
Weak k-majorization and polyhedra

Geir Dahl �

Fran�cois Margoty

October, 1995

Abstract

For integers k and n with k � n a vector x 2 R
n is said to be

weakly k-majorized by a vector q 2 R
k if the sum of the r largest

components of x does not exceed the sum of the r largest compo-

nents of q, for r = 1; : : : ; k. For a given q the set of vectors weakly

k-majorized by q de�nes a polyhedron P (q; k). We determine the

vertices of both P (q; k) and its integer hull Q(q; k). Furthermore a

complete and nonredundant linear description of Q(q; k) is given.

Keywords: Majorization; polyhedra.

1 Introduction

In many branches of mathematics and statistics majorization plays a role in

establishing inequalities between e.g., eigenvalues, singular values etc. The

basic notion of majorization reects to what extent components of vectors
are \spread out". For p; q 2 Rn one says that p is weakly sub-majorized by
q if
P

r

j=1
p[j] �

P
r

j=1
q[j] for r = 1; : : : ; n. Here p[j] denotes the j'th largest

component of p. If also
P

n

j=1
pj =

P
n

j=1
qj holds, p is majorized by q and

we write p � q. Several equivalent conditions for (weak sub-) majorization
are known (see [7]). For instance, using the Birkho�-von Neumann theorem,

one can show that p � q i� there is a doubly stochastic matrix M 2 Rn;n

(i.e. M has nonnegative elements and all row and column sums are 1) with

p = Mq. As a consequence, p � q if and only if p lies in the convex hull
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of the set of vectors obtained by permuting the components of q. A similar

characterization holds for weak submajorization. An extensive treatment of

the theory of majorization as well as its applications in e.g. matrix theory,

numerical analysis and statistics is given in the book by Marshall and Olkin

[7]. For generalizations of majorization within a measure theoretical frame-

work as well as statistical interpretations, see the extensive treatment in [11].

In [1] approximate majorization is studied.

A function � : Rn ! R that preserves the ordering given by majorization

is called Schur-convex, thus �(x) � �(q) whenever x � q. Therefore q maxi-

mizes �(x) over the set x � q. A general and important technique for �nding

inequalities in various �elds is to discover some underlying majorization com-

bined with a suitable Schur-convex function. A simple inequality obtained

in this way, which is useful in this work, is the rearrangement inequality due

to Hardy, Littlewood and Polya, see [6], [7]. Let a1; : : : ; an and b1; : : : ; bn be
real numbers. Then we have:

nX
i=1

a[i]b[n�i+1] �

nX
i=1

aibi �

nX
i=1

a[i]b[i]: (1)

In this paper we study weak k-majorization in which we relax the partial
sum constraints of weak sub-majorization for r > k. The main goal is to
investigate certain polyhedra associated with this notion. Several properties
of these polyhedra are established. We should point out that the main re-

sults of this work were presented in [2], but using a di�erent approach. This
paper is organized as follows. In Section 2 we introduce weak k-majorization
and describe some of its basic properties. The vertices of di�erent majoriza-

tion polyhedra are studied in Section 3 while in the next section we study
the convex hull of all the integral vectors satisfying a weak k-majorization

constraint.
Notation. R, Z and Q denote the set of real, integral and rational

numbers, respectively. For 1 � a � b � n and v in Rn, we de�ne va:b :=P
b

j=a
vj and �va:b := va:b=(b � a+ 1). Note that �va:b is simply the average of

the components va; : : : ; vb. For each positive integer t we letNt := f1; : : : ; tg,
and for x 2 Rn, x[j] is the j'th largest component of x. When S � Nn we

let jSj denote the cardinality of S, and if x 2 Rn we de�ne x(S) :=
P

j2S
xj.

For concepts and results concerning polyhedra and linear inequalities, see [8]
or [10]. When � is a permutation on Nn (i.e., a bijection) and a 2 Rn we call

the vector (a�(1); : : : ; a�(n)) a permutation of a. A set A � Rn is symmetric if
it contains each permutation of its vectors. We let ei 2 Rn be the i'th unit

(coordinate) vector in Rn, i.e., the i'th component of ei is 1 and all other

components are 0. We also let [a; b] := fx 2 R j a � x � bg.
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2 Weak k-majorization and optimization

We introduce and study basic properties of weak k-majorization. Associated

optimization problems and polyhedra are also introduced.

Let, throughout, k and n be two given integers such that k � n, and let

the majorant q 2 R
k be a given vector satisfying q1 � : : : � qk. We say

that x 2 Rn is weakly k-majorized by q and write p �k q if the following

conditions hold:

P
r

j=1
x[j] �

P
r

j=1
q[j] for all r 2 Nk: (2)

Note that x �k q i� some permutation of x is weakly k-majorized by some

permutation of q. For k = n the notion �k coincides with weak sub-

majorization. Also, weak k-majorization corresponds to weak sub-majorization
applied to the k largest components of the vectors. The last observation

means that equivalent conditions for weak k-majorization may be adopted
from that of weak sub-majorization and expressed in terms of the subvectors
consisting of the k largest components. One of the results of the present
work is to �nd another characterization of k-majorization expressed in terms
of the full vector x.

