypes, or as subtypes of type Collection.

In the latter case a user-de�ned type could be a parameterized type of types

set(T ), sequence(T ), etc. where T is a legal TOODM type of any kind, or a

tuple of the form 〈a1 : T1, a2 : T2, an : Tn〉 where each ai is a �eld name and

each Ti is its legal TOODM type.

The temporal type extensions of the basic data model is shown within

rectangles of Figure 3.1. The NV-Class and V-Class are used for non-

versional and versional classes, i.e. the type de�nitions are �xed and time-

varying, respectively. The Meta-Class de�nition is included so that di�erent

types (i.e. classes) could be treated as instances of a meta type. One appli-

cation of this Meta-Class notion is to rename types. That is, di�erent users

may assign di�erent names to the same object type at di�erent times.

TOODM introduce a PType called time. All time types are of this type

or of its legal (user-de�ned) subtypes. The time structure is not well de�ned,

but at one point it is stated that �Time in TOODM, is viewed as contin-

uous and independent of events which are de�ned as duration-less happen-

ings...� [69]. By no further explanation of what they mean with `continuous',

still, they claim they adopt the taxonomy of time for valid and transaction

times presented by Snodgrass & Ahn [85]. In [85] (and also in [69]) time

appears in the examples as discrete time points or intervals with a discrete

20TOODM does not clearly distinct between the notions of types and classes. That is,

the term class is used to de�ne abstract data types as well as implementing those types.
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starting time and possible the variable now as the end time. Therefore, we

assume that the time structure is discrete. Further, time can either be abso-

lute like time points or intervals, or it could be relative as for periods with

�xed (or a possible non-�xed) duration. TOODM does not only support

previous and current times (i.e. for historical data), also future time points

is supported (i.e. for predictive data). If data is predictive, then the time

structure could be branching from time now and into future times. If it is

linear, then only one prediction per data object is applicable, which may

make sense in some applications, but not in others.

TOODM supports (at least) three time dimensions; valid time, transac-

tion time, and event time. The latter is de�ned to de�ne the time when an

event occurs. For example, an event time could be the date when a manager

decides to rise the salary of an employee. This date may be di�erent from

the date from which the new salary is valid, which may be a date either

before or after the event time. Timestamps are represented as either time

points or time intervals, where the former seems to be mandatory for event

time.

All temporal information of data objects is managed by de�ning at-

tributes of abstract data types (i.e. classes) as time sequences (TS[T ], where
T is a legal TOODM type). For example a temporal/historical salary at-

tribute (salary-h) of an employee object is de�ned as salary-h: TS[Salary].

The time sequence type, TS[T ], is pre-de�ned and is given by a 6-tuple:

(name, surrogate, history, predicates, order, methods), where name is

the name of the type, surrogate is an identi�cation (i.e. OID), history

is a pair (list of attributes, list of time lines21), predicates is a set of con-

straints imposed on the attributes and time lines de�ned by history, order

de�nes an ordering of the history elements (i.e. identi�es the time line that

de�nes the order), and methods is the set of operations applied on objects of

this type. It is the history component of the time sequence type which gives

rise for management of temporal information. This component is analogous

to a temporal relation de�nition with tuple time stamping.

An instance of a time sequence type, i.e. a time sequence object, is a

triplet (OID, history, corrections). The OID is the identi�cation of the

time sequence object, history and correction components represent each a

set of 3-tuples, where each tuple contain a history OID, an actual (attribute)

value(s), and a temporal element. The history OID is used so that tuples

in the history and correction sets, respectively, may reference each other so

that if the application has changed a (historic) value its new value is found

in the correction set. The temporal element has as its domain the cross

product of time lines supported, i.e. as de�ned by the history component

of the corresponding time sequence type. For example, if valid, transaction,

and event times are de�ned, then (Tv × Tt × Te) de�nes the domain of the

21A time line is the same as a time dimension
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temporal element; where, according to [69], intervals are valid timestamps of

Tv, intervals or instants are transaction timestamps of Tt, and instants are

event timestamps of Te.

The time sequence type (TS[T ]) of TOODM is based on the same con-

cept previously de�ned by Segev and Shoshani [80]. In [80] temporal char-

acteristics of data and operators over them are de�ned, especially for time

sequences. This is adopted and incorporated into TOODM as the basic

notions of the time model.

The TOODM is by no means fully documented in [69], however it claims

to support time-varying type speci�cations as well as time-varying data. In

the former case speci�cations of both attributes (or instance variables as it is

called), messages/methods, and constraints are allowed to change over time.

This is handled by de�ning user-de�ned types as subtypes of class V-Class.

(Time-varying data is explained above.) This means that TOODM supports

both type evolution/versioning22, and data histories and predictions.

