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Abstract

We present a cutting plane algorithm for solving the following net-

work design problem in telecommunications: given point-to-point traf-

�c demands in a network, speci�ed survivability requirements and a

discrete cost/capacity function for each link, �ndminimum cost capac-

ity expansions satisfying the given demands. The algorithm is based

on the polyhedral study in the accompanying paper [16]. We describe

the underlying problem, the model and the main ingredients in our

algorithm: initial formulation, feasibility test, separation for strong

cutting planes and primal heuristics. Computational results for a set

of real-world problems are reported.

1 Introduction

The design of cost-e�cient telecommunications networks meeting re-

quirements concerning tra�c, �exibility, survivability etc. is a major

challenge with great economic impact. In particular, it is important

to establish networks that are robust with respect to accidents like

cable cuts, electronic failures or power supply shut-down. Often, the
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capacity limitations play a crucial role in these design problems (e.g.,

capacities of terminal equipment installed at both end nodes of each

transmission links). This calls for models and methods for design-

ing low-cost capacitated networks that allow routing of tra�c in both

normal and speci�ed failure situations. The model we discuss in this

paper falls into this framework.

In MULTISUN (MULTIcommodity SUrvivable Network design)

we integrate the problems of topological design, capacity assigment

and routing. Due to its generality this is a very di�cult problem with

NP -hard problems as special cases. The main purpose of this paper

is to describe a cutting plane algorithm for solving MULTISUN prob-

lems and report computational results for some real-world problems

of interest.

In the accompanying paper [16] we presented a theoretical study of

the MULTISUN problem and identi�ed several classes of facet de�ning

inequalities for certain associated integral polyhedra. We therefore

refer to [16] for validity and facet proofs for the inequalities discussed

later.

The MULTISUN problem can be described more precisely as fol-

lows. Let V be a given set of nodes with tra�c demands between cer-

tain pairs of these nodes. Each demand represents a certain amount

of point-to-point tra�c to be routed in the network between the origin

and destination nodes. Tra�c may be split on several paths, so it may

be viewed as a continuous network �ow. In addition, we have given

�supply� edges joining pairs of nodes in V ; these represent existing

or potential direct physical links (e.g., a �ber cable or a radio relay

system). For each supply edge one wants to decide which capacity

to install, selected from a discrete set of alternatives, each with an

associated building cost. We are interested in cost-optimal capacity

extensions that satisfy the following conditions:

(i) in case of a node or edge failure all demands can be routed

simultaneously,

(ii) when all nodes and edges are operating, then all demands can

be routed simultaneously such that no more than a given fraction of

the given demand is routed through any intermediate node.

A large amount of work has been done by Minoux and others on

the related model with a continuous cost function, see [12] (and its

references), [7], [1]. A recent related model is studied in [3].

This paper is organized as follows. In Section 1 the integer lin-
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ear programming model for the MULTISUN problem is presented. In

addition it is explained how one obtains stronger LP relaxations by

adding certain classes of valid inequalities originating from knapsack-

like substructure of the original model. Next, in Section 2, we explain

the main components of our cutting plane algorithm for the MUL-

TISUN problem, including separation algorithms and primal heuris-

tics. This algorithm is being used for network planning in Telenor

Research. Results for some real-world problems are reported and dis-

cussed in Section 3. Finally, in the concluding section, some directions

for further work is pointed out.

We use fairly standard notation from graph theory and polyhedral

theory, see [2, 14], but a few notions need to be explained. RM denotes

the space of real vectors indexed by M (where M is some �nite set),

and for x 2 R
M and S �M we let x(S) denote

P
i2S xi. By �

S 2 R
M

we denote the incidence vector of S, and 1 is a suitable dimensioned

vector with 1's. Let G = (V; E) be an undirected graph without

loops and multiple edges. If W � V [ E, we let G �W denote the

graph obtained from G by removing from G each node in W with

their incident edges. The cut �G(W ) induced by a subset W of V is

the set of edges with one end node in W and the other outside W .

By G[W ] = (W;E(W )) we denote the graph induced by node set W .

For two nodes u and v, a [u; v]-path P is a sequence of consecutive

nodes and edges connecting u and v without repeating any nodes. A

graph G is said to be 2-edge (or 2-node) connected with respect

to some given node set R, if between any two nodes u; v 2 R there

exist at least two edge- (or node- ) disjoint [u; v]-paths. We do not

allow G to have parallel edges. A network N = (G; c) is a graph G

with weights (e.g., capacities or demands) ce � 0 associated with

each edge e. Given a supply network (G; c) and a demand network

(H; d), where G = (V; E) and H = (V; F ) have the same node set,

a multicommodity �ow (w.r.t. (H; d)) is de�ned as a collection of

[u; v]-paths P i
uv in G together with numbers �iuv � 0 for each uv 2 F

and i such that
P

i �
i
uv = duv, for each uv 2 E(H). The associated

uv-�ow is the vector zuv 2 R
E with e'th component given by zuve =P

i:e2P i
uv

�iuv (called the uv-�ow in edge e). The network (G; c), or the

capacity vector c, is said to allow a multicommodity �ow w.r.t. (H; d),

if
P

uv2D z
uv
e � ce for each e 2 E, i.e., the total �ow in each edge does

not exceed its capacity.
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2 Mathematical model and improved