A useful concept is that of an L-function introduced next. For z 2 Rn

we de�ne Lz : [0; 1] ! R by (i) Lz(r=k) =
P

r

j=1 z[j] for r = 0; : : : ; k, and
(ii) Lz is linear on each subinterval [r=k; (r + 1)=k], for r = 0; : : : ; k � 1. We
call Lz the L-function associated with z. This function is piecewise linear,
continuous and concave, and it satis�es Lz(0) = 0, Lz(1) =

P
k

j=1
z[j] (the

dependency on k is suppressed in the notation. Any function of the form
Lz for some z is called an L-function. A simple, but useful, fact is that a
nonincreasing vector x 2 Rn satis�es x �k q if and only if Lx � Lq (with

componentwise ordering), i.e. the graph of Lx lies below the graph of Lq.
Optimization problems may be of interest in connection with weak k-

majorization. Let c 2 Rn be a nonnegative objective function and consider
the problem

max fcTx j x �k qg: (3)

Here we may interpret cj as the \expected value" or pro�t associated with a

project j � n. When the variable xj represent the investment in project j,
the problem (3) is to maximize the total pro�t of the investments under the

requirement that investments are \suitably spread out" (which reduces the
overall risk).

Let P (q; k) := fx 2 Rn j x �k qg be the set of feasible set of (3). Note
that x �k q if and only if x(S) � q(Nr) for each subset S of Nn with

jSj = r � k because the maximum value of x(S) taken over all such subsets
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is
P

r

j=1
x[j] (confer the rearrangement inequality (1)). Thus the set P (q; k)

is a polyhedron,

P (q; k) = fx 2 Rn j x(S) � q(Nr) for all S � Nn with r = jSj � kg: (4)

The polyhedron P (q; k), called a majorization polyhedron, is unbounded, its

characteristic cone is�Rn and it is pointed, i.e., its minimal faces are vertices.

Furthermore, P (q; k) is symmetric. Note also that a nonincreasing vector v

in Rn is in P (q; k) if and only if v1:j � q1:j for all 1 � j � k.

Each n-majorization polyhedron may be viewed as a polymatroid (see e.g.

[4], [5]) associated with the set function f(S) =
P

r

j=1
qj for each S � Nn

where r := jSj. (Trivially, this function is monotone and submodular.) Thus

(see [3]) (3) may be solved by the greedy algorithm and the optimal solution

(when c1 � : : : � cn � 0) is x = q. This result also follows easily from

(1). Some further properties in the case k = n are discussed in [2]. For
k < n, however, P (q; k) may not be a polymatroid and therefore the greedy
solution which is xj = qj for j � k and xj = qk for j > k may not be

optimal in (3). For instance, with n = 3, k = 2, q = (2; 1) and c = (1; 1; 1)
the greedy algorithm produces the nonoptimal solution (2; 1; 1) while the
optimal solution is (3=2; 3=2; 3=2). Therefore it is clear that there are other
vertices of P (q; k) than the permutations of q. In the next section all the
remaining vertices are described.

We also consider the integer linear programming problem coresponding
to (3), or equivalently, the problem of maximizing cTx over the integer hull
of P (q; k) which is the following polyhedron

Q(q; k) = conv(fx 2 Rn j x �k q; x is integralg): (5)

These optimization problems are motivated by applications concerning e.g.

the distribution of indivisible \units" to locations or projects where it may

be natural to impose a majorization constraint to assure a certain level of
diversi�cation.

3 Vertices of majorization polyhedra

We study the inner description of the polyhedra P (q; k) and Q(q; k).
Let � 2 [qk; �q1:k] and de�ne the numbers s(�) = maxf0 � s < k j �qs+1:k �

�g and �(�) = qs(�)+1:k�(k�s(�)�1)�. We also de�ne the vector x(�) 2 Rn

by
x(�) = (q1; : : : ; qs(�);�(�); �; : : : ; �): (6)

We will show that each extreme point of P (q; k) or Q(q; k) is a permu-
tation of x(�) for particular values of �. Some useful properties of x(�) are
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contained in the following lemma. They imply in particular that x(�) is in

P (q; k).

Lemma 3.1 For each � 2 [qk; �q1:k] we have that

(i) x(�)1:k = q1:k,

(ii) �(�) � �,

(iii) qs(�)+1 � �(�) with equality if and only if s(�) = k � 1, and

(iv) x(�) is nonincreasing and x(�) �k q.

Proof. Property (i) holds since the de�nition yields directly x(�)s(�)+1:k =

qs(�)+1:k. Since �qs(�)+1:k � � implies qs(�)+1:k � (k� s(�))�, (ii) is true. Note

that the de�nition of s(�) implies that

qt:k < (k � t+ 1)� for all s(�) + 2 � t � k: (7)

If s(�) = k � 1 then �(�) = qk and (iii) holds. Otherwise, �(�) = qs(�)+1 +

qs(�)+2:k � (k � s(�) � 1)� and together with (7) for t = s(�) + 2 this yields
that �(�) < qs(�)+1, proving (iii). With (ii) and (iii), we have that x(�) is
nonincreasing. Finally, Property (i) together with (7) imply that x(�)1:t�1 <

q1:t�1 for all s(�) + 2 � t � k and (iv) follows.

For s = 0; : : : ; k�1 we letws := x(�qs+1:k) = (q1; : : : ; qs; �qs+1:k; : : : ; �qs+1:k) 2
Rn and call these vectors q-averages. For notational convenience, we also de-
�ne wk := wk�1. Note that x(�) is integral whenever � and q are integral.
In Fig.1 the L-functions associated with q and x(�) are illustrated.

0 1s/k

Figure 1: The solution x(�)

The following lemma leads to a description of the vertices of majorization

polyhedra.
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Lemma 3.2 Let c � 0 be a nonincreasing vector in Rn, let � 2 [qk; �q1:k] and

consider the problem

max fcTx j x �k q; x[k] = �g: (8)

Then x(�) is an optimal solution of (8). Furthermore, if �0 and �1 satisfy

�qs:k � �1 � � � �2 � �qs+1:k, then x(�) is a convex combination of x(�1) and

x(�2).

Proof. Let x be an nonincreasing optimal solution to (8), let t := maxf0 �

i � k � 1 j xi > �g and let t0 := maxf0 � i � k � 1 j x(�)i > �g. One may

suppose w.l.o.g. that x is chosen among the optimal solutions so that t is

minimum.