3.5.3 Models Characteristics and Summary

Amain di�erence between the twomodels presented above is thatT_Chimera

has a more formal de�nition, but neither of the two has a strict formal de�ni-

tion. Table 3.2 gives a brief overview of the characteristics of the T_Chimera

and TOODM models. In more technical terms TOODM supports, or is at

least believed to support, a broader range of model and language charac-

teristics, such as multiple time dimensions, possible branching future times,

type versioning, a rudimentary constraint language, and a query language.

Although these characteristics are described they are not well de�ned in

the same manner as the characteristics of T_Chimera, that seems more ro-

bust and consistent throughout. Temporal query languages for TOODM are

also developed, three related languages exist; the TOSQL [69] was the �rst

version of the SQL-like language for TOODM, TOOA [70] is the temporal

algebra de�ned, and at last TOOSQL [71] (based on TOOA).

Other Temporal Extended Object Models In this class of models

there exist other proposals which incorporate time as an integral part of the

model. First, Cli�ord and Croker [22]

investigated some intuitively given temporal aspects and properties that

should be supported with the notion of objects23. Their focus is on the

concept of historical objects, i.e. instances of ADTs, where an object iden-

tity plays the central role. Their motivation is based on the fact that both

for Entity-Relationship and relational models user-supplied keys are often

22Type evolution/versioning is not to be interpreted as schema versioning. But, it is
an analogue to it, in the sense that schema version's validness is time dependent, and

timestamped.
23Here this means �rst-class objects, i.e. with a system de�ned OID.
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Model

Charact. T_Chimera TOODM

Time linear & branching(?) &
Structure discrete discrete

Time valid, event
Dimension valid & trans.1

1.class objects

objects objects collections

formally as an element

Temp. attr. an instant- of a time

value function pair sequence

Versioning attributes

attributes types

Lifespan non-

contiguous contiguous2

Intent & type & type &

Extent class class3

Inclusion &

Substitute. yes no

Query no temp. TOSQL, TOOA

Language QL & TOOSQL

1Transaction time always supported, user-de�ned dimensions may be added
2Applies to intervals, meaning that consecutive intervals need not be adjacent
3Not a clear type-class dichotomy.

Table 3.2: A brief summary of T_Chimera and TOODM

time-varying, and, therefore, do not provide unique identi�cations of objects

over time. The (temporal) features of this rudimentary model are; it sup-

ports valid time, attributes are interval timestamped, functions are �rst class

objects with function types, temporal attribute values are encapsulated as

functions, object's lifespan is non-contiguous (i.e. an object may be logi-

cally deleted and subsequently reincarnated). However, they do not discuss

issues related to inclusion semantics and substitutability. In essence this

model seems to be an attempt to make its relational counterpart of N1NF

(non-�rst normal form) relational models object based. See [21, 40, 92] for

examples of N1NF relational models. [21, 40] also de�ne attributes values as

functions similar to the object model above.

Su and Chen's OSAM*/T

model [91] is also an approach of this class, however it is a model that is

designed for knowledge representation. Except for mechanisms for handling

knowledge rules, such systems do not necessary advocate totally di�erent

approaches compared to a more general object data models. OSAM*/T

is the temporal extension of the knowledge representation model OSAM*

(Object-Oriented Semantic Association Model). The most interesting fea-

ture of OSAM*/T is that it limits the notions of time. The only support

of time notions in OSAM*/T are a Start-time and an End-Time. For ex-



34 CHAPTER 3. TIME AND OBJECT DATABASES

ample the time dimension(s) for the management of temporal information

as valid time or event time is strictly de�ned by the application. Because

temporality a�ects only some data and not necessary other data of the same

type, Su and Chen argue that there is no need to explicitly declare the whole

type (and thereby all objects of the type extent) as temporal. For example,

when Mary gets a raise in salary this only a�ects the corresponding object

instance named `Mary' in the database. Instead of having a timestamped

salary attribute associated with `Mary' and all other instances of the type,

the exact semantics of the temporal information (i.e. valid and/or event

times) is expressed by means of knowledge rule(s), which is (are) data in its

(their) own right. Rules are often associated with single object instances24.

In OSAM*/T rules are also used to handle what is best compared to attribute

versioning of other models. On the other hand the transaction time notion

of OSAM*/T is supported through an object timestamping mechanism. A

timestamp is de�ned for object instances only, and the object history, that

manages which classes that an object has appeared in and appears in, is

derived form the individual object instance histories of that object. In a

similar manner OSAM*/T supports association histories. Because object

classes are de�ned by which associations they have with other classes and

that association types are them-self de�ned as classes, the association histo-

ries could also be derived by means of object instance histories. The object

timestamping approach is used to separate both logical and physical cur-

rent data from historical data. OSAM*/T has also its own query language,

OQL/T, which is an temporal extension of the OQL [4] used in OSAM*.