formulations

In this section we �rst present the mathematical model for theMULTI-

SUN problem and discuss multicommodity �ow requirements in some

detail. Next we brie�y describe the polyhedral approach to this prob-

lem and how it leads to some stronger LP formulations of the problem.

2.1 The MULTISUN model

Each edge of the supply graph G = (V; E) corresponds to a phys-

ical (transmission) link that has been or can be established. The

nodes correspond to switching points. We assume that G is connected

(otherwise the problem would decompose). In the demand graph

H = (V;D) each edge uv 2 D represents a tra�c demand of value duv
between its end nodes u and v. For each supply edge e 2 E one has

to choose a capacity expansion ye from a small set of possible choices

with associated costs. This should be done so that the network (G; y)

(with capacity vector y) can support the required tra�c with total

cost as low as possible.

The possible capacity choices on each edge gives rise to a discrete

cost function, which can be modeled as follows. For each edge e let

the incremental capacity steps be mt
e > 0, for t = 1; : : : ; Te and let

the incremental cost steps be c1e; : : : ; c
Te
e � 0. The cost of installing a

capacity ye at edge e with
Ps

t=0m
t
e < ye �

Ps+1

t=0m
t
e is
Ps+1

t=1 c
t
e for s =

0; : : : ; Te. The jump in costs occuring for each capacity
Ps

t=0m
t
e may

be due to e.g. the installation of a new cable. We let mTe
e =
P

uv2D duv
have a �very high� associated cost cTee ; this means that all demands

may be routed through any edge (but at a high cost). We model the

cost function using a binary variable xte for each incremental capacity

step t on each supply edge e. For each e the variables x1e; : : : ; x
Te
e are

required to be a sequence of ones followed by the sequence of zeros;

this determines the capacity range. The index set of these (design)

variables xte is I := f (e; t) j t = 1; : : : ; Te; e 2 E g, and x 2 R
I is a

design vector consisting of all these variables (with some ordering).

For a design vector x 2 R
I the corresponding cost is cTx and the

associated capacity vector y is given by ye =
PTe

t=0m
t
ex

t
e (where

x0e := 1).

We model the �ow requirements as follows. Let 	y be the capacity
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vector associated with some design vector x. The network (G; 	y) is

supposed to allow a multicommodity �ow carrying all tra�c (in which

case 	y is called feasible). This requirement on 	y may be expressed in

terms of linear inequalities as follows. For some given nonnegative

vector � 2 R
E and demand edge f 2 D let ��f denote the shortest

path length in G between the two end nodes of f with respect to edge

lengths �e, e 2 E. Then 	y is feasible if and only if

X

e2E

�e	ye �
X

f2D

��f df for all � � 0. (1)

This characterization of feasible capacities is known as the �Japanese

theorem� (�rst stated in [8, 13]) and may be proved using linear pro-

gramming duality (some more details are found in Section 2, see also

[10]). We call the each inequality in (1) ametric inequality, see [16]

for more comments on these inequalities.

In (1) we can restrict ourselves to a �nite set of these inequalities;

namely those de�ned by vectors (�; �) in the set � of extreme rays

of the cone f� 2 R
E ; � 2 R

D j � � 0; �f = �
�

f for all f 2 D g.

An important special case of the metric inequalities is obtained by

choosing � as the incidence vector of the cut �G(W ) induced by a

node set W 6= ;, W 6= V (when we assume that G[W ] and G[V nW ]

are connected). Then (1) reduces to the cut inequality

	y(�G(W )) � d(�H(W )): (2)

This inequality assures that the total capacity of a cut is no smaller

than all the demands across this cut. The other metric inequalities

may be viewed as surplus conditions for more general structures than

cuts in the graph.

Let G = (V; E) and H = (V;D) be as above. We model the

network failures as follows. Consider a failing component s 2 V [ E.

For a capacity vector y 2 R
E, the supply network (G(s); y(s)) is the

network obtained by deleting s and setting y(s) to zero for all deleted

edges. The demand �network� (H(s); d(s)) is de�ned as (H; d) for

s 2 E and (H � s; d(s)) for s 2 V (so d(s) is zero for the deleted

edges). When no network component is failing we set (arti�cially)

s = 0, (G(0); y(0)) = (G; y) and (H(0); d(0)) = (H; d). The set of

failure states is S = V [ E [ f0g when the network is supposed to

be survivable against node and edge failures, and S = f0g when no

survivbility is required.
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The network is called survivable if for each s 2 S the supply

network (G(s); y(s)) allows a multicommodity �ow for the demand

network (H(s); d(s)).