Suppose that t � t0. Let �x := (x1; : : : ; xt0), �c := (c1; : : : ; ct0) and �q :=

(q1; : : : ; qs�1; x(�)t0). Observe that �x is a feasible solution to max f�cTy j y �
�qg and that x� = �q is an optimal solution since the greedy algorithm solves
this problem to optimality (see Section 2). Since �q is the vector containing
the �rst t0 components of x(�), the latter is an optimal solution to (8).

Suppose now that t0 < t and let d(t) := qt:k�(k�t)�. Note that d(t) � qt
since (k � t)� = x(�)t+1:k � qt+1:k the last inequality being implied by the

feasibility of x(�) and Lemma 3.1 (i). Let x0 := (x1; : : : ; xt), c
0 := (c1; : : : ; ct)

and q0 := (q1; : : : ; qt�1; d(t)). Note that q
0 is nonincreasing, that x0 is a feasible

solution to max f(c0)Ty j y � q0g and that x� = q0 is an optimal solution. If
d(t) � � then there exists 1 > � � 0 such that for y = �x0+(1��)q0 we have
yt = �. Since y is nonincreasing y� = (y1; : : : ; yt; �; : : : ; �) 2 Rn is feasible for

the original problem. Moreover cTy� � cTx, a contradiction with the choice
of x. Hence d(t) > �, i.e. qt:k > (k�t+1)� implying s(�) � t�1 and qt > �.
The de�nition of x(�) and Lemma 3.1 show that either (a) s(�) = t0 � 1 or

(b) s(�) = t0 and �(�) = � or (c) s(�) = k � 1 and qt0+1 = : : : = qk = �.
Note that (a) whould imply s(�) = t0 � 1 < t � 1 � s(�), a contradiction;

a similar argument show that (b) would imply s(�) = t0 = t � 1 and thus
�(�) = d(t), a contradiction since �(�) = � and d(t) > �. Finally, (c) is

impossible since we have qt > � as noted above.

To prove the last statement of the lemma, let �1 and �2 be as described
and de�ne s = s(�). Then the L-functions associated with x(�1), x(�2) and

x(�) coincide on the set [0; s=k][f1g and they are all linear on [(s+1)=k; 1].
It follows that x(�) = (1 � �)x(�0) + �x(�1) where � 2 [0; 1] is (uniquely)

de�ned by x(�)s+1 = (1� �)x(�0)s+1 + �x(�1)s+1.

Lemma 3.3 Let v be a nonincreasing vector in Ru and 1 � p � u. Then

there exists 1 � a � b � p such that

v1:u=p > v2:u=(p�1) > : : : > va:u=(p�a+1) = : : : = vb:u=(p�b+1) < : : : < vp:u:
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Moreover, we have b = p in these relations whenever p = u.

Proof. Let dj := vj:u=(p�j+1) for all 1 � j � p. Then, for all 1 � j � p�1,

we have dj = (1=(p� j +1))vj + ((p� j)=(p� j + 1))dj+1, i.e. dj is a convex

combination of vj and dj+1. Moreover, if vj > dj+1, then vj > dj > dj+1 and

the fact that v is nonincreasing then implies that di > di+1 for all 1 � i � j.

As vj < dj implies dj < dj+1 and vj = dj+1 implies dj = dj+1, the result

follows.

We denote by W (q; k) the set fws j 0 � s � kg. Lemma 3.3 with u := k

and p := k shows that there exists 1 � s� � k such that �q1:k > : : : > �qs�:k =

: : : = �qk:k implying that ws 6= wt for 0 � s < t � s�� 1. Moreover, as �qs�:k =

: : : = �qk:k, we have qs� = : : : = qk and thus ws
�
�1 = : : : = wk�1. It follows

that W (q; k) contains exactly s� distinct elements, namely w0; : : : ; ws
�
�1.

Lemma 3.4 Let c � 0 be a nonincreasing vector in Rn. Then there exists
0 � a � b � s� � 1 such that

cTw0 < : : : < cTwa�1 < cTwa = : : : = cTwb > cTwb+1 > : : : > cTws
�
�1 (9)

and

c1:n=k > : : : > ca+1:n=(k�a) = : : : = cb+1:n=(k� b) < : : : < cs�:n=(k� s�+1):

Proof. For 0 � j � s� � 2, cTwj � cTwj+1 if and only if cT rj � 0 where
rj := wj � wj+1. From the de�nition of q-averages we see that rj

i
= 0 for

all i � j, rj
j+1 = �qj+1:k � qj+1 = (qj+1:k � (k � j) � qj+1)=(k � j) and �nally

r
j

i
= �qj+1:k � �qj+2:k = ((k � j) � qj+1 � qj+1:k)=((k � j) � (k � j � 1)) for all

i � j + 2.

It follows that 0 � r
j

j+1 = �(k�j�1)�rj
i
for all j+2 � i � n. As rj

j+2 > 0,

we have cT (wj � wj+1) � 0 if and only if �(k � j � 1) � cj+1 + cj+2:n � 0,
i.e. if and only if cj+1 � cj+2:n=(k � j � 1). The result then follows from
Lemma 3.3 with u := n and p := k.

The �rst main result is given next.

Theorem 3.5 The vertex set of P (q; k) is the set of vectors that can be
obtained as a permutation of one of the vectors w0; : : : ; ws

�
�1.