3.6 Temporal Application Tailored Models

In this section we present some models which have been developed to meet re-

quirements of speci�c application domains. The earliest developments with

temporal databases extended the relational model and system. However,

some applications have needs and requirements towards a database system

that are not met by any relational system. Not surprisingly these applica-

tion are typical for disciplines such as design, medicine, software engineering,

o�ce automation, statistics, scienti�c experiments, geography, cartography,

etc. Databases of these disciplines require features to handle complex struc-

tures, version and con�guration management, multiple data types, and/or

di�erent views, scales and resolutions of data. In principle, object databases

are recognized to be better suited for these purposes compared with rela-

tional databases.

Based on these speci�c requirements several temporal object models have

been developed either to model temporal extensions to existing and speci�c

24An object in OSAM*/T can appear in several classes simultaneously, and the notion

of an object instance is used to denote an object's appearance in a particular class.
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features, or using time as a means to solve the problem of the application

required features. Even though, these proposals are speci�c, because of their

contexts or features, they do indeed have general interest. We could divide

these proposals into two main subclasses as mentioned above; �rst, one that

extends existing features with time, and the other that uses time as a means

to solve speci�c needs directly. We do not want to do so, because we feel

that it will be much of a �chicken and egg� classi�cation. Instead, a better

approach is to �nd some common denominators and focus on these, and give

examples from the proposed models found in the literature. We then have

the following subclasses: versioning and change management, time-series

management, and multi-media handling.

Although we could add others subclasses as well, such as real-time, dis-

tributed, active and deductive databases, and object management, we stick

to those subclasses mentioned. In the following the former class,versioning

and change management, is presented into some detail. The latter two

classes, time-series management and multi-media handling, are rather brie�y

presented so that the reader gets acquainted with the strength and poten-

tial of time support in two modern, still limited, areas of advanced database

management systems.

3.6.1 Versioning and Change Management

A vast set of proposals fall into this class [19, 52, 51, 54, 56, 72, 89, 55, 77].

That is, the proposals' main objectives address the needs for version and

con�guration management, and/or schema evolution and versioning.

3.6.1.1 Object Versioning

Object versioning, in the context of databases, provides models and mecha-

nisms for management of di�erent versions of objects, and how these versions

are con�gured and/or related, i.e. how they are associated with each other

into more complex objects. Versions of an object could be de�ned to repre-

sent histories (better known as revisions or change histories25), alternatives

(di�erent properties), variants (distinguishable through parameter/property

values), etc. Katz has given a comprehensive presentation of these feature

in the context of engineering databases [54].

The version types listed above do not necessarily involve time directly.

The only type which directly re�ects time is the history type. For example,

a set of revisions makes up a set of consecutive, ordered states of an object,

e.g. of a design object. That is, the set is ordered either by a successor

relation which has an implicit reference to time (before/after), or each re-

vision is timestamped giving an explicit time ordering relation. A system

25A revision or a change history is in this context analogue to temporal data presented

in the previous sections.
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can provide both techniques because they only represent di�erent views of

the same notion. Käfer and Schöning strictly distinguish in [52] between

the concepts of object versioning and that of object histories. They argue

that versioning is something that re�ects the nature of an application and

is handled by the user. Object versioning implies management of complex

objects which contains branches and alternatives, as they have de�ned for

the MAD model [51]. Object histories on the other hand are the develop-

ments of objects keeping track of the changes made to it26, independent of it

being an other type of version as well. This part is presented in the temporal

extension to the MAD model, TMAD [52]. Hence, an object version could

have its own history. That is, a history of one particular object version may

be regarded as a subset of the object history of the entire object. An object

history of the entire object is in that sense implicitly given by the partial

ordering of its object versions.

Object histories are in the context of Käfer and Schöning the primary

concern of temporal databases which handles timestamps. Still, both object

versioning and object histories manage temporal data. This will be clear in

the following. For example, an engineering (or a design) database has to

supply both the notion of a version and the notion of a history [52]. The

versioning concept as presented both by Katz [54], and by Käfer and Schön-

ing [51], is related to the transaction time dimension. Moreover, several

object versions of the same parent object can be current in the database

at the same time, i.e. simultaneously. They do not supersede each other,

rather, they represent parallels of the same object. This extends the notion

of transaction time as a linear ordering of database states (or events), to a

notion where transaction time is branching and the database is managing

multiple, parallel states of the same objects. The version model by Chou

and Kim [19, 55] de�nes object versions (i.e. siblings) to be in version-of re-

lationships with their generic object (i.e. parent) to which they belong, and

object versions are in derived-from relationships among versions of the same

generic object. The MAD model by Käfer and Schöning [51] also shares the

distinction between a generic object and an object version. A derived-from

relationship de�nes which version is derived from an other version. For ex-

ample, each version in Chou and Kim's model has a transaction timestamp.

This derivation hierarchy is a directed acyclic graph of versions (a version

may be derived from one or more existing versions), and is a partial order

of versions. This structure also represents the transaction time as a par-

tial order because each version is a function of a corresponding transaction

that created it in the database. Versions in a derivation hierarchy represent

discrete points, and therefore it's natural to look at versioning as a type

of (implicit) temporal data management. Revisions and change histories of

26Object histories here, most presumingly, representing valid-times. Even though, they

don't explicitly state that it is valid time.
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objects are orthogonal to these graph structures.

