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ABSTRACT

In areas such as finance, marketing, and property and resource management, many database applications manage
spatio-temporal data. These applications typically run on top of a relational DBMS and manage spatio-temporal data
either using the DBMS, which provides little support, or employ the services of a proprietary system that co-exists
with the DBMS, but is separate from and not integrated with the DBMS. This wealth of applications may benefit
substantially from built-in, integrated spatio-temporal DBMS support. Providing a foundation for such support is an
important and substantial challenge.

This paper initially defines technical requirements to a spatio-temporal DBMS aimed at protecting business invest-
ments in the existing legacy applications and at reusing personnel expertise. These requirements provide a foundation
for making it economically feasible to migrate legacy applications to a spatio-temporal DBMS. The paper next presents
the design of the core of a spatio-temporal, multi-dimensional extension to SQL–92, called STSQL, that satisfies the
requirements. STSQL does so by supporting so-calledupward compatible, dimensional upward compatible, reducible,
andnon-reduciblequeries. In particular, dimensional upward compatibility and reducibility were designed to address
migration concerns and complement proposals based on abstract data types.

1 INTRODUCTION

A wide range of applications manage spatial, time-varying, or
spatio-temporal data. Typically, CAD and GIS applications
maintain huge volumes of spatio-temporal data, i.e., data that
includes spatial extents, shapes, or locations of objects, and
time-related versioning of data. Financial and record-keeping
applications such as accounting, banking, personnel manage-
ment, and medical records, manage large amounts of time-
varying data.

A common characteristic of applications such as these is that
the semantics of spatial and time-varying data are the responsi-
bility of and are encoded solely in the applications or some pro-
prietary system [13, 20, 25]. That is, the semantics of the spa-
tial and temporal dimensions, which are intrinsic properties of
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the data, are unknown to the underlying DBMS. Thus, spatio-
temporal applications do not currently enjoy the built-in, inte-
grated support that current DBMS’s supply to less challenging
applications. This paper addresses the challenge of providing
spatio-temporal DBMS support to spatio-temporal data man-
agement applications.

The database technology in the commercial market is not yet
close to incorporating the necessary spatio-temporal capabil-
ities. However, over the past decade or two, substantial re-
search efforts in the areas of temporal and spatial data man-
agement have resulted in a substantial number of proposals for
temporal and spatial data models and query languages (e.g.,
IXSQL [14], TempSQL [9], TSQL2 [24], ROSE Algebra [10],
ParaSQL [5], Spatial SQL [7], and GEO System [18]). But,
none of these proposals address the migration of legacy appli-
cations to a spatio-temporal DBMS.

The paper defines a requirement aimed at guaranteeing that
legacy DBMS application code, with its associated data, with-
out changes remains operational when migrated to the spatio-
temporal DBMS. Another requirement aims at ensuring that
new application code that exploits the new spatio-temporal sup-
port of the DBMS may co-exist harmoniously with the legacy
code. Finally, a requirement aims at ensuring that programmers
familiar with SQL–92 may start using the new features of the
DBMS without a need for expensive training.



STSQL supports the two generic temporal aspects,valid time
andtransaction time, of database facts that record when facts
are true in the modeled reality and when they are current in
the database, respectively. STSQL also supports the manage-
ment of arbitrary spatial aspects of information (we provide one
genericspaceaspect because the distinction between valid and
transaction time does not apply well to space). The time and
space values are recorded bytimestampsandspacestampsthat
are associated with tuples as values of special attributes, and
multiple space and time dimensions are permitted in a single
table.

The migration requirements that dictate the general properties
of STSQL were originally developed in the context of bitempo-
ral tables, i.e., tables supporting, at most, one transaction time
and one valid time [2, 3]. STSQL supports multiple valid- and
transaction-time and multiple space attributes in a single di-
mensional table. We are aware of no other models with this
property. Among the few spatio-temporal data models that ex-
ist, ParaSQL [5] may be the closest relative of STSQL. How-
ever, being based on an attribute-value stamped data model,
ParaSQL differs substantially from STSQL; apart from upward
compatibility, it does not satisfy any of the migration require-
ments. STSQL generalizes ATSQL [3] and proposed addi-
tions to the SQL/Temporal part of the SQL3 standard [22, 23],
which support bitemporal tables and satisfy temporal migra-
tion requirements. Considering spatial data models, we have
found no data models that provide migration support beyond
upward compatibility. The SQL-based languages GEOQL [17],
PSQL [19], KGIS [11] and Spatial SQL [7] preserve the non-
dimensional SQL and satisfy upward compatibility, and they
define explicit extensions to the SQL select statement for the
handling of spatial values. KGIS and Spatial SQL also define,
outside SQL, other language constructs to augment the spatial
capabilities of their models and languages.