Proof. To prove that each vertex has the desired form, let c be an objective

function such that the LP problem (3) has an unique optimal solution �x.
Then c > 0 and one can suppose w.l.o.g. that �x is nonincreasing as P (q; k)
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is symmetric. The rearrangement inequality (1) then shows that c is nonin-

creasing. It su�ces to show that some ws is optimal for this LP. Since c > 0

we have �xk � qk. Observe that any optimal solution of (8) must also be

optimal in (3) with � = �xk. Thus it follows from Lemma 3.2 that x(�) is

optimal in (3). Furthermore, from the second part of Lemma 3.2 we see that

we may assume that � = �qs:k for some s, as desired.

We �nally prove that each ws for 0 � s � s� � 1 is indeed an extreme

point of P (q; k). Let 1 > � > 0 and consider the cost function c given by

ci = n + �i for 1 � i � s and ci = 1 + �i for s + 1 � i � n. Lemma 3.4

shows that, for � > 0 small enough, the unique optimum solution to max

fcTwt j 0 � t � s� � 1g is the q-average ws. By (1) and the fact that c is

stricly decreasing, cTws > cTw0, if w0 6= ws and w0 is obtained by permutation

of a vector in W (q; k). Therefore ws is a vertex of P (q; k).

It follows that the linear programming problem (3) may be solved easily
by sorting the components of the objective function c in nonincreasing order
and comparing the s� � 1 di�erent q-averages. In Fig.2 we illustrate the

intersection between P (q; k) and the nonnegative orthant for k = 2, n = 3
and q = (2; 1). The di�erent permuted q-averages are shown. As another
consequence of Theorem 3.5 we obtain an inner description of P (q; k) as well
as an equivalent condition for weak k-majorization.

Corollary 3.6 P (q; k) = conv(W (q; k)) � Rn, i.e., x �k q if and only if
x � z for some z 2 Rn which is a convex combination of permuted q-averages.

(2,1,1)

(1,2,1)

(3/2,3/2,3/2)

(1,1,2)

Figure 2: Example, P (q; k) \Rn.

We now turn to a discussion of the polyhedron Q(q; k). Observe that

Q(q; k) is unchanged if we perform integer round-down on each component

of the majorant q. Thus we may assume that q is integral. Let m� = b�q1:kc
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and m� = b�qs�+1:kc. We say that m 2 fm�; : : : ;m
�g is q-extreme if m is

obtained by integer rounding (up or down) of some tail average �qs:k of q.

When m is q-extreme we call x(m) a rounded q-average. By using similar

arguments as in the proof of the �rst part of Theorem 3.5, we get the following

result on the vertices of Q(q; k).

Proposition 3.7 Each vertex of Q(q; k) may be obtained as a permutation

of some rounded q-average.

Note that the converse of this result is proved in the next section in Theorem

4.11, but in the meantime the above result is su�cient for our purposes. The

complete characterization of the vertices of Q(q; k) given in that theorem

yields that solving LP problems over Q(q; k) (or, equivalently, integer LP's

over P (q; k)) may be done by sorting the components of the objective function
in nonincreasing order and direct comparison of the rounded q-averages.

Examples. Let k = 3, n = 5 and q = (7; 2; 1). Then the rounded
q-averages are q1 = (7; 2; 1; 1; 1), q2 = (6; 2; 2; 2; 2) and q3 = (4; 3; 3; 3; 3),
and the vertices of Q(q; k) are all permutations of these points. As another

example let k = 4, n = 6 and q = (19; 12; 5; 3). Then the tail averages
of q are 3; 4; 20=3 and 39=4 and the q-extreme integers are 3, 4, 6, 7 and
9. The q-averages are q3 = (19; 12; 5; 3; 3; 3), q4 = (19; 12; 4; 4; 4; 4), q6 =
(19; 8; 6; 6; 6; 6), q7 = (18; 7; 7; 7; 7; 7) and q9 = (12; 9; 9; 9; 9; 9).

4 Linear description of Q(q; k)

In this section we assume that q is integral and study the facets of the
polyhedron Q(q; k) de�ned in (5). The goal is to determine a complete and

nonredundant linear description of this polyhedron. Initially, we study simple

facets coming from the linear description of the polyhedron P (q; k), before
turning to the remaining facets of Q(q; k).

First, observe that Q(q; k) is full dimensional since the n + 1 points q

and q � ej for all 1 � j � n are in Q(q; k) and are a�nely independent.
Moreover the n vectors ej for all 1 � j � n are the extreme rays of Q(q; k),

implying that if an inequality aTx � � is facet de�ning for Q(q; k) then
a � 0. Note also that, due to the symmetry of Q(q; k), each permutation ~a of

a yields a facet de�ning inequality ~aTx � �. Hence, a complete description of

Q(q; k) may be obtained by considering all permutations of all facet de�ning
inequalities aTx � � such that a � 0 and a is nonincreasing.

The next lemma concerns the question of strict inequality in the rear-

rangement inequality. Let 1 � s1 < : : : < sp � n, s0 = 0 and sp+1 =

n + 1. A permutation � on the set Nn is called an (s1; : : : ; sp)-permutation
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if �(fsj; : : : ; sj+1 � 1g) = fsj; : : : ; sj+1 � 1g for 0 � j � p. In other words, �

de�nes a permutation on each of the \intervals" fsj; : : : ; sj+1 � 1g.

Lemma 4.1 Let a and x be nonincreasing vectors in Rn and let x0 be a

permutation of x. De�ne s1; : : : ; sp (uniquely) from the \levels" of a such

that

a1 = : : : = as1�1 > as1 = : : : = as2�1 > : : : > asp = : : : = an:

Then aTx0 � aTx and equality holds if and only if x0 may be obtained by an

(s1; : : : ; sp)-permutation of x.

Proof. Consider the relation for vectors with two components. We have

(a1x1 + a2x2)� (a1x2+ a2x1) = (a1� a2)(x1� x2). From this we see that (i)

a1x1 + a2x2 � a1x2 + a2x1 if x1 � x2, and (ii) the inequality in (i) is strict if
and only if a1 > a2 and x1 > x2. The desired result may be obtained from
these observations via an induction argument. (Remark: the rearrangement
inequality (1) follows similarly).