The VISION model by Sciore [76] applies an other approach. (This model

is an extension and revision of the VISION model by Caruso and Sciore [13].)

The model uses annotations which manage the di�erent aspects of versioning,

and it was an attempt to de�ne a uniform treatment of versions and temporal

data. Three types of versions are de�ned. Historical versions are the same

as valid time data in a temporal database. Revised versions are the same

as revisions mentioned above, and correspond to transaction time data in a

temporal database. Finally, alternatives are analogous to an object version

graph. The three types of annotations are introduced by three prede�ned an-

notation classes, i.e. HistoryFn, RevisionFn, and AlternativeFn, respectively.

Each one of these classes have their own set of properties and methods. For

example AlternativeFn has method newAlternativeFn for de�ning new alter-

native versions. VISION supports only attribute versioning and therefore

does not have a strict datamodel distinction between a generic type and a

version type. For example, say a salary history attribute of an employee type

is de�ned as salary-h: HistoryFn(RevisionFn(salary)). Here salary is, in

VISION terms, an historical attribute represented as a set of (date, value)
pairs. But, for each such pair also a set of revisions exist making up the

database history of the salary-h attribute. Any combination of these three

classes may be used to de�ne versions, e.g. if we enter the terms RevisionFn

and HistoryFn in the opposite order, then the salary-h de�nes the attribute

as a collection of database updates with each update having a collection of

valid-time data. Though, the semantics of these de�nitions remain the same.

The version types listed at the beginning of this section are all orthogonal

concepts. For example, the time dependent type, revision, can be used to

model revisions of variants, alternatives, and even of con�gurations. Thus,

all of the other version types may be de�ned to have revisions as well. Be-

ware, in fact, that the above notions of transaction time introduce a di�er-

entiation between what may be called (timestamped) database objects and

(timestamped) user-de�ned objects. That is, referring to the di�erentiating

made by Käfer and Schöning, an object version if something di�erent from

that of a revised version in that the former may be identi�ed by a version

number or name, and the latter is solely identi�ed by its timestamp. Fur-

thermore, object versioning typically de�ne a partial ordering of versions

whereas at least revisions, based on timestamping alone, de�ne a total or-

dering. This is why object version graphs do exhibit an additional notion of

predecessor/successor, e.g. a derived-from relationship, to handle the partial

ordering. One may argue that an object version graph, because it is user-

de�ned and -controlled, is better characterized as re�ecting the notion of

valid time. It possibly may, but the semantics of transaction time still holds

because the meaning of being a version is based on the fact that a version

when �rst created does not change. If it changes its attributes it, then, only

gets a new revision. Its version identi�cation should remain the same, and
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will always re�ect a particular node in the graph. The semantics of valid

time do not �t this scenario because valid time may promote both retro- as

well as pro-active changes.

3.6.1.2 Schema Versioning

So far, the notions of both versions and revisions have only concerned the

database extent, i.e. data instances. Schema evolution is an other area

of concern, i.e. revisions to a schema gives several consecutive versions of

that schema. Schema evolution in traditional databases usually denotes a

situation where a new or changed schema overwrites the schema in oper-

ation, possibly, because of new needs of the application. See for example

ORION [56] for this approach. By means of a temporal database (with ex-

plicit or implicit reference to time) older data and also older schemata need

not to be discarded. In such a context we de�ne schema versioning to be

a technique that support schema evolution � the revision history is main-

tained. The di�erence between the old type of schema evolution and that of

temporal databases is that the former deals only with one schema, whereas

the latter logically deals with multiple schemata27.

Schema evolution is associated with transaction time, and, hence only

one schema version is in e�ect at any referenced point in time. That is,

every new schema version only supersedes its previous versions at the point

in time it comes into e�ect. However, if we query the database with a

reference time (e.g. what was Mary's salary as best known at time t) or

rollback the database to a previous state the schema version in e�ect at that

particular time or state will be used. Some object models support schema

versioning, such as MATISSE [1], and POSTGRES [72, 89]. A schema may

be regarded as an object and each new version of the schema is a revision

of the previous schema version, and a total order is imposed by transaction

times. For instance, MATISSE does this by explicitly timestamping each

schema version.

The above schema evolution strategy is based on a total order of versions.

A proposed model by Kim and Chou [55] support an other notion of schema

versioning. That is, each new version is created from a logical schema (the

main or parent schema). Such a version could for example represent a user's

view of the data. This notion of schema versioning is orthogonal to that of

schema evolution above, and could be regarded as an analogue to alternatives

mentioned for object versioning. Then, if both schema evolution and the

notion of schema versioning as de�ned by Kim and Chou [55] are supported,

the schema change management system supports a branching transaction

time. That is, each schema version may have its own schema evolution (i.e a

27Historically there has been a clear distinction between schema versioning and schema

evolution, but in the context of temporal databases this distinction seems rather odd.
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set of revisions) without each time having to create a new version from the

main or parent logical schema.