The paper is organized as follows. Following an introduc-
tion in Section 2 of a case that will be used for illustration
throughout, Section 3 defines three fundamental requirements
to a spatio-temporal data model and query language. Section 4
proceeds by presenting the design of the spatio-temporal exten-
sion STSQL of SQL–92 that satisfies the requirements. Section
5 concludes the paper and outlines open research issues.

2 A SPATIO -TEMPORAL DATA M ANAGEMENT

APPLICATION

The case example presented here is based on an existing legacy
planning and scheduling system (termed Ecoplan) used for
forest management, specifically for long-term forest harvest
scheduling based on ecological, recreational, and economical
constraints [16].

While the system has four modules, we focus on the data mod-
ule, which at present manages data in a loosely coupled fashion.
Spatial data is stored in files and is managed by the module
using proprietary data structures. The associated textual and
numeric property data is managed by a relational DBMS.

Using examples from this case, we will exemplify the design of
a spatio-temporal relational data model step-by-step. To con-
cisely illustrate the contributions of this paper, we have sub-
stantially simplified the system. We will thus assume that the
system’s database contains three tables as shown in Figure 1.

stands:

st ID index specie planted

st 100 high pine 1935
st 230 high birch 1957
st 245 low birch 1946
st 560 high spruce 1963

plans:

pl ID st ID volume ripe

pl 29 st 100 2000 2000
pl 29 st 560 900 2000
pl 29 st 230 1500 2002
pl 34 st 245 400 2010

estates:

es ID owner

es34 Paul
es401 Mary
es63 Mary
es80 Peter

Figure 1: A Case Example Database

Thestands table to the left captures data about regions that
are homogeneous with respect to soil fertility (a so-called in-
dex), wood specie, and average age (recorded as the year the
trees were planted). Thus, a tuple instands records sur-
veyed data about a forest region; theestates table to the
right records the IDs of estates and their owners. An estate is a
legal entity covering a geographical region, possibly including
one or more forests. Finally, theplans table in the middle
defines the harvest plans for stands, with each stand being as-
sociated with one or more plans (and vise versa), an estimated
harvest volume inm3 for each stand, and an optimal harvest
time (a so-called ripe year) of the stand. Thus, a plan of a stand
is a calculation based on the stands data and specific scheduling
parameters. Figure 2 illustrates the spatial locations of estates
and stands, and it also indicates the plans of stands. (Regions
st 100A, st 100B, andst 100C are subregions ofst 100 that
will be computed by subsequent examples.)
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Figure 2: Distributionof Estates and Stands with Related
Plans



3 MIGRATION REQUIREMENTS

This section defines and discusses three important requirements
to a spatio-temporal data model and query language. While
space and time are quite different aspects of data, the require-
ments are able to treat the two aspects uniformly.

3.1 Overview

When migrating to a new DBMS, it is desirable, or even essen-
tial, to protect existing investments in legacy application code
and in programmer expertise. Informally stated, it is important
that

1. all non-spatio-temporal legacy data is maintained by the
new DBMS;

2. all non-spatio-temporal legacy code (i.e., queries and
modifications) remains operational using the new DBMS,
and it may access the same data as before;

3. skilled legacy system developers should with little effort
be able to utilize a core subset of the added functionality
in the spatio-temporal DBMS; and

4. the spatio-temporal DBMS should provide constructs to
utilize the full potential of a spatio-temporal data model
and query language.

These requirements should be supported in concert by the
data model and query language of a spatio-temporal DBMS
(STDBMS). The next step is to make the requirements precise.
To do so, some notation is needed.

We will assume that a data model,M , is given by a query lan-
guage component,QL, and a component of data structures,
DS, manipulated by the query language. A data model cap-
tures the functionality of a DBMS that implements the data
model. In the relational model, the most important user-level
query language is SQL, and the table is the central data struc-
ture. Next, for a query language expressions and an asso-
ciated databasedb, both legal elements of data modelM =
(DS,QL), we define〈〈s(db)〉〉M as the result of applyings to
db in data modelM . We use the superscripts “s” and “ d” to in-
dicate snapshot and dimensional entities, respectively. For ex-
ample,qd denotes a dimensional query. The dimensional slice

operator,τM
d,Ms

p , wherep, a dimensional point, is a parame-
ter, takes a dimensional databasedbd (in the data modelMd)
as argument. It returns a snapshot databasedbs (in the data
modelMs) containing all tuples that are defined at pointp. In
other words,dbs consists of snapshot tables of the tuples (of
tables) indbd, but without their dimensional attributes, whose
associated (dimensional) regions as defined by the combination
of their dimensional attributes include the pointp.