More complex survivability requirements could be treated similarly

(see [5]).

The integer linear programming formulation of the MULTISUN

problem with survivability constraints becomes now

min cTx

subject to

(i) 1 � x1e � � � � � xTee � 0 for all e 2 E;

(ii)
P

e2E(s) �eye �
P

f2D(s) �
�
f df for all � 2 �(s), s 2 S;

(iii) ye =
PTe

t=1m
t
ex

t
e for all e 2 E;

(iv) xte integer for all (e; t) 2 I.

(3)

Here, for each s, �
�

f is the shortest-path length between the end nodes

of demand edge f using length function � and the set �(s) is the set

of extreme rays of a certain cone (see the discussion above concerning

metric inequalities).

A variation of this model is obtained by introducing additional

diversi�cation constraints on the �ows in the normal state s = 0.

This purpose of such constraints is to reduce the immediate loss of

tra�c when a failure occurs. For 0 < �uv � 1 we say that a uv-

�ow zuv of value duv in a network (G; y) is �uv-diversi�ed if zuve �

�uvduv for each e 2 E and zuv(�G(w)) � 2�uvduv for each w 2 V �

fu; vg. This means that the uv-�ow through any node or edge does not

exceed �uvduv. (Here the edge requirement is only needed whenever

[u; v] 2 E; otherwise they are implied by the node requirements). The

MULTISUN problem with diversi�cation is the problem where we

require each uv-�ow to be �uv-diversi�ed in state s = 0. We can model

this problem by replacing the metric inequalities for s = 0 in (3) by

the so-called diversi�ed metric inequalities. Th eorigin of these

inequalities is explained in Section 3.
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2.2 Associated polytopes and improved for-

mulations

We introduce the integral polytopes

MSUNS := convf x 2 R
I j x satis�es (3)(i)�(iv)g: (4)

The MULTISUN problem may be viewed as the LP problem

min cTx subject to x 2MSUNS : (5)

Note here the dependency on the failure state set S.

The polytope MSUNS has a complicated polyhedral structure; see

[16] for a study of some of its properties. We repeat a few results that

are of interest for the cutting plane algorithm we use.

Under quite weak conditions MSUNS is fulldimensional and all the

ordering constraints (3)(i) de�ne facets of MSUNS (i.e., are nonredun-

dant). The inequalities (3)(ii) do not de�ne facets of MSUNS except

in very special cases. This indicates the need of stronger formulations

than the �naive� LP relaxation given by (3), and, in fact, numerical

results con�rm this belief. We describe next how we obtain tighter LP

formulations.

The band inequalities constitute a class of valid inequalities for

MSUNS that arise from a relaxation of MSUNS, the so-called ICOV-

polytope. Let
P

e2E

PTe
t=1 g

t
ex

t
e � b be a metric inequality (3)(ii) or

a diversi�ed metric inequality, where gte := �em
t
e. Because the high-

est capacity of each edge is �large�, we may assume that gTee � b

for each e. Let F := fe 2 E j g1e > 0g, and consider the polytope

ICOV(g; b) := convf (xte : t = 1, : : : , Te, e 2 F ) j
P

e2F

PTe
t=1 g

t
ex

t
e � b;

1 � x1e � � � � � xTee � 0 for all e 2 F , x integral g. The polytope

ICOV(g; b) can be viewed as a knapsack polytope with additional or-

dering constraints. Facial properties of related knapsack polytopes

have been studied in [11, 17]. Any inequality that is valid for ICOV

(g; b) is clearly also valid for MSUNS, if the �missing� coe�cients for

indices (e; t) with e 62 F are set to zero. For each F � E we de�ne

the index set I(F ) := f (e; t) 2 I j t = 1; : : : ; Te; e 2 F g. For sim-

plicity, we write I(e) in stead of I(feg). A band B of F is a subset

of I(F ) containing exactly one element (e; tBe ) in each I(e), e 2 F . Let

B< = f(e; t) 2 I(F ) j t < tBe g. A band B is called valid if g(B<) < b
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and in that case the band inequality

x(B) :=
X

(e;t)2B

xte � 1; (6)

is valid for ICOV(g; b).

Figure 1 illustrates a band inequality with F = fe1; : : : ; e4g and

b = 4. The x-axis denotes edges, and along the y-axis boxes of height

gte are stacked with g0e lowest and gTee highest. The (valid) band is

the set of boxes marked with 1, and g(B<) equals the area below the

band.