Besides the transaction-time schema versioning also valid-time based

schema versioning is possible (see below). A valid-time schema versioning is

de�ned to support both retro-active and pro-active schema changes, which is

not possible based solely on transaction time versioning as described above.

An other e�ect of valid-time versioning is that a change may span several

transaction ordered versions. Thus, queries with reference time now (i.e.

as best known now) may access historic data, but the schema version in

e�ect has all known retro-active updates included. Queries with a past refer-

ence time (i.e. as best known then), similar to the transaction time-oriented

schema versioning approach, have access to previous versions of the schema

as they were at the referenced time. An open question remains, though; does

a single notion of reference time (as in the example above) apply to both

intentional and extensional data in a setting where bi-temporal schema ver-

sioning is supported? For example, is the following a meaningful query: ��nd

all employees who worked on projects during 1995, as best known now, but

as speci�ed at that time.�? That is, are the reference times, `as best known

now' and `as speci�ed at that time', applicable both to the data extent and

the data intent? It is a plausible situation that the former of the reference

times refers to the database extent, and the latter refers to the database

intent. Then, this query will use the most up to date data, but possibly it

refers a previous schema with a data structure that is not necessary equiva-

lent to the structure the actual data is stored under. How such relationships

between intent and extent reference times should be coped with is a future

research issue. However, Cli�ord and Isakowitz [28] have studied a single

notion of reference time. That is, informally, a reference time is to view a

database at a particular state. We believe, however, that there are situations

where reference time should distinguish between the intent and the extent

of a database, and the interaction between time dimensions may vary from

query to query of extent and intent reference times. In the case of Cli�ord

and Isakowitz's reference time, these issues were never raised because they

only considered the extent of a database.

The model by De Castro et al. [33] de�nes a bi-temporal schema ver-

sioning for the relational model, and is, to our knowledge, the only explicit

example supporting valid-time schema versioning. No object models have

explicitly de�ned a valid-time schema versioning approach. TOODM is with

its type versioning model [69] close to this, but the model does not explicitly

de�ne what is meant and what is the consequences of the (bi-)temporal type

de�nitions besides stating that object properties de�nitions may change over

time. Moreover, schema versioning in TOODM is not related to any known

schema evolution and versioning strategies.
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3.6.1.3 Summary of Object and Schema versioning

Table 3.3 gives a brief overview of some of the models which support version-

ing. The �rst column lists the Models. The second column names (and indi-

cates) the type of object versioning supported. The third column indicates

how each model incorporates an explicit or implicit temporal dimension. The

fourth and �fth columns do the same for schema versioning as columns two

and three do for object versioning. Entries with `n/a` and `�' mean not appli-

cable and not relevant, respectively. Entries having a `(?)' indicate that the

version mechanism or model is not well de�ned in the literature referenced.

Object Ver- Temporal Schema Ver- Temporal

Name sioning by Approach sioning by Approach

MATISSE object timestamp & schema is timestamp

graph version ID an object linear

POSTGRES object time-varying timestamp

graph timestamp catalogues(?) linear

ORION version-

derivation version schema

hierarchy ID evolution1 none

TOODM type bi-temp.
n/a � versioning timestamps

T-OODAPLEX object

graph arbitrary n/a �

version- derived-
(T)MAD derivation from

graph relationsh. n/a �

VISION naming &

annotation priorities n/a �

TIGUKAT version bi-temp. version bi-temp.

slices(?) timestamps(?) slices(?) timestamps(?)

multi-

EXTRA-V dimensional

attributes attributes n/a �

1The new schema overwrites the old schema

Table 3.3: Object and Schema Versioning Approaches

Only TOODM and (possibly) TIGUKAT of the models presented in Ta-

ble 3.3 support some aspects of valid-time schema versioning. We see that

some of the previously presented proposals also support various kinds of

change management. All the above mentioned models do support valid-time

and/or transaction time for handling historical (and predictive) data and

revisions in temporal databases, respectively.

Traditionally, historical versions, revised versions, and object versioning

(as in Table 3.3) are regarded as di�erent concepts. However, Sciore tries

by his EXTRA-V model [77] to unify these concepts on a conceptual level28.

28The results presented with the EXTRA-V model is based on the VISION model [76,
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He refers to three areas where versioning has been a prominent database

research issue, namely within CAD, CASE, and temporal databases (called

historical databases by Sciore). He then argue that each area has taken

di�erent approaches often tailored by di�erent needs:

Temporal databases and versioning, as presented in Section 3.4 and Sec-

tion 3.5, deal with data as a function of time, recording the changes in the

real world and presumingly when these changes are re�ected in the database.

Database research within CAD (Computer Aided Design) also deals with

versions (revisions and alternatives). The focus has been on general mod-

els and having a system level understanding of versioning. Therefore, the

aspects of version management and mechanisms for long transactions have

had special attention. Less attention has been put on aspects of data models

and declarative access to versions.