3.2 Compatibility Requirements

The first two informal requirements above address upward
compatibility issues, and are formally defined in the following.
We first defineupward compatibility.

Definition 3.1 (UC) Model M1 is upward compatiblewith
modelM2 iff

• ∀db2 ∈ DS2 (db2 ∈ DS1),

• ∀s2 ∈ QL2 (s2 ∈ QL1), and

• ∀db2 ∈ DS2 (∀s2 ∈ QL2 (

〈〈s2(db2)〉〉M2 = 〈〈s2(db2)〉〉M1)).

Upward compatibility captures the conditions that need to be
satisfied in order to allow a smooth transition from a current
system, with data modelM2, to a new system, with data model
M1. The first two conditions imply that all existing databases
and query expressions in the old system are also legal in the new
DBMS. The last condition guarantees that all existing queries
compute the same results in the new and the old DBMS.

The second compatibility requirement,dimensional upward
compatibility, ensures that legacy applications remain opera-
tional even if the database is rendered dimensional. Intuitively,
the requirement is that a queryqs must return the same result
on an associated snapshot databasedbs as on the dimensional
counterpart of the database,D(dbs) (with operatorD adding
dimensions to its argument database). Moreover, modifications
should not affect this. We useU to denote a sequence of modi-
fications.

Definition 3.2 (DUC) ModelMd is dimensional upward com-
patiblewith modelMs iff

• Md is upward compatible withMs and

• ∀dbs ∈ DSs (∀ U (∀qs ∈ QLs (

〈〈qs(U(dbs))〉〉Ms = 〈〈qs(U(D(dbs)))〉〉Md))).

To satisfy this requirement, all dimensional attributes must
be managed specially in legacy queries and modifications (re-
member that legacy applications accessing the database are not
aware of them).

For time dimensions, the implicit handling of timestamps has
been investigated carefully [2]. Legacy query expressions are
evaluated only on tuples with valid and transaction times that
overlap withnow. Legacy modification statements are slightly
more complicated. Such statements affect current and future
data only. Thus, newly inserted tuples get valid and transaction
time periods from the (constant) time of the insertion until the
(variable) current time, whereas logical deletions set the end
times of periods of tuples to be deleted to the time of the dele-
tion, thus removing the tuples from all future current states.

In contrast to the temporal dimensions, there are no obvious
default values for spatial dimensions. We have decided to let
legacy queries ignore spatial dimensions. This is consistent
with how spatial dimensions are handled when spatial values
are captured using explicit attributes: if such attributes are not
mentioned explicitly, they are ignored. Legacy modifications
set space values of tuples to some default value, i.e., either a
user-defined default or the system default.

To illustrate the compatibility requirements, consider the fol-
lowing three statements issued in an STDBMS that satisfies UC
and DUC.

> SELECT * FROM plans;
> ALTER TABLE plans

ADD harvest1 PERIOD AS VALID;
> SELECT * FROM plans;



The first statement is an SQL–92 query issued on the legacy
table,plans . Due to UC, it returns the same result as it did in
the old DBMS. The next statement exemplifies operatorD from
above. It alters theplans table by adding a valid-time dimen-
sion to indicate harvest periods of stands, perhaps because a
new application needs this information about plans. The last
statement is now on an extended table, but due to DUC it yields
the same result as the first statement. In particular, it does not
return the harvest period dimension so that legacy applications
do not have to be changed.

Summarizing, a UC evaluation is simply an evaluation that is
identical to that of the legacy DBMS, and a DUC evaluation
simulates a non-dimensional database where only one state is
maintained.

3.3 Reducibility Requirements

To naturally generalize the snapshot relational model to a di-
mensional relational model, we adopt the view that a dimen-
sional table is a collection of snapshot tables, with each snap-
shot table having an associated multi-dimensional point and
containing all the snapshot tuples that have an associated multi-
dimensional region that contains the point.

We first define what it means for a data model to besnapshot
reduciblewith another data model.

Definition 3.3 (SR) Data modelMd is snapshot reducible
with respect todata modelMs iff

∀qs ∈ QLs (∃qd ∈ QLd (∀dbd ∈ DSd (∀p (

τM
d,Ms

p (qd(dbd)) = qs(τM
d,Ms

p (dbd)))))).