1

1 1
1

e1 e2 e3 e4

t = 1

t = Te

Figure 1: Band inequality

In [16] is is shown that if B is a band in F , where jF j � 2, then

the band inequality x(B) � 1 de�nes a facet of ICOV(g; b) if and only

if there is no valid band �above B�. Since ICOV(g; b) is a relaxation

of MSUNS, for any nonempty S, each band inequality is also valid for

MSUNS, and under suitable additional conditions (depending on S)

it will also de�ne a facet of MSUNS for S = f0g.

The separation problem for band inequalities is NP -complete. In

fact, this problem is equivalent to the NP -hard knapsack problem

with ordering constraints. In Subsection 3.4 we discuss algorithms for

solving this separation problem.

As mentioned, the band inequalities are valid for MSUNS for all

choices of the failure state set S, although their strength may vary.

Consider now the case when E � S, i.e., we include edge survivability.
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Then the band inequalities are redundant, but we can often �nd a

strengthened inequality as described next. Let gTx � b (where b > 0)

be a metric inequality valid for the normal state s = 0, and let B

be a band of F where F = fe 2 E j g1e > 0g. If g(B< n I(e)) < b

for all e 2 F , then it can be shown that the strengthened band

inequality

x(B) � 2 (7)

is a valid inequality for MSUNS, and it de�nes a facet of this polytope

under rather weak conditions.

When a strengthened band inequality is derived from a cut in-

equality, it will, in many cases, de�ne a facet of MSUNS.

Finally, we remark that we have found other classes of facet de�n-

ing inequalities that may be of interest. These include generalized

band inequalities and partition inequalities arising from node parti-

tions into three or more subsets. We have not included any of these

inequalities in the algorithms reported here, but they may be of inter-

est in further work.

3 Description of the algorithms

In this section we describe a cutting plane algorithm for solving the the

MULTISUN problem based on the model given in (3). We also give

algorithms for solving the associated separation problems and testing

the feasibility of a given capacity vector 	y. Finally, some simple primal

heuristic methods are described.

3.1 The master problem

We use a cutting plane approach to the model (3). This means that we

solve a sequence of sucessively stronger LP relaxations of (3), where

each LP is obtained from the previous one by adding certain band

inequalities that were violated by the previous optimal LP solution.

In each iteration one determines whether the capacities obtained are

feasible. One could view this approach as applying Benders' decom-

position to a certain mixed integer linear programming model (see

Subsection 3.2).

Master algorithm:
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0. (Initialize) Find an initial relaxation P 0 of MSUNS de�ned by

selected band inequalities. Set iteration count t := 0.

1. (Master optimization) Solve the LP relaxation min fcTx j x 2

P tg and obtain an optimal (vertex) solution xt. Let 	yt be the associ-

ated capacity vector.

2. (Master separation) Check if 	yt satis�es all the metric inequal-

ities (1). If it does, go to Step 3. If a violated cut inequality was

found, use this to �nd violated band inequalities (see Subsection 3.4).

Otherwise try a heuristic for �nding violated band inequalities (using

a pool of cuts). Let P t+1 be the polyhedron obtained by adding these

band inequalities to P t, set t := t+1 and return to Step 1. If no more

band inequalities could be found, proceed to Step 3.

3. (Optimality check and heuristics) If xt is integral, then xt is

optimal, and one terminates. Otherwise, let zlo = cTxt (lower bound)

and use a primal heuristic (Subsection 3.5) for �nding an upper bound

zup on the optimal value z� in (3), and conclude that zlo � z� � zup;

terminate.

For solving the LP's in Step 1 we use the LP solver CPLEX, see

[4]. The next subsections contain descriptions of algorithms used in

Step 2 and 3.

3.2 Testing feasibility of multicommodity �ow

We describe a method which determines whether a given capacity vec-

tor allows a multicommodity �ow in all failure states s 2 S, or equiv-

alently whether y � 0 satis�es (3)(ii). We use techniques based on

linear programming with row and constraint generation using a path

formulation. An ordering of the set of operating states is selected and

for each state s 2 S we solve a multicommodity feasibility problem

with supply and demand graphs G(s) andD(s). We describe the algo-

rithm for the case s = 0 only. The other problems (s 6= 0) are solved

similarly. The optimal basic solution for state s is used as a starting

solution for state s + 1; this speeds up the algorithm considerably as

consecutive problems tend to be very �near each other�. To simplify

the presentation we leave out the index s in matrices etc. below. In

addition, we assume that [u; v] 62 E for each demand edge uv 2 F (the

general case is treated quite easily in our algorithm by adding suitable

constraints). We also assume that the edges of positive capacity de�ne

a connected graph.
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Let f(uv) be a column vector with one element f(uv; P ) for each

[u; v]-path P in G. Let P(uv) denote the set of all [u; v]-paths in the

graph G. To solve the multicommodity feasibility problem for s = 0

we set up the following linear programming model (MF). This is the

well-known path formulation for multicommodity �ow problems.

minimize �

subject to

(i)
P

uv2D A(uv)f(uv) � 	y� � 	y

(ii) 1Tf(uv) = duv for all uv 2 D;

(iii)
P

P2P(u;v):w2P f(uv; P ) � �uvduv for all uv 2 D,

w 2 V n fu; vg;

(iv) f(uv) � 0 for all uv 2 D.