The next technical lemma will be helpful in the sequel for proving that a

valid inequality is facet de�ning for Q(q; k).

Lemma 4.2 Let a � 0 be a nonincreasing vector in Rn such that aTx � �

is a valid inequality de�ning a nonempty face F of Q(q; k). Let 1 � s � s0 �
t � n be such that ai = 0 for all t + 1 � i � n and as = : : : = as0. Let
bTx � � be a valid inequality de�ning a facet F 0 of Q(q; k) with F contained

in F 0. Then

(i) bi = 0 for all t+ 1 � i � n, and

(ii) if there exists a point y in F such that yi 6= yj for i; j 2 fs; : : : ; s
0g then

bs = : : : = bs0 .

Proof. (i) Since F is nonempty, we can pick z in F . For all t+ 1 � j � n,

the point z � ej is also in F and F 0, implying that 0 = bT (z � (z � ej)) = bj
for all t+ 1 � j � n.

(ii) Let y be in F such that yi 6= yj for i; j 2 fs; : : : ; s0g. Let k 6= k0 2
fs; : : : s0g, let y1 be obtained by permuting components i with k and j with k0

in y, and let y2 be obtained by permuting the components k and k0 in y1. By

Lemma 4.1, all (s; s0+1)-permutations of y are also in F , proving that both y1

and y2 are in F and therefore in F 0. Thus 0 = bT (y1�y2) = (bk�bk0)(yi�yj)

and as (yi � yj) 6= 0, we have bk = b0
k
.

10



Proposition 4.3 For each 1 � r � k, the inequality

rX
i=1

xi � q1:r (10)

de�nes a facet of Q(q; k) if and only if r = 1 or q1 > qr.

Proof. Let F be the face of Q(q; k) induced by (10), written aTx � q1:r,

and let bTx � � be an inequality inducing a facet F 0 of Q(q; k) containing F .

Note that b � 0 and we can assume w.l.o.g. that the smallest positive entry

in b is equal to 1. By Lemma 4.2 (i), we have bi = 0 for all r + 1 � i � n.

Note that q is in F . Hence, if q1 > qr, Lemma 4.2 (ii) shows that b1 =

: : : = br and thus a = b. If r = 1 then we trivially have a = b. In both cases,

since F is nonempty, we have q1:r = �, i.e. (10) de�nes a facet of Q(q; k).
Conversely, suppose that r > 1 and q1 = : : : = qr. Then aTx � � is the

sum of the valid inequalities eT
i
x � q1 for all 1 � i � r and thus does not

de�ne a facet of Q(q; k).

We call each inequality in (10) a set size inequality. In certain cases the set
size inequalities give a complete linear description of Q(q; k), or equivalently,
Q(q; k) and P (q; k) coincide. In fact, from the characterization of the vertices
of P (q; k) and Q(q; k) we see that this occurs precisely whenever all the q-

averages ws are integral, i.e., whenever k � sjqs+1:k for s = 0; : : : ; s� � 1. In
general, however, further inequalities are required to give a complete linear
description of Q(q; k).

Let s and t be integers satisfying 0 � s < k < t � n. De�ne �s =
qs+1:k � (k � s)b�qs+1:kc which is the remainder modulo k � s of qs+1:k. Let

as;t be given by:

as;t =

8<
:

(t� s� �s)=(k � s� �s) for j = 1; : : : ; s,

1 for j = s+ 1; : : : ; t,
0 for j = t+ 1; : : : ; n

(11)

and �s;t = ((t�k)=(k�s��s))q1:s+q1:k+(t�k)b�qs+1:kc. We call an inequality

of the form (as;t)Tx � �s;t a q-average inequality. Note here that as;t
s
> 1 as

t > k and �s < k � s. We call an inequality bTx � �s;t a permuted q-average

inequality whenever b is a permutation of as;t. The following lemma gives a
closed form for the optimum solution to the LP maxf(as;t)Tx j x 2 P (q; k)g

and shows that there are integral points in Q(q; k) satisfying (as;t)
T

x = �s;t.

Proposition 4.4 Let 0 � s < k < t � n and m = b�qs+1:kc. Then

11



(i) (as;t)Tws = maxf(as;t)Tx j x 2 P (q; k)g,

(ii) (as;t)Tx(m) = �s;t, and

(iii) if m+ 1 � m� then (as;t)Tx(m+ 1) = �s;t.

Proof. To simplify the notation, let a := as;t. Notice that, if s � k�2, then

as+1:n=(k� s) = (t� s)=(k� s) < (t� s� 1)=(k� s� 1) = as+2:n=(k� s� 1):

Moreover, if s > 1 then as = (t�s��s)=(k�s��s) � (t�s)=(k�s) and thus

as:n=(k � s + 1) � as+1:n=(k � s) as shown in Lemma 3.3. Thus Lemma 3.4

yields that ws is an optimum solution to max faTx j x 2 P (q; k)g and (i)

holds. Note that (ii) follows from

aTx(m) = a1x(m)1:s + x(m)s+1:k + x(m)k+1:t =

(a1 � 1)x(m)1:s + x(m)1:k + (t� k)m =

((t� k)=(k � s� �s))q1:s + q1:k + (t� k)bqs+1:kc = �s;t

and, if m+ 1 � m� then x(m+ 1) is de�ned and

aTx(m+ 1) = a1x(m+ 1)1:s + x(m+ 1)s+1:k + x(m+ 1)k+1:t =

(a1 � 1)(q1:k � x(m+ 1)s+1:k) + q1:k + (t� k)(m+ 1) =

(a1 � 1)q1:s + q1:k + (t� k)m+ (a1 � 1)(qs+1:k � x(m+ 1)s+1:k) + (t� k) =

�s;t + (a1 � 1)(qs+1:k � (k � s)(m+ 1)) + t� k =

�s;t + (a1 � 1)(�s � (k � s)) + t� k = �s;t:

We shall prove that all permuted q-average inequalities are valid for
Q(q; k). As a preparation for this we give relations between optimal so-

lutions of LP problems over P (q; k) and similar ones over Q(q; k), and start

with a result obtained from the last part of Lemma 3.2.