The main emphasis on database research within CASE (Computer Aided

Software Engineering) is put on version con�guration of software modules.

The main application has been software maintenance, such as managing

bug-�xes and new releases.

These three areas of research have been, according to Sciore [77], focus-

ing on versioning on di�erent abstraction levels and/or tailored by di�erent

application needs.

The main objective of EXTRA-V is to conceptually capture the seman-

tics of that an entity is being versioned. Sciore claims that this conceptual

information is lost by the generic type and version type models, which in-

troduce associations among generic objects and their versions. And, hence,

that an entity is versioned is conceptually handled by the application. For

example, notions and operations like insert/new, update, and delete versions

are not part of the model and its language(s).

The approach taken by EXTRA-V is to distinguish an object's versioned

attributes and the non-versioned attributes. All versioned attributes of an

object type are grouped under a keyword versioned. They represent the

versioning of an object. Every versioned attribute can be multi-dimensional

and representing a multi-dimensional value. The versioning dimensions are

arbitrary and user de�ned. Any combinations of temporal and versioning

dimensions are possible. The EXTRA-V model seems to unify several of the

features found in the three areas of version management.

3.6.2 Time Series Management

Time series is an important data type in many scienti�c- and/or statistical-

based applications, but also in a vast set of other domains. This has caused

a growing interest for explicit time series models in data management and

databases, typically deployed in economics, �nance, assurance, experimental

75]. The EXTRA-V is an versioning extension of the EXTRA model by Carey et al. [12].
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and empirical sciences.

This section presents principles and de�nitions concerning time series, as

well as proposed models for time series support in databases.

3.6.2.1 Principles and De�nitions

Basically, a time series is a data types which de�nes a set of (time, value)
pairs29, where an order may be imposed by the time parameter. However,

a time series could be more specialized and captures for example �avor of

periodicity, cyclic behavior or properties of a phenomenon, and in�nite (i.e.

ever growing) sequences. Even di�erent time granularities of time series

come into consideration when di�erent time series are integrated or joined,

and/or represent a multi-variate nature.

Tuzhilin and Cli�ord [95] treat periodicity (related to events) in three

di�erent ways, meaning that, if a time series is periodic30, then events occur

either as periods or repeated cycles, at regular intervals, or now and then;

intermittent.

In the �rst case events in a time series occur equidistantly, i.e. any two

adjacent events are separated by the same distant in time. For example, a

tra�c light shifts from red to green after one minute, and from green to red

the next minute, and so forth.

In the second case events in a time series occur within an interval, i.e.

any two adjacent events are separated by a minimum and up to a maximum

distant in time. For example, a tra�c light shifts regularly between every

thirty second and every second minute during a day. That is, during o�ce

hours it shifts every minute, during rush hours it shifts every second minute,

and the rest of the day it shifts every thirty second.

In the last case events in a time series occur �intermittently�, i.e. any two

adjacent events are separated by an unknown distant in time. For example,

any tra�c light breaks down or does not function correctly from time to

time, but when such unfortunate situations occur are unknown in advance,

still, situations of this kind are believed to occur sometime in the future. In

a sense we may say that such situations occur periodically (e.g. on average

�ve times a year), but initially they are considered to be irregular events,

i.e., we don't know when to expect them, only that they will occur.

Tuzhilin and Cli�ord have formalised the �rst two notions of periodic

data [95], which they coined strong periodicity and near periodicity, respec-

tively. In the same paper they also showed various strategies for adding

periodicity to the TSQL2 standard [88].

29The parameter value could be of a simple literal type, a structured literal type, or an
object type.

30Tuzhilin and Cli�ord used the de�nition of `periodic' found in American Heritage

Dictionary [6].
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A calendar is the base for the unit of periodicity. There are di�erent

calendars, such as business calendars (with 5 days per week), Gregorian, or

Islamic, etc. A calendar capture the notions of both periodicity and in�nite

sequences. For example, a new week begins after every seventh day, and

the number of years is in�nitely countable, respectively. On the other hand

non-periodic time series could be represented by an ordinal calendar � being

isomorphic to the natural numbers [74].

Managing temporal data with various granularity is a data integration

problem that is not only restricted to integrating data from di�erent data

sources. Even data representing the same real world entity may have dif-

ferent time granularities among its de�ned properties. Wang et al. [96] dis-

cuss and formalize these issues in context of a temporal relational model by

means of de�ning new notions of temporal functional dependencies and tem-

poral normalization. They also illustrate the problem with an example of an

ACCOUNT entity type which speci�es transactions, balance, accumulated

interest, and time information of each account. The temporal issue arise

because transactions and balance values are recorded with a granularity of

seconds, whereas accumulated interest values are recorded or updated only

every twenty-four hour. Even though object databases are not normalized

in the same sense as that of relational databases similar issues concerning

treatment of multivariate time series in object databases should be stressed.