(8)

The path variables f(uv; P ), for each P 2 P(uv) and uv 2 D, ex-

press the �ow on this path, and the expansion variable � represents

an arti�cial capacity extension on each edge. The constraints (i) and

(ii) assure that edge capacities are not exceeded and that all demands

are satis�ed. Finally, the diversi�cation constraints (iii) assure

that at most a given fraction �uv of demand uv is routed through the

node w 6= u; v. The capacity 	y allows a diversi�ed multicommodity

�ow if and only if the optimal value �� in (MF) is nonpositive (so there

is no need for an additional link capacity). Note that we may termi-

nate the algorithm if we obtain a feasible solution of (MF) with � � 0.

Since 	y de�nes a connected graph, (MF) has a feasible solution. Sim-

ilar path formulations are well known in the literature for �ordinary�

multicommodity �ow problems (without �ow diversi�cation) and orig-

inate from [6], see also [12]. For a recent fast combinatorial heuristic

algorithm for the multicommodity �ow problem, see [9].

For realistic problems the number of path variables and diversi�-

cation constraints is normally very high, and it can be expected that

in an optimal solution most variables are zero and few diversi�cation

constraints constraints active. We therefore solve (MF) by a row and

column generation procedure.

In the column generation phase one solves shortest path problems,

one for each demand; these weights are determined from the dual

variables. Whenever a set of new path variables are added to the LP

we also add diversi�cation constraints for all the nodes in these paths.
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This is done to avoid violation of these constraints for the next LP

solution, and reduces the number of LP's to be solved. If the optimal

solution �� is positive, i.e., the capacity 	y is infeasible, then we obtain

a violated inequality from the dual objective function. When the

diversi�cation constraints (8)(iii) are not present, this inequality is a

metric inequality (3)(ii); otherwise it is a diversi�ed metric inequality.

It may be needed to remove columns and/or constraints during

the computations if the LP's become too large, but this is not done

in the present implementation of these algorithms. (In particular, the

number of diversi�cation constraints may grow fast and should be con-

trolled.) In our algorithm, the row generation is done �in advance�; we

add all those diversi�cation constraints that can possibly be violated

by the next LP solution.

The algorithm is initialized by adding �promising� columns based

on calculations of pairs of disjoint paths. To initialize the column

generation in the various failure situations, one may use the tra�c-

carrying paths belonging to optimal routings in previously solved LPs.

Finally, when 	y does not de�ne a connected graph, a cut inequality

must be violated. This is determined without solving (MF) by search-

ing components in the graph of edges with positive 	ye. In (MF) we

remove constraints (ii) for edges e with 	ye = 0. When a violated met-

ric inequality is found, one has to �nd the missing coe�cients �e for

the removed constraints. This entails shortest path computations for

each missing edge. Instead, we only use those metric inequalities that

de�ne cut inequalities (2), because for those one can easily determine

the missing coe�cients.

3.3 The initial LP of the master problem

We decribe how to generate the �rst LP to be solved in the master

problem. This is done heuristically by generating band inequalities

from some �promising� cut inequalities that are likely to be violated

by initial LP solutions. The purpose of the procedure is to (hopefully)

reduce the number of calls to the time-consuming multicommodity

feasibility routine (see Subsection 3.2).

The inequalities we use in the initial LP are the (strengthened)

band inequalities (6) and (7). To determine a subset of these ex-

ponentially many inequalities, we use a dual ascent approach to the
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following relaxation of min fcTx j x 2MSUNSg:

(P ) minKTz subject to

HTz � 1 for certain band ineq. (6);

HTz � 2 for certain strengthened band ineq. (7);

z � 0:

Here, HTz � 1 (HTz � 2) are band inequalities derived from cut

inequalities (2) andK is the cost function, respectively. Let (D) denote

the dual linear program to (P). A dual variable �H � 0 is assigned to

each band inequality HTz � bH (where bH 2 f1; 2g) and the dual

program becomes

(D) max
P

H bH �H subject to
P

H H t
e �H � Kt

e for all e 2 E, t = 1; : : : ; Te;

�H � 0:

The dual ascent method is a greedy algorithm for (D). It starts from

the feasible dual solution � := 0 and increases certain variables �H as

much as possible without �H becoming infeasible. The band inequali-

ties H with positive �H will then constitute the �rst LP, together with

ordering constraints (3)(i).