This concept of snapshot reducibility generalizes the similar
concept from temporal databases in a straight-forward manner
[21]. Observe thatqd being snapshot reducible with respect to
qs poses no syntactical restrictions onqd. It is thus possible for
qd to be quite different fromqs, andqd might be very involved.
This is undesirable, as we would like the dimensional model to
be a straight-forward extension of the snapshot model. Conse-
quently, we require thatqd be asyntactically similar snapshot
reducibleextension ofqs [4].

Definition 3.4 (SSSR)Data modelMd is asyntactically simi-
lar snapshot-reducible extensionof modelMs iff

• data modelMd is snapshot reducible with respect to data
modelMs, and

• there exist two (possibly empty) strings,S1 andS2, such
that each queryqd in QLd that is snapshot reducible with
respect to a queryqs in QLs is syntactically identical to
S1q

sS2.

If the two stringsS1 andS2 are both the empty string, the ex-
tension is termed a syntactically identical snapshot reducible
extension.

This requirement makes it possible for the SQL–92 program-
mer to easily formulate spatio-temporal queries. To illustrate

this, we first extend theestates andstands tables with
two-dimensional valid-space attributes and then issue three
spatio-temporal queries, which are explained next.

> ALTER TABLE estates
ADD es_area 2D_REGION AS SPACE;

> ALTER TABLE stands
ADD st_area 2D_REGION AS SPACE;

> REDUCIBLE (es_area) AS area
SELECT * FROM estates;

> REDUCIBLE (es_area, st_area) AS area
SELECT es_ID, st_ID
FROM estates, stands;

> REDUCIBLE (es_area, st_area) AS area
SELECT st_ID
FROM stands
WHERE NOT EXISTS (

SELECT *
FROM estates);

Note that the queries have an SQL–92 core and are prepended
with aREDUCIBLEstring. The string, termed aflag, indicates
how to handle the dimension attributes in the queries. Flags in
STSQL is an important topic of the next section.

The presence of theREDUCIBLEflag implies that, conceptu-
ally, all queries are computed in a point-by-point fashion. More
specifically, for each point in space, the legacy SQL statement
following the flag is evaluated on the snapshot database corre-
sponding to that point. Next, the results for each point in space
are integrated into a single dimensional table: Tuples with iden-
tical explicit attributes are replaced by a single tuple with the
same explicit attributes values and an attributearea , which
stores the region corresponding to the union of all the tuples’
associated points in space. (Here, we assume that the data type
used for spatial regions, i.e., the data type ofarea is capa-
ble of representing any union of points in space. If this is not
the case, several tuples are generally needed for capturing the
spatial region.)

We assume that all spatial values for estates and stands, shown
in Figure 2, have been included into the database in Figure 1.
Then the first statement returns all tuples ofestates . With
each tuple anarea -attribute that specifies the estate’s region
will be returned. The second query retrieves for each point in
space the respective estate and stand. More precisely, the re-
sult of the query contains the tuples〈es 34, st 245, reges 34 ∩
regst 245〉 and〈es 80, st 245, reges 80 ∩regst 245〉. The third
statement is conceptually not different from the other ones. At
each point in space it retrieves stand IDs if there does not ex-
ists an estate. In other words, the query determines those (parts
of) stands that are not located within an estate. The result is
〈st 100, regst 100B〉.

In summary, a snapshot reducible query generalizes a snap-
shot query by reducing argument dimensional tables to point-
indexed snapshot tables, then computes the corresponding
snapshot query on those snapshot tables, and finally “unions”
the snapshot results to achieve a dimensional result table.
The main characteristic of snapshot-reducible evaluation is its
point-based nature, where dimensional tables may be seen as
indexed sequences of snapshot tables. Hence, the key word
REDUCIBLE.

A spatio-temporal query language should also provide queries



that have no counterparts in the snapshot query language. That
topic is considered next.

3.4 Beyond Reducibility

Reducible STSQL queries perform computations on the dimen-
sion attributes as specified by reducibility and by the SQL–92
queries they reduce to. The advantage is that it is easy to im-
mediately write a wide range of dimensional queries that per-
form potentially complex manipulation of dimension attributes.
But many reasonable and useful dimensional queries cannot be
specified as reducible generalizations of snapshot queries, so
there is a need for the ability to specify queries where no pro-
cessing of the dimension attributes is hard-wired into the data
model, but where the programmer instead has complete control
over the manipulation of the dimension attributes.

We thus make it possible to specify in the flag of a statement
that dimension attributes should simply be considered as reg-
ular attributes. In addition, we provide a range of predicates
and functions that operate on the data types of the dimension
attributes. This gives the programmer full control over the di-
mension attributes. For example, non-reducible queries may
relate database states that apply to different points in multi-
dimensional space. For this reason, we use the key word
NONREDUCIBLEto indicate dimension attributes that should
be treated as regular attributes in a query. An example follows.