ACCOUNT data could for instance easily be modeled as an object type,

capturing multivariate time series.

3.6.2.2 Time Series Models and Systems

A few time series models have been proposed [36, 34, 74, 78, 81]. There also

exist some commercial and non-commercial systems that explicitly manage

time series, such as Illustra [47] and FAME [38] of the �rst category, and

of the second category we have CALANDA [35] and a POSTGRES-based

prototype [17].

We could characterize the above proposed models and systems into two

main categories; one category representing pure time series management

systems (TSSM). The other category represents time series as an extended

or extensible feature of more general purpose temporal data management

systems.

Of the �rst category we brie�y present the CALANDA system [35] and

model [36, 34, 74] developed by a group at Union Bank of Switzerland. The

non-object based system FAME [38], by FAME Software Corporation, also

falls into this category.

The idea behind the CALANDA model and system is based on the ex-

perience that temporal data models (and databases) do not capture the

inherited requirements of time series management, including both structural
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and functional aspects. This is most prominently stated in [74]31, where they

give a comparison with both FAME and systems of the other category.

CALANDA is an object-oriented system, de�ned as a special purpose

time series management. Its main features and modeling constructs are

some prede�ned classes for modeling times series and groups of time series.

A time series could be of a simple or multi-variate event type, i.e. an event

may record one or multiple attributes, respectively. An attribute are either

simple valued or of an array type. A group is an aggregation of time series

of the same type or of di�erent types. All time series data, groups included,

may de�ne header data which is common to the whole time series. The

time handling, seen from the users point of view, is based on calendars and

operations on calendars. They stress that CALANDA is tailored towards

database capabilities, but CALANDA also o�ers a manipulation language

that is said to be computational complete. Thus, an application required

functionality could, in principle, be tightly integrated with a CALANDA

database by a database designer.

The other category of time series includes models de�ned by Segev and

Chandra [78], and by Segev and Shoshani [81], both based on the notions

of time sequences found in the TOODM model presented in Section 3.5.2.

Systems include the above mentioned POSTGRES-based prototype [17] and

Illustra [47]. We brie�y present the Illustra system.

Illustra time series is based on a prede�ned DataBlade module 32, which

treats time series as �rst class objects known to the system. This mod-

ule includes speci�c data types and constructors for managing time series

(only regular time series at the moment), including calendars, and operations

(analysis, aggregations, updating, etc.). One of the advantages of Illustra,

compared for instance to CALANDA and because of its general purpose na-

ture, is that time series could easily be integrated with other non-time series

DataBlade data.

3.6.3 Multi-Media Handling

Multi-media data models extends the set of basic data types we are ac-

quainted with in databases and programming languages, such as integer,

�oat, character, and boolean. Typically a multi-media data model is char-

acterized by basic data types such as text, image, graphic, animation, video,

and audio. Some relational database systems have to some degree incorpo-

rated primitive and simple structures for multi-media data handling, better

31They argue that time series has been �a neglected issue in temporal database research�,

based on experiences gained in domains such as �nance and banking. Hence, it could be

argued that, at least some of, the requirements encountered could be restricted to those
domains.

32In general DataBlade modules in Illustra are user extensions to capture requirements

of specialized domains.
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known as binary large objects, BLOBs33. That is, such data types are de-

�ned as an attribute of a relation, like the approach taken by for example

Sybase and Oracle.

In an object-oriented setting multi-media objects are characterized by

de�ning properties and operations that handle such objects. The idea is to

either support such types in a similar manner as the support of other basic

data types, or as intrinsic object types, where instances represents �rst class

objects in their own right.

The needs for multi-media data support are found in most modern orga-

nizations and businesses. These application include design systems, publish-

ing and media systems, o�ce-automation,medical record and image systems,

tourist information kiosks, and so forth.

3.6.3.1 Temporal Support

The temporal support for multi-media databases covers two aspects of man-

agement of such data. One captures the temporal structural aspects, such

as histories, revisions, and versioning as presented in the previous sections.

The former approach have been presented by for example Adiba [2], Adiba

and Quang [3], and by Chu et al. [20].

The other aspect of time and multi-media is speci�c to continuous multi-

media types, such as audio, video, and animation. For example, it is impor-

tant to synchronize audio and video both as database output, and to de�ne

such relationships among the database objects. Related to synchronization

is the presentation of a certain amount of output by a certain speed that is

de�ned by a temporal quality of service, QoS [41, 65]. The notions of QoS

in context of databases have been accentuated because of multi-media data.

In a similar way the introduction of multi-media systems also changed the

notions of a document, and does not represent a static kind of entity. Thus,

(parts of) continuous data are integrated into or with the document concept,

and such data may be constrained according to temporal relationships [37].

For example, a video stream could be selected by a temporal partition of

another video source, or an (transparent) image could act as an overlay to a

video sequence or animation for a de�ned set of time instants.