Lemma 4.5 For each integral qk � m � �q1:k, x(m) is a convex combination
of ws(m) and ws(m)+1.

Proof. If s(m) = k � 1 then, by de�nition of s(m), we have m = x(m)k �
�qk:k = qk and Proposition 3.7 shows that m = qk, implying x(m) = wk�1.

Otherwise, by de�nition of s(m), we have �qs(m)+1:k � m > �qs(m)+2:k and the

result follows from the last part of Lemma 3.2 with s = s(m) + 1, �1 = �qs:k
and �2 = �qs+1:k.
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By the characterization of the extreme points of P (q; k) given in Theo-

rem 3.5 and of Q(q; k) given in Proposition 3.7, for any c � 0 there exists

w 2 W and an integer � such that w and x(�) maximize cTx over P (q; k)

and Q(q; k) respectively. The following proposition describes more precisely

the relation between these optimal solutions when their values di�er.

Proposition 4.6 Let c � 0 be a nonincreasing vector in Rn such that

cTws = maxfcTx j x 2 P (q; k)g > maxfcTx j x 2 Q(q; k)g = cTx(t): (12)

Then t is either b�qs+1:kc or b�qs+1:kc+ 1.

Proof. We claim that for eachm 2 fm�; : : : ;m
�g the objective value cTx(m)

is a convex combination of cTws(m) and cTws(m)+1. To verify this, note that
�qs(m)+2:k < m � �qs(m)+1:k. Therefore, using Lemma 4.5, we see that x(m) is
a convex combination of the two adjacent q-averages ws(m) and ws(m)+1. The
claim follows due to the linearity of the objective function.

From Lemma 3.4 there are integers a and b with 0 � a � b � s�� 1 such

that the ordering in (9) holds. From (12) it follows that a � s � b. Observe
that s(t) 62 fa; : : : ; b� 1g for otherwise the claim would show that cTx(t) =
cTws contradicting the strict inequality in (12). Furthermore, combining the
strict inequalities in (9) with the claim, we see that cTx(m) is maximized
over m whenever m is either the oor or ceil of the (fractional) number �qs:k
and the proof is complete.

The fact that each permuted q-average inequality is valid for Q(q; k) is
implied by the symmetry of Q(q; k) and the following lemma:

Lemma 4.7 Let 0 � s < k < t � n and m := b�qs+1:kc. If (as;t)Tx � �s;t is

not valid for P (q; k), then

(i) (as;t)Tx � �s;t is valid for Q(q; k);

(ii) for all m0 2 fm�; : : : ;m
�g we have (as;t)Tx(m0) = �s;t if and only if

m0 = m or m0 = m+ 1;

(iii) An extreme point v of Q(q; k) satis�es (as;t)Tv = �s;t only if v may be

obtained by a (s+ 1; t+ 1)-permutation of x(m) or x(m+ 1).

Proof. To simplify the notation, let a := as;t. Lemma 4.4 shows that ws is

the optimum solution to max faTx j x 2 P (q; k)g. As m = bws

k
c, Proposi-

tion 4.6 proves that max f(as;t)Tx(t) j t 2 fm�; : : : ;m
�gg is attained only for

u = m or u = m + 1 or both, yielding (i) and (ii). By Lemma 4.1, if v is
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an extreme point of Q(q; k) such that aTv = �s;t then the point v0 obtained

by sorting the components of v in nonincreasing order satis�es a � v0 � a � v.

Moreover equality holds if and only if v may be obtained by a (s+ 1; t+ 1)-

permutation of v0. As v0 is either x(m) or x(m+ 1), (iii) follows.

Consider the special case of the q-average inequalities obtained by setting

s = 0; this leads to the inequality

tX
j=1

xj � q1:k + (t� k)b�q1:kc (13)

We call each such inequality an extended set size inequality since it \extends"

the set size inequalities to sets of cardinality larger than k.

Example. Consider again our example where k = 3, n = 5 and q =
(7; 2; 1). We get the extended set size inequalities x(N4) � 13 and x(N5) �
16. Both these inequalities cut o� the fractional q-averagew0 = (10=3; : : : ; 10=3).
Other q-average inequalities are 2x1 + x2+ x3 +x4 � 18 (obtained for s = 1,

t = 4) and 3x1 + x2 + x3 + x4 + x5 � 26 (for s = 1, t = 5).
We are now in position to show that each facet of Q(q; k) that is not a

facet of P (q; k) is obtained from a permuted q-average inequality.

Proposition 4.8 Let c be a nonincreasing vector in Rn and c0 be a real

number such that the inequality cTx � c0 de�nes a facet of Q(q; k) and is
not valid for P (q; k). If the smallest positive entry of c is 1, then there exist
0 � s < k < t � n such that c = as;t and c0 = �s;t.

Moreover for h = b�qs+1:kc, (i) if s > 0 then h+ 1 � m� and (ii) if s > 1
then either q1 > qs or h+ 1 < �q1:k.