> NONREDUCIBLE (es_area, st_area)
SELECT s.st_ID, s.st_area
FROM stands s
WHERE NOT EXISTS (

SELECT *
FROM estates e
WHERE e.es_area CONTAINS s.st_area);

The query retrieves all stands for which no single estate exists
that covers the stands area. In this query, we consider the re-
gions of the stands as being non-decomposable and constrain
them with a spatial predicate. This contrasts theREDUCIBLE
queries from before, where regions are decomposed into their
constituent points.

3.5 Summary

We have introduced three ways of handling dimension at-
tributes in spatio-temporal tables. Dimension attributes that are
not mentioned in the flag of a query language statement are “ig-
nored,” or treated consistently with dimension upward compat-
ibility. If the key wordREDUCIBLEis used for dimension at-
tributes, they are treated as implicit dimensions of data, and the
statement is evaluated with semantics that meet the snapshot re-
ducibility requirement. This provides built-in spatio-temporal
query processing. Finally, if the key wordNONREDUCIBLE
is used for dimension attributes in the flag of a statement, the
dimension attributes are treated as regular attributes. This pro-
vides maximum flexibility in writing spatio-temporal queries.

4 STSQL DESIGN

This section discusses the design of a spatio-temporal extension
to SQL–92 based on the requirements presented in Section 3.

We briefly discuss the new data types of STSQL, then explore
in more detail its syntax and semantics.

4.1 Space and Time Data Types

The initial step in the design of STSQL is to introduce new
data types that capture time and space values. For time val-
ues STSQL uses anchored time periods. Spatial values are
unions of regions. Regions are either defined over 1-, 2-, or
3-dimensional spatial domains. The corresponding data types
arePERIOD, 1D REGION, 2D REGIONand3D REGION,
respectively. (In this paper, the number of different region data
types and their individual characteristics are of minor impor-
tance. The interested reader is referred to, e.g., G¨uting [10] for
more details about a variety of spatial data types).

The new data types must be accompanied by predicates and
functions that operate on them. Again, the specific choice and
number of these is not important for the contribution of this
paper, so we simply give a list of names and brief informal de-
scriptions of some useful, representative predicates and func-
tions, see Figure 3.

The predicates for periods and regions should be well known
to those familiar with, e.g., Allen’s interval logic [1] and Egen-
hofer and Franzosa’s point-set topological spatial relations [8].

4.2 Dimensional Tables and Databases

The next step is to make tablesdimensional, in order to pro-
vide a basis for built-in dimensional support for modifications
and queries in the query language. The data types introduced
in the previous section are utilized. Note that the data types,
like any other SQL–92 data types, may be employed for defin-
ing domains of attributes that are no different from regular at-
tributes. Including such attributes in a table does not render
the table dimensional; rather, the table is a regular table that
includes regular attributes, some or all of which happen to be
of typePERIOD, 1D REGION, 2D REGION, or 3D REGION.
The DBMS attaches no special semantics to these attributes.

To provide built-in dimensional support, e.g., dimensional up-
ward compatibility and snapshot reducibility, it is necessary to
be able to designate certain time or space valued attributes as
special dimensional attributes. Tables with such attributes are
then dimensional tables. In STSQL, dimensional tables may
have any number of dimensional attributes, and each dimen-
sion attribute may be of any of the four new time and space
types introduced in Section 4.1. In addition, a dimension at-
tribute is specified as either aVALID , aTRANSACTION, or a
SPACEattribute. We then obtain three conceptually different
types of dimension attributes. Withd att being the name of
a dimension attribute, the three types are as follows (wherex
denotes1, 2, or 3).

d att PERIOD AS VALID
d att PERIOD AS TRANSACTION
d att xD REGION AS SPACE

In typical use, a dimension value of a tuple is associated with
the tuple as a whole. In the first type,d att then records when
some temporal aspect of the information recorded by the (non-
dimensional) attribute values of the tuple as a whole is true,



name description domain value
BEGIN/END timestamp start/end time period time instant
MEETS adjacency/neighbor period/region boolean
OVERLAPS sharing common period/region period/region boolean
CONTAINS one within the other period/region boolean
PRECEDES one strict earlier than the other period boolean
INTERSECTION shared period/region period/region period/region
DURATION length of period in specified units period a number
AREA number of square units region a number