Some more details are given next. The algorithm starts out with

a set F of cuts being the one-node cuts �G(v) with incident demand

edges. Thus the shores of the cuts in F are pairwise disjoint, and this

property is maintained throughout the algorithm.

A dual ascent iteration

1. If F is empty, stop. Otherwise construct one (strengthened)

band inequality HTz � 2 or HTz � 1 from each F 2 F .

2. Increase all �H for the band inequalities constructed in Step 1

by a value � which is chosen largest possible without � becoming

infeasible. Let f be an edge in the shore of some cut that de�nes a

�tight� dual constraint.

3. Remove the (one or two) cuts containing f from F . If there

was only one such cut �(W ), and i 2 W , then add the cut �(W [ fjg)

to F . If there were two cuts containing f , with disjoint shores W

and W 0, then add the cut �(W [ W 0) to F , if some (strengthened)

band inequality can be constructed from it.
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3.4 Separation of band inequalities

We describe an algorithm for �nding violated band inequalities in the

master problem. As remarked before, this problem is hard, so we use

heuristics for �nding such violated inequalities.

Assume that a point 	x = (	xte : e 2 E and t = 1; : : : ; Te) is given,

such that the vector 	y with components 	ye :=
P

tm
t
e	x

t
e (for e 2 E)

violates some metric inequality aTy � b all of whose coe�cients are

integer. We describe a heuristic that derives a (possibly) violated band

inequality (6) from the metric inequality.

Let F := fe j ae > 0g, gte := aem
t
e for all e 2 F and t = 1; : : : ; Te,

and, �nally, Gt
e :=
Pt

�=1 g
�
e for all e 2 F and t = 1; : : : ; Te. We assume

that all Gt
e and b are integer, and that

P
e2F G

1
e < b and

P
e2F G

Te
e � b ;

0 < G1
e < � � � < GTe

e ;

	x1e > � � � > 	xTee � 0

(9)

for all e 2 F . If the monotonicity conditions on the 	x are not satis�ed,

say if 	xte = 	xt+1e for some e and t, one may remove variable xte and

renumber all following ones.

We are looking for 0/1 coe�cients hte (e 2 F , t = 0; : : : ; Te), such

that the requirements (i)�(iii) in the de�nition of the band inequality

are met. This can be formulated as the following integer LP:

minh
P

e2F

PTe
t=1 	x

t
eh

t
e

subject to
P

e;tG
t
eh

t
e � b� 1;

P
t h

t
e = 1 for all e 2 F ;

hte � 0 for all e 2 F , for all t;

hte integer for all e; t.

(10)

Because the 	xte decrease as t increases for �xed e 2 F , the integer

solution to (10) must satisfy the maximality requirement of (6).

The problem (10) for given Gt
e and 	x is NP-hard as the knapsack

problem is a special case. So instead of solving the integer LP, we will

solve its continuous relaxation. The LP-solution will contain at most

two noninteger entries. By rounding, a �good� band inequality can

be derived.
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The LP-dual to the continuous relaxation of (10) is

max�;�
P

e2F �e � (b� 1)�

subject to

�e �Gt
e � � 	xte for all e 2 F , t = 1; : : : ; Te;

� � 0

For given �, the �e can be computed as

�e(�) := min
t
f 	xte +Gt

e � g

so the dual problem becomes

max
��0

�(�) where �(�) =
X

e2F

�e(�)� (b� 1)� (11)

� is a one-dimensional, concave, and piecewise-linear function,

whose breakpoints are the breakpoints of the functions �e. It has a �-

nite maximum 	� > 0, because for large �, the �e(�) equal 	x
1
e+G

1
e � for

each e, and, by (9),
P

e2F G
1
e � b� 1. The value � = 0 is not optimal,

because
P
GTe
e � b, according to (9). We solve max f�(�) j � � 0g

by a line-search procedure. From the optimal solution of (11) one can

derive an optimal fractional solution to (10) and an integer (possibly

non-optimal) solution by rounding.

3.5 Primal heuristics

The cutting plane algorithm often stops with a fractional solution 	x,

for which no more violated inequalities can be found. We describe

here how to derive a feasible integer solution from a nonfeasible 	x.

We implemented two methods. The �rst is called INCREASE.

It increases fractional components, as it descends through a branch&

bound tree. The other is called DECREASE, because it blows up 	x

to a feasible but expensive solution and then greedily decreases its

components. A more detailed description follows.

INCREASE scans 	x for fractional components. If there are none,

then INCREASE stops unsuccessfully and one has to try another

heuristic. Otherwise, let 	xte be the largest fractional component among

those with value < 1. Under these conditions, the index t is chosen as

large as possible (if there were several possibilities). Then one trans-

forms 1 � 	x1e � 	x2e � : : : � 	xte into equations in the LP. Thereby xte
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is �xed to 1. Moreover, one �xes all components of 	x of value 1 to 1

for the rest of the heuristic. The new LP is solved with a new 	x as its

solution. If 	x is still nonfeasible, one scans for fractional components,

etc.