Proof. Let F be the facet of Q(q; k) de�ned by cTx � c0 and Q be the
set of nonincreasing extreme points of F . As Q(q; k) is fulldimensional, the

face F 0 of Q(q; k) de�ned by a valid inequality (c0)Tx � c00 equals F if and

only if there exists � > 0 such that c = �c0 and c0 = �c00. Moreover, if
f1 � i � n j ci = 0g = f1 � i � n j c0

i
= 0g then the extreme rays of F and

F 0 are identical and thus F = F 0 if and only if both faces have the same set
of extreme points.

The rearrangement inequality (1) implies that if v is an extreme point of
F then the vector obtained by sorting the components of v in nonincreasing

order is in Q and each extreme points of F is obtained by a permutation of
some vector in Q. The assumptions imply that c satis�es the hypothesis of

Proposition 4.6 and therefore Q contains at most two elements.

Let s be the largest index such that c1 = cs, let t be the largest index
such that ct > 0 and let t0 be the smallest index such that ct0 = ct.
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Case 1: t0 = 1. If t � k then inequality cTx � c0 is of the form
P

t

i=1
xi �

c0, implying c0 = q1:t and this inequality is valid for P (q; k), a contradiction.

Otherwise, t > k and thus c = a0;t. Lemma 4.7 shows that x(m�) satis�es

(a0;t)Tx = �0;t and thus c0 = �0;t.

Case 2: t0 > 1. Then 1 � s < t0 � n. Suppose that jQj = 1. Then

Lemma 4.1 implies that v1:s has the same value for all extreme points v of

F . Thus for � > 0, if we de�ne d by di = ci + � for all i � s, di = ci for all

s + 1 � i � n, and d0 = c0 + � � v1:s, the inequality (d)Tx � d0 is valid for

Q(q; k) and F is contained in the face of Q(q; k) de�ned by this inequality,

a contradiction. Hence jQj = 2 and Lemma 4.6 shows that there exists an

integral m such that Q = fx(m); x(m+ 1)g. It follows that �qs+1:k < m� and

(i) holds.

Case 2.1: s < t0 � 1. If x(m)1:s = x(m + 1)1:s then the same reasoning

as in the case jQj = 1 yields a contradiction. If x(m)t0:t = x(m + 1)t0:t then
a similar reasonning (adding � to the components ft0; : : : ; tg of c instead of
the components f1; : : : ; sg) yields a contradiction. Let 1 = x(m)1:s; �1 =
x(m)t0:t; 

2 = x(m + 1)1:s; �2 = x(m + 1)t0:t; and �; �0 such that �=�0 =

(�2 � �1)=(1 � 2). For � > 0, de�ne

c0
i
= ci + � for 1 � i � s; c0

i
= ci + �0 for t0 � i � t; c0

i
= ci otherwise (14)

and c00 = c0 + � � 1 + �0 � �1. Then inequality (c0)Tx � c00 is valid for Q(q; k)
for small enough � > 0, as

(c0)Tx(m) = cTx(m) + � � 1 + �0 � �1 = c00

and

(c0)T (x(m)� x(m+ 1)) = cT (x(m)� x(m+ 1)) + � � (1 � 2) +

�0 � (�1 � �2) = 0 + �0 � (�2 � �1) + �0 � (�1 � �2) = 0:

Moreover, Lemma 4.1 shows that the face of Q(q; k) de�ned by this inequality

contains the facet F , a contradiction as (c0; c00) is not a positive multiple of

(c; c0) due to the fact that s < t0 � 1, implying ct0�1 = c0
t0�1 > 0.

Case 2.2: s = t0 � 1. Note that we have t0 � k since otherwise s � k

and Lemma 3.4 shows that w0 is the unique optimum solution to max fcTx j

x 2 P (q; k)g. Then, by Proposition 4.6, Q contains only the vector x(m�), a

contradiction.
We also have t > k since otherwise, by Lemma 3.4, wk�1 is optimal for

max fcTx j x 2 P (q; k)g and, as wk�1 is integral, it is also optimal for fcTx j
x 2 Q(q; k)g. It follows that c0 = cTwk�1, implying that inequality cTx � c0
is valid for P (q; k), a contradiction. Hence 1 � s = t0 � 1 < t0 � k < t � n.
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We now show that s(m + 1) � s � 1 and s(m) � s, implying that m =

b�qs+1:kc. Indeed, if s(m+1) > s�1 then s(m) > s�1 and thus x(m+1)1:s =

x(m)1:s = q1:s. The same reasonning as in the case where jQj = 1 yields a

contradiction. For the other inequality, observe that if s(m) < s = t0 � 1

then s(m+1) < t0� 1 and thus x(m)t0 = : : : = x(m)t and x(m+1)t0 = : : : =

x(m+ 1)t. Lemma 4.1 implies that this relation holds for all extreme point

v of F and thus if we de�ne d0 by

d0
i
= ci for i 6= t0; t; d0

t
0 = ct0 + � and d0

t
= ct � �; (15)

all extreme points v of F satisfy d0Tv = c0 for all � > 0. Moreover, d0Tx � c0
is valid for Q(q; k) for � > 0 small enough, implying that the face of Q(q; k)

de�ned by this inequality contains F , a contradiction as d is not a positive

multiple of c.
Note that the same reasonning proves that (ii) holds. Indeed, if (ii) does

not hold then q1 = : : : = qs, m + 1 = �q1:k and s(m + 1) = 0, implying that
x(m)1 = : : : = x(m)s and x(m+ 1)1 = : : : = x(m+ 1)s.

By Lemma 4.1, a vector v is an extreme point of F only if it may be
obtained by some (s+1; t+1)-permutation of either x(m) or x(m+1). Since
m = b�qs+1:kc, Lemma 4.7 shows that all these points are on the face of Q(q; k)

de�ned by as;t
T
x � �s;t, implying c = as;t and c0 = �s;t.

Theorem 4.9 A complete linear description of Q(q; k) is given by the per-
muted set size inequalities and the permuted q-average inequalities.