3.6.3.2 A Video Database

The proposal by Hjelsvold et al. [45, 46] deal with an temporal foundation of,

and searching and browsing shared video databases. The interesting features

of this approach is that it is structuring video data based on the model of �lm

theory. Basically, in such a model a �lm is constructed or combined by several

�lm pieces, where the di�erent combinations de�ne di�erent contexts, and

33The semantics of a BLOB, i.e. what multi-media data type it contains, the internal

bit structure etc, are most often interpreted by the application.
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where each context describe a story or part of a story, giving it a meaning.

Their application is a video archive for handling television news program,

e.g. enabling producers and journalists an easy access to video pieces (e.g.

through querying or browsing the video archive), use of video pieces in new

contexts, and store new contexts as an object relating existing and/or new

video pieces.

The structure of the generalized archive covers both logical and physical

aspects of video data. At the most abstract level is the video document,

that is a logical video stream. Each document consists of components, video

context indexes or annotations, that de�ne the relationship between the real

world �story� and its video data. An annotation identi�es stream intervals of

contiguous sequences of media streams. A media stream is a generalization

of stored media segments or video streams. A stored media segment is the

physical piece of data stored and generated due to video recording. The

stream structure of video could easily be generalized to audio and, possibly,

other continuous media.

An integration of (simultaneous) di�erent continuous media streams could

easily be achieved by specializing the notion of annotation, for the purpose

of, for example, combining audio and video that originally are not based on

the same recording. By means of this structure an specialized annotation

would logically de�ne, and possibly encapsulate, Allen-like temporal rela-

tionships (e.g. during, overlaps, before, etc. [5]) between a video stream and

an audio stream, but they would represent di�erent media segments. How-

ever, such structures are not explicitly de�ned for annotations in the present

model [45, 46].

The above presented video database does not directly introduce the no-

tions of valid- and transaction-times as de�ned by temporal databases. In

contrast, Eini's work does exactly that, where both valid- and transaction-

time dimensions, as well as a novel play-time dimension, are introduced [37].

The former two are used in the conventional sense, but, now also in manag-

ing multi-media data types. The latter, play-time, is de�ned to sequentially

relate units of media data to each other in a temporal order. For example,

video frame i comes before video frame i+1, and audio sample j comes be-

fore audio sample j+1. The play-time dimension is discrete, and the smallest

unit of time of one particular de�ned play-time dimension is dependent on

the data type for which it is de�ned. For example, the Logical Data Unit

(LDU), a multi-media concept, denotes the smallest unit of data managed,

and the PAL standard recommend that video is played with 25 frames per

second. That is, a duration of a video LDU is 1
25 of a second and the chronon

of a play-time dimension for a PAL video is, therefore, its LDU duration.



Chapter 4

Summary

The previous sections surveyed three major approaches to incorporate time

into an object model environment. The three approaches are, informally,

classi�ed into a temporal extensible object model, a temporal extended ob-

ject model, and an application-oriented temporal object model, respectively.

Temporal 
Extension

      Basic
Object model 

DB

Temporal 
Extension

DB DB

  Basic Object model
(w/ temporal extensions) 

....
Time Series
Management

Verison 
Management

a) Extensible Object Model b) Extended Object Model c) Application−oriented
        Object Model  

      Basic
Object model 

....

Figure 4.1: The three classes of temporal object models

This classi�cation is illustrated in Figure 4.1, and also shows how it may

have an impact on the database system architectures. In Figure 4.1 a),

which is typically represented by T-OODAPLEX, no database system inter-

nal changes are made. The temporal object model is given by an additional

layer on top of the basic object model. Hence, data are treated internally as

non-temporal data only.

The second class extends the notions of a basic object model with tempo-

ral capabilities. That is, it introduces new de�nitions, concepts, and language

constructs that are an integral part of the model itself. It will also in�uence

the system internal manipulation and access of data in the database. This

is shown in Figure 4.1 b).

The last class is de�ned to meet speci�c needs of di�erent application do-

mains, such as time series management in statistical and scienti�c databases,

47
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and version/con�guration management in design databases. Although these

systems may have extended the model kernel with notions of time series and

versions, respectively, the underlying basic model and its eventually tempo-

ral extensions may in principle be based on either of the former two classes.

This is illustrated in Figure 4.1 c).

Even though the three classes impose di�erences, such as database in-

ternal awareness of temporal semantics (e.g. constraints, value domains),

temporal query language support, emphasis on temporal support, etcetera,

they also share several similar principles. The most predominant are those

provided by the structural and behavioral aspects of the object-oriented

paradigm. Hence, object-orientation enables a designer to extend a database

model to nearly include whatever structure and behavior required. In the

(temporal) relational world extensions to a model has to be realized as part

of an application. In object-oriented systems, missing features could be de-

�ned by structural and behavioral extension by means such as user de�ned

object types. Extensibility is an inherited property of the object-oriented

paradigm. In that respect an object-oriented system is more �exible and

capture implicitly the modeling feature of all conceptual temporal require-

ments.
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