DECREASE �rst blows up 	x to a feasible solution x0 as follows: it

solves the feasibility test (8) for the normal state s = 0 with the capac-

ity vector 	y (associated with 	x). The expression
P

uv2D A(uv)f(uv) in

8(i) de�nes a feasible capacity vector for normal state s = 0 whenever

	y was nonfeasible. In the same way one �nds feasible capacity vectors

for all failure states s 2 V [ E. By taking the component-wise max-

imum of all these vectors and then rounding each component to the

next highest admissible capacity step, one �nds a feasible integer solu-

tion x0. Now one decreases each component in x0 as much as possible

without violating feasibility. We have implemented several di�erent

ways of ordering the components, for instance based on smallest cost

increase or smallest value of 	xte � 	xt�1e . The number of feasibility test

can be reduced by performing the described �blowing up� operation

for each reduced x0. This operation does not increase any edge capac-

ity (since x0 is feasible) but may decrease more than one edge capacity,

for example on induced paths.

Usually INCREASE is faster and produces better solutions. But

sometimes DECREASE performs better. In our computational tests

we have only used INCREASE.

4 Computational results

The algorithms have been implemented in C++ as a part of a net-

work planning tool (called MULTISUN) used in Norwegian Telecom.

An important part of this program is a graphical interface used to

display and edit input networks and to show solutions with installed

capacities. The computations were done on a DECstation 3100.

All the test runs reported below are from data supported to us by

network planners. This means that these runs are of interest in the

overall planning process. It should be remarked, however, that the

�nal designs are typically decided by also taking into account other

aspects (�exibility, budget etc.). Thus, the concept of an �optimal

solution� should be interpreted correctly.

The test examples fall into four classes, each of these correpond to
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a certain supply graph. The instances in a class are distinguished by

di�erent demands and survivability requirements. In particular, the

diversi�cation parameters � have been varied (but kept the same for

all demands in a given instance). We also vary a reserve parameter

r 2 f0; 1=2; 1g which means that in case of node or edge failure the

�ow to be routed for each demand uv is rduv. Our main goal has been

the case r = 1, but in the actual planning other values of r are also of

importance.

The columns contain the following information:

� �: diversi�cation parameter

� r: reserve parameter

� Lbd: best lower bound on the optimal value

� Ubd: best upper bound on the optimal value (normally from IN-
CREASE heuristics)

� Gap: (Ubd - Lbd)/Lbd in percent

� Time: CPU time in minutes.seconds

� LP: number of master LP problems

� Band: number of band inequalities in �nal master LP

The test class A consists of 12 instances with the same supply graph

having 27 nodes and 51 edges, see Table 1. The cost function has six

steps (0, 63, 252, 1008, 5040 and 11088) and has a clear �concave�

structure (the actual cost naturally involves the distance between the

end nodes).

In Table 2 one �nds test class B with the supply graph having 118

nodes and 134 edges. This graph is very sparse, which is the case for

many interesting applications. The cost function varies from one edge

to another, altogether ten di�erent functions are used. They all have

5 steps and a certain free capacity which ranges from 0 to 110.

The supply graph of test class C has 37 nodes and 44 edges. Six

quite di�erent cost functions are used. For instance, one cost function

has steps for capacities 5, 63, 252 and 11088 (which is large compared

to all demands), while another has steps for 0 (i.e., no free capacity),

63, 252 and 1004.

The last test class D is with a supply graph having 45 nodes and

53 edges with cost functions roughly as for class C.

Our experiences may be summarized as follows. The gap is gener-

ally very low, and often less than 1 percent. However, this only applies
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200 100 50 20 � r Lbd Ubd Gap Time LP Band