Figure 3: Some predicates and functions

or valid, in the mini-world. For example, we have previously
added aharvest1 attribute to theplans table, recording
the harvest period for a plan. While with the first type above,
we record when some temporal aspect of a tuple is valid, the
second type records when a tuple is current in the table, or,
equivalently, when we believed in the information recorded by
the tuple. This transaction-time aspect of a tuple is impor-
tant in applications that require accountability or traceability of
database modifications. In contrast to valid-time values, which
are determined by the mini-world modeled by the database, the
transaction-time values are determined by the modification ac-
tivity on the database. Because the merits of the distinction be-
tween valid and transaction time are unclear for space, we pro-
vide support for a single, generic spatial aspect. As an example,
we have previously added the attributees area 2D REGION
AS SPACEto theestates table. This dimensional attribute
is intended to record the geographic areas of individual estates.

In contrast to most spatial and temporal models, STSQL per-
mits multi-dimensional tables where a single table may have
any number of dimension attributes of any of the types explored
above. This added generality is useful for many purposes. Sev-
eral valid-time attributes are useful, e.g., when the information
of a tuple is true in several different (possible) worlds. For
example, different historians, archeologists, or interest groups
may possess different, competing world views, all of which
could be represented in a single table. SeveralVALID-type
attributes may also record different temporal aspects of a tu-
ple. For example, theplans table previously presented had
a VALID attributeharvest1 recording when a stand is sup-
posed to be harvested. We can also add a newVALID attribute
denoting when the textual property data about a plan for a stand
are valid. Certainly, these two attributes record different aspects
of a plan. We may also add aVALID attribute recording an al-
ternative harvest period that denotes a harvest period of a stand
calculated using a different method and different parameters.
The resulting two harvest attributes reflect different (possible)
worlds. Considering space instead of time, it is equally easy to
envision uses of multiple dimension attributes: The multiple-
worlds argument applies equally well to space, and tuples may
have several different kinds of spatial aspects. Couclelis dis-
cusses issues related to these [6]. Reasons for recording mul-
tiple transaction attributes have been explored elsewhere [12].
The choice of how to use multiple valid, transaction, and space
attributes is up to each specific application.

In summary, we have added multiple space and time dimen-
sions to tables, thereby obtaining the notation necessary to
enable dimensional semantics to be built into modifications
and queries. The next step is to explore the management of
databases with multi-dimensional tables.

4.3 STSQL Statements

This section presents the core of STSQL. An EBNF syntax is
given for the central extensions to SQL–92, and examples from
the forest management application are used for illustrating the
semantic properties of STSQL.

4.3.1 Alter and Create Statements

Legacy tables can be extended with spatial and temporal di-
mensions. For example, the following statements extend the
stands -table from our case with further dimensions.

> ALTER TABLE stands ADD survey PERIOD;
> ALTER TABLE stands

ADD st_vt PERIOD AS VALID;
> ALTER TABLE stands

ADD st_tt PERIOD AS TRANSACTION;

These statements alter thestands table to include a valid-time
dimension, a transaction-time dimension, and a user-defined at-
tribute, the latter denoting the period during which a stand is
surveyed. Note the difference betweensurvey andst vt .
The former is not a dimension and, therefore, not subject to up-
ward compatibility, dimensional upward compatibility, or re-
ducibility.

4.3.2 Queries, Flags, and Dimension Identifiers

This section explores dimensional queries. All sample queries
are evaluated on the tables shown in Figure 4. In order to under-
stand the queries and modifications, it is essential to understand
the semantics associated with these tables. We discuss each ta-
ble in turn.

Thestands table models the (surveyed and analyzed) status
of stands. For each stand we record, e.g., the specie of the
stand’s dominant tree population, the soil fertility of the stand
(i.e., the index), the stand’s location, and a period of validity.
A transaction time is used to retain a record of modifications.
In stand st100, pine trees have good growing conditions, i.e.,
high soil fertility. They were planted in1935 and the stand was
surveyed between 1984 and 1986. The stand location is the
regionregst 100. The information has been valid since 1989,
but was first recorded in 1996.