Proof. Proposition 4.8 implies that a facet F of Q(q; k) is either a facet

of P (q; k) or there exist s; t such that F is de�ned by an inequality that is

a permutation of (as;t)Tx � �s;t. Therefore each facet of Q(q; k) is either
induced by a set size inequality or a permuted q-average inequality and the
theorem follows.

Permuted q-average inequalities that are facet de�ning for Q(q; k) are

described in the next proposition.

Proposition 4.10 Let 0 � s < k < t � n and m = b�qs+1:kc. The inequality

(as;t)Tx � �s;t de�nes a facet of Q(q; k) if and only if

(i) �qs+1:k is fractional,

(ii) if s > 0 then m+ 1 � m�, and

(iii) if s > 1 then either q1 > qs or m+ 1 < �q1:k.
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Proof. First, note that (i) is equivalent to saying that (as;t)Tx � �s;t is not

valid for P (q; k). Indeed, Lemma 4.4 shows that ws is the optimum solution

to max f(as;t)Tx j x 2 P (q; k)g and that x(m) satis�es (as;t)Tx(m) = �s;t.

If �qs+1:k is integral then ws = x(m) implying that the inequaliy is valid for

P (q; k). If �qs+1:k is fractional then since ws

1:s = q1:s = x(m)1:s, w
s

s+1:k =

qs+1:k = x(m)s+1:k and ws

k+1:t > x(m)k+1:t, we have (as;t)T (ws � x(m)) =

ws

k+1:t � x(m)k+1:t > 0 and the inequality is not valid for P (q; k).

Suppose that (as;t)Tx � �s;t de�nes a facet F of Q(q; k). Then since F

is not a facet of P (q; k), this inequality is not valid for P (q; k) and thus (i)

holds. The result then follows from Proposition 4.8.

Suppose now that (i), (ii) and (iii) hold and let F be the face of Q(q; k)

de�ned by the inequality. Let F 0 be a facet of Q(q; k) containing F and

de�ned by bTx � �. By Lemma 4.4, x(m) is in F and Lemma 4.2 shows that

bj = 0 for all t+ 1 � j � n.
We claim that b1 = : : : = bs and bs+1 = : : : = bt. To prove the claim,

Lemma 4.2 shows that it su�ces to �nd a point y in F such that yi 6= yj for
i; j 2 fs+ 1; : : : ; tg and a point z in F such that zi 6= zj for i; j 2 f1; : : : ; sg.

Note that (i) implies s(m + 1) < s � s(m). If s(m) = s then, due to (i),
x(m)s(m)+1 = �(m) > m = x(m)k. If s(m) � s + 1 then x(m)t = m <

qs(m) = x(m)s(m). In both cases, setting y = x(m) yields that bs+1 = : : : = bt.
The �rst part of the claim is immediate if s � 1. Assume that s > 1. If
q1 > qs then z = x(m) proves that b1 = : : : = bs. Otherwise, note that

(ii) implies that x(m+ 1) exists and Lemma 4.4 shows that this point is in
F . If s(m + 1) > 0 then, by Lemma 3.1, x(m + 1)s(m)+1 = �(m + 1) <

qs(m+1)+1 � qs(m+1) = x(m+ 1)s(m+1). If s(m+ 1) = 0 then (iii) implies that
x(m+ 1)1 = �(m + 1) > m + 1 = x(m + 1)2. In both cases z = x(m + 1)
yields b1 = : : : = bs, completing the proof of the claim.

Since b � 0, one can assume that the smallest positive entry of b equals

1. Hence, if s = 0 we have as;t = b. If s > 0, then, since (i) implies qs+1 > m,
we have x(m)s = qs � qs+1 > m = x(m)k and the rearrangement inequality
shows that bs � bk. It follows that b is nonincreasing and Proposition 4.8

prove that as;t = b. In both cases, since F is nonempty, we have �s;t = �

proving the proposition.
For a discussion of simple algorithms for solving LP problems over P (q; k)

and Q(q; k), see ([2]).

The vertices of Q(q; k) can now be described.

Theorem 4.11 The vertex set of Q(q; k) consists of the vectors that can be

obtained as permutations of some rounded q-average.

Proof. Each vertex has the mentioned form as shown in Lemma 3.2. It

remains to prove that x(m) is indeed a vertex when m is q-extreme.
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Let x(m) be a rounded q-average. If x(m) is a vertex of P (q; k), then we

are done as Q(q; k) � P (q; k). Otherwise, by Proposition 4.10 there exists

0 � s < k < t � n such that (as;t)Tx(m) = �s;t and this inequality is not

valid for P (q; k). By Lemma 4.7, there exists at most one m0 6= m such that

(as;t)Tx(m0) = �s;t.

If m < m0 (or if m0 does not exist), then x(m) is lexicographically larger

than x(m0) and thus for � > 0 small enough, x(m) is the only optimal solution

to max f
P

n

i=1(a
s;t

i
+ �i)xi j x 2 Q(q; k)g.

Otherwise, x(m) is lexicographically smaller than x(m0) and thus a per-

mutation of x(m) is the only optimal solution to max f
P

n

i=1
(as;t

i
+�n+1�i)xi j

x 2 Q(q; k)g.

5 Conclusions

We have studied the concept of weak k-majorization and associated polyhe-
dra. Complete inner and outer descriptions were found for the k-majorization
polyhedron P (q; k) consisting of all vectors weakly k-majorized by a given
vector as well as for the integer hull Q(q; k) of P (q; k). An interesting direc-
tion for further work is to study other polyhedra and optimization problems

involving k-majorization. For instance, in some network design problems it
may be of interest to consider additional k-majorization constraints. Both
structural and algorithmic results would be of interest, and some work in this
direction is ongoing.
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