19 0.5 1.0 282.7 287.7 1.7 2.54 8 440

19 1.0 1.0 282.7 287.7 1.7 7.14 10 454

10 9 0.5 1.0 279.3 305.1 9.3 5.55 13 455

10 9 1.0 1.0 279.4 305.1 9.2 14.47 13 462

7 6 6 0.5 1.0 295.8 321.4 8.7 7.02 18 523

7 6 6 1.0 1.0 295.9 314.2 6.2 19.14 21 614

5 14 0.5 0.5 236.3 237.3 0.4 1.42 9 207

5 14 0.5 1.0 266.4 267.9 0.6 2.29 5 215

5 14 1.0 1.0 266.4 267.9 0.6 1.26 5 216

14 5 0.5 0.5 274.7 282.7 2.9 13.49 12 628

14 5 0.5 1.0 279.4 302.1 8.1 4.54 7 347

14 5 1.0 1.0 279.4 302.1 8.1 14.43 7 355

Table 1: Test set A

5 2 1 � r Lbd Ubd Gap Time LP Band

113 0.5 1.0 56.7 56.7 0.0 11.08 22 400

113 1.0 1.0 56.7 56.7 0.0 11.01 21 445

113 0.5 1.0 54.1 54.1 0.0 0.39 5 109

113 1.0 1.0 54.1 54.1 0.0 0.28 5 109

56 57 0.5 1.0 55.9 55.9 0.0 4.00 18 225

56 57 1.0 1.0 55.9 55.9 0.0 3.18 18 225

56 57 0.5 0.5 53.9 54.0 0.2 3.12 3 103

5 20 5 0.5 1.0 38.1 38.1 0.0 0.16 12 238

5 20 5 1.0 1.0 38.1 38.1 0.0 0.17 12 238

5 20 5 1.0 0.5 37.7 37.7 0.0 0.07 9 197

20 5 5 1.0 0.5 37.7 37.7 0.0 0.07 8 198

20 5 5 1.0 1.0 39.8 39.9 0.2 1.36 21 412

20 5 5 0.5 1.0 39.8 40.0 0.4 1.46 21 396

Table 2: Test set B
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10 2 1 � r Lbd Ubd Gap Time LP Band

25 1.0 0.0 12.1 17.9 48.1 0.14 14 85

25 1.0 1.0 37.1 37.1 0.0 0.03 5 86

25 0.5 0.5 37.1 32.8 13.1 0.13 6 89

25 0.5 1.0 37.1 37.1 0.0 0.03 5 86

3 11 11 0.5 0.5 37.1 37.1 0.0 0.04 6 101

3 3 8 0.5 1.0 28.2 28.2 0.0 0.02 5 89

5 5 4 0.5 1.0 28.2 28.2 0.0 0.01 7 93

5 5 4 1.0 1.0 28.2 28.2 0.0 0.01 7 93

5 9 0.5 1.0 28.2 28.2 0.0 0.01 7 95

5 9 1.0 0.5 28.2 28.2 0.0 0.02 12 122

10 4 1.0 0.5 28.2 28.2 0.0 0.03 8 123

10 4 0.5 0.5 28.2 28.2 0.0 0.03 8 123

Table 3: Test set C

30 20 10 � r Lbd Ubd Gap Time LP Band

7 1.0 1.0 33.0 33.7 2.1 0.06 15 183

7 0.5 1.0 33.0 33.7 2.1 0.06 15 183

7 0.5 0.5 32.3 32.3 0.0 0.01 10 150

7 1.0 0.0 14.3 17.5 22.6 0.04 6 52

4 3 1.0 0.5 32.3 32.3 0.0 0.01 10 150

4 3 0.5 0.5 32.3 32.3 0.0 0.01 10 150

2 3 0.5 1.0 33.0 33.7 2.1 0.05 12 155

2 3 0.5 0.5 32.3 32.3 0.0 0.01 8 115

2 3 1.0 0.5 32.3 32.3 0.0 0.01 8 115

3 1.0 0.5 27.3 28.0 2.6 0.02 11 143

3 0.5 0.5 27.3 28.0 2.6 0.02 11 143

3 0.5 1.0 27.3 28.0 2.6 0.03 11 143

Table 4: Test set D
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to the survivability case where r = 1. For instance, as seen in Table

C, the gap may become very large whenever r = 0, although such

problems were not the main goal of this work. This phenomenon may

be explained by the fact that our cutting plane algorithm only adds

band inequalities derived from cuts. For connectivity design problems,

see [15], it is known that cut inequalities give strong relaxations for 2-

connectivity problems, but not for 1-connectivity (Steiner) problems.

For problems with �low� r it therefore seems that adding partition

inequalities as described in [16] would reduce the gap.

We also note that the number of LP's solved and the number of

band inequalities are �under control�. The computation time varies

and most of it is spent in our multicommodity �ow routine. It is clear

that for solving larger problem one would bene�t from developing

faster approximation algorithms for multicommodity �ows.

5 Conclusions

We have developed a model MULTISUN for the design of survivable

networks allowing multicommodity �ows. The survivability assures

that the network has enough capacity to perform rerouting in case

of a single node or edge failure. Furthermore �ows are diversi�ed in

the nonfailure case. The cost function is a step function. Based on

a strengthened formulation using band inequalities derived from cut

inequalities we have described a cutting plane algorithm for MUL-

TISUN. The computational results show that the real world planning

problems at hand were solved to near-optimal solutions. The instances

were fairly large although the supply graphs were sparse.

Further work could be directed towards the similar problem with-

out node/edge survivability. There the development of separation

heuristics for the class of partition inequalities (see [16]) is of interest.

Another interesting area is to �nd better heuristics for the MULTI-

SUN problem and approximation algorithms for the multicommodity

�ow feasibility problem.
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