Theestates table records for each estate its owner, the valid-
ity period of the ownership, and the area that it covers. A trans-
action time is used to record modifications. During 1995 and



stands
st ID index specie planted survey st vt st tt st area

st 100 high pine 1935 1984-1986 1989-now 1996-now regst 100

st 230 high birch 1957 1984-1986 1989-now 1996-now regst 230

st 245 low birch 1946 1984-1986 1989-now 1996-now regst 245

st 560 high spruce 1963 1984-1986 1989-now 1996-now regst 560

estates
es ID owner es area es vt es tt

es34 Paul reges 34 1995-now 1994-now
es63 Mary reges 63 1996-now 1996-now
es80 Peter reges 80 1996-now 1995-1996
es401 Mary reges 401 1996-now 1995-1996
es80 Peter reges 80 1996-1999 1997-now
es401 Mary reges 401 1996-1999 1997-now
es100 Tom reges 80 ∪ reges 401 2000-now 1997-now

plans
pl ID st ID volume ripe pl vt harvest1 harvest2

pl 29 st 100 2000 2000 1996-now 1998-2000 1999-2004
pl 29 st 560 900 2000 1996-now 1999-2001 2001-2003
pl 29 st 230 1500 2002 1996-now 2000-2002 2005-2008
pl 34 st 245 400 2010 1995-1996 2009-2011 2009-2011
pl 35 st 245 500 2011 1997-now 2010-2012 2010-2012

Figure 4: The Spatio-Temporal Example Database

1996, it was recorded that estate es80, covering areareges 80,
was owned by Peter from 1996 onwards. Similarly, it was
recorded that estate es401, covering areareges 401, is owned
by Mary from 1996 onwards. In 1997, Mary and Peter agreed
to sell their estates es401 and es80, respectively, to Tom, ef-
fective as of year 2000. Tom’s estate will then cover the areas
of these two estates.

Theplans table records how stands are cultivated. For each
stand, we record the volume to be harvested and the ripe year.
Each plan has two harvest periods, calculated according to dif-
ferent scheduling methods that emphasize some growth condi-
tions differently, e.g., according to soil fertility, climate, etc.
Plan pl34 schedules stand st245 to be harvested from 2009
to 2011. The expected harvest volume is 400m3, and the ripe
year is 2010. At some point, plan pl34 for stand st245 is
superseded by plan pl35. The new plan postpones the harvest
period to 2010–2012 because, due to new climate estimates, the
new expected ripe year has moved to 2011. The new expected
harvest volume is 500m3.

The syntactic extensions to SQL–92 that are needed to formu-
late spatio-temporal statements are relatively few. Theflag is
the central novel construct and is used to indicate the desired
evaluation mode(s) (cf. Section 3). Flags are placed in front of
SQL statements and indicate whether the statements have to be
evaluated according to reducible and/or non-reducible seman-
tics. Additionally, it is possible to express domain restrictions
and range specifications [3].

The following EBNF defines the syntax of flag. The<cursor
specification> is the standard’s production for the
SELECTstatement [15].

<cursor specification>
::= flags <query expressions>

flags ::= flag { "AND" flag }
flag ::= modifier dimensions
modifier ::= "REDUCIBLE" | "NONREDUCIBLE"
dimensions ::= "(" column_reference

{ column_reference } ")"
[ "AS" <identifier> ]

The dimension(s) that a particular flag modifier applies to is
(are) given by the non-terminaldimensions and have to fol-
low the reducible or nonreducible modifier. Because of the
multi-dimensional nature of STSQL, dimensions have to be
named explicitly—unlike in frameworks with a fixed number of
dimensions, this information cannot be inferred automatically.

To be meaningful, a reducible evaluation must apply to pre-
cisely one dimension from each argument table in the SQL
statement. This requirement reflects the fact that a flag (and
thus a reducible evaluation) applies to anentirestatement. In
general, no meaningful semantics can be given to reducible
statements with tables that do not participate in the reducible
evaluation. Note that derived table expressions (i.e., table ex-
pressions in the from clause) start a new scope whereas sub-
queries in the where clause do not. It should also be clear
that the dimension types that take part in a reducible evaluation
must be homogeneous. Reducible semantics are not meaning-
ful when combining valid time and valid space or transaction
time and valid time because of the different semantics associ-
ated with the respective dimensions.

When formulating queries on dimensional tables, it is advan-
tageous to proceed in several steps. Initially, all dimensions
are ignored and the core STSQL query, typically an SQL–92



query, is formulated. The next steps concern the formulation of
the query’s flag. For each dimension of each table in the query,
we must determine and express in the flag the dimension’s use
in the query. First, we determine what dimensions should be
evaluated with reducible semantics. Each occurrence of the
REDUCIBLEkeyword requires the participation of exactly one
dimension from each table. Second, we determine which di-
mensions are to be givenNONREDUCIBLEsemantics. This
semantics is chosen if we want to formulate user-defined pred-
icates (e.g.,CONTAINS) on the attribute or if we want to over-
ride DUC-consistent semantics, which is the semantics given to
dimension attributes not mentioned in the flag.

A set of example queries with corresponding answers are em-
ployed to illustrate the concepts introduced above and the for-
mulation of queries in STSQL.

Query Q1 For each stand that is ripe in 2000, determine its
harvest periods. This query requires us to join thestands
and theplans tables. We use a reducible join over the valid
times to associate stands with relevant plans only. Next, we
are only interested in thestands table as best known as of
now, i.e., we restrict the transaction time to overlapnow. This
is exactly the semantics provided by DUC and we therefore
do not specify any flag forst tt . The location of a stand is
not relevant and, thus, must be disregarded. This semantics
is supported by DUC, which means that no flag forst area
has to be specified. Finally, we want to retrieve (and handle)
the harvest periods like regular attributes. This is achieved by
specifying a non-reducible flag for these dimensions.

> REDUCIBLE (st_vt, pl_vt) AS vt AND
NONREDUCIBLE (harvest1, harvest2)

SELECT st.st_ID, harvest1, harvest2
FROM stands st, plans pl
WHERE pl.st_ID = st.st_ID
AND pl.ripe = 2000;

st ID harvest1 harvest2 vt
st 100 1998-2000 1999-2004 1996-now
st 560 1999-2001 2001-2003 1996-now

Query Q2 Determine pine stands and corresponding es-
tate(s). This query requires us to point-wise join (a) the loca-
tions ofstands andestates and (b) the valid times of both
tables. Because we are only interested in information as best
known, we restrict the transaction times to overlapnow. This
is exactly the semantics provided by DUC, and we therefore do
not specify any flag for the transaction times.

> REDUCIBLE (st_area, es_area) AS area AND
REDUCIBLE (st_vt, es_vt) AS vt

SELECT st_ID, es_ID
FROM stands, estates
WHERE specie = ’pine’;

st ID es ID area vt
st 100 es 80 reg st 100A 1996-now
st 100 es 34 reg st 100C 1995-now

Query Q3 For all stands, determine when the two harvest pe-
riods are scheduled contemporarily.Searching for contem-
porary occurrences (i.e., instants within both harvest periods)

hints at reducible semantics. In this case, we have to self-
join the stands table, relatingharvest1 andharvest2
in a point-wise fashion. Note that a nonreducible semantics has
to be specified for those harvest periods we are not interested
in, i.e.,harvest2 for pl1 andharvest1 for pl2 , respec-
tively. We have to do so to prevent the default, DUC-consistent
evaluation. Such an evaluation would restrict the times of the
respective harvest periods to the current time, which is clearly
not what we want.

> REDUCIBLE (pl1.harvest1, pl2.harvest2)
AS agreed_harvest AND

NONREDUCIBLE (pl1.harvest2, pl2.harvest1)
SELECT pl1.st_ID
FROM plans pl1, plans pl2
WHERE pl1.st_ID = pl2.st_ID;

pl1.st ID agreed harvest
st 100 1999-2000
st 560 2001
st 245 2010-2012

5 CONCLUSION AND FUTURE RESEARCH

This paper has formulated central requirements to a new dimen-
sional DBMS aiming at addressing legacy-related concerns.
The objectives are to make it possible for legacy database ap-
plications using a conventionalSQL–92-based DBMS to be mi-
grated to a dimensional DBMS without changing the applica-
tion code; to make it possible to add new spatio-temporal appli-
cations without affecting the legacy applications; and to make
it possible to reuse programmer expertise in SQL-92 when de-
veloping spatio-temporal applications. A spatio-temporal ex-
tension to SQL–92, termed STSQL, that provides built-in data
management support for spatio-temporal data has been de-
signed to meet the above requirements. The core of the lan-
guages and fundamental issues and concepts in its design have
been explored.

No other spatio-temporal language satisfies all the require-
ments. Within temporal databases, two bitemporal query lan-
guages satisfy the requirements; unlike these two languages,
STSQL supports an arbitrary number of temporal and spatial
attributes with built-in support in the query language.

Several directions for further explorations may be identified.
First, we have only described the initial design of the core of
STSQL, and further formalizations of the language, beyond the
informal semantics give here, are warranted. Perhaps most
prominently, the semantics of spatio-temporal modifications
have yet to be determined in full, and then specified. Next, we
have chosen one possible and reasonable semantics for DUC
statements. It appears that other semantics are possible in a
multi-dimensional framework; further studies are needed to
identify these and to then explore their utility. Finally, it is
desirable to implement a core subset of STSQL on top of an ex-
isting DBMS, e.g., Oracle using its Spatial Data Option. This
layered approach allows for relatively quick construction of a
prototype that may then be used as a vehicle for experimen-
tation with the query language design. Previously a prototype
implementation of STSQL’s temporal cousin, ATSQL [3], has
been implemented.
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