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1. Summary 

 

This report is the second in series about time-domain modelling of broadband frequency-

dependent attenuation via a frequency decomposition approach. The other two reports are 

concerned with the modified mode superposition model [1] and the fractional 

derivative model [2].  

 

The medical ultrasound transducers as well as other real-world acoustic sources mostly 

produce multiple-frequencies acoustic wave. This study aims to extend the frequency-

dependent attenuation time-domain model of single frequency excitations [3] to 

broadband excitations via finite frequency decomposition. The basic idea behind this 

strategy is to divide a broadband excitation into a bank of narrowband excitations and 

then regard each narrowband source as a single frequency source. Finally, the responses 

of all narrowband sources are summed up as the system response of the corresponding 

broadband source. In essence, the frequency decomposition is  based on the superposition 
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principle. A frequency decomposition experimental simulation [4] has verified that the 

methodology is accurate, reliable and efficient.  

 

It is expected that the strategy will also work with the FEM time-domain numerical 

simulation. Compared with the previous mode superposition model [1], the present 

broadband model also satisfies the principle of causality and is as simple to implement, 

more computationally affordable since it circumvents computationally expansive 

fractional power of a matrix. The additional computing effort of this model is to the 

forward and inverse bandpass filter transforms of broadband excitations, which is trivial 

among the whole simulation. However, the computing effort of broadband excitations is 

expected about ten times higher than that of a single excitation. Blessing is that the model 

is inherently very suitable for parallel computing. The direct extension of the present 

model to nonlinear media, however, is blocked since the superposition principle ceases to 

hold. A linearization iteration method [5] may revitalize the model to nonlinear problems, 

which we will investigate in the future.  

 

The rest of the report is grouped into the four sections. In section 2, the time domain 

model of single frequency excitation is briefly discussed for the completeness of this self-

contained report, and then, in section 3, we outline the frequency decomposition 

procedure to model the ultrasound propagation under a broadband excitation in time 

domain. Section 4 is dedicated to the bandpass filter which decomposes a broadband 

excitation into a bank of narrowband excitations. Finally, section 5 analyzes the 

dispersion properties of the present broadband time domain model.  

 

 

2. Time-domain model for single frequency excitation 

 

The frequency-power attenuation is given by 

 

( ) ( ) ( ) xfexpxxp ∆−=∆+ α ,    (1) 
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where p represents the amplitude pressure, and  f is the frequency, 

 

( ) yff 0αα = ,  y∈ [0,2].   (2) 

 

Here α0 is the attenuation constant and y the frequency-power exponent, both of which 

are dependent on tissues.  

 

Assuming the viscous absorption linearly depends on the velocity, the standard time-

domain damped ultrasound wave model can be expressed as  

 

01 2
2 =∇−+ ppp

c
&&& γ ,     (3) 

 

where γ is the viscous coefficient, and upper dot denotes the temporal derivative. The 

FEM analogization of spatial Laplacian yields the semi-discretization equations 

 

( )tgKpcpcp =++ 22 &&& γ ,    (4) 

 

where K is the symmetric FEM interpolation matrix of Laplace operator, and vector g(t) 

is due to the external excitation source (transducers on boundary surface of our 

problems). In the case of a singular frequency excitation g(t), [1] derived 

 

( )tgKpcpcfp y =++ 2
02 &&& α     (5) 

 

corresponding to the empirical frequency-dependent absorption (1). In the preceding 

superposition model report [1], it is shown that (5) satisfies the causality principle.  
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3. Frequency decomposition time domain scheme 

 

If the external source is a broadband excitation s(t) instead of a single frequency g(t) in 

(4), the models (4) and (5) can not hold with the frequency-dependent attenuation (2) 

except when y=0. [3] suggested using the central frequency of s(t) as a single frequency 

in determining the viscous coefficient, and then the formulation (5) is applied. In some 

cases, this procedure may introduce unpredictable significant model error. Following the 

frequency decomposition idea presented in [4], a more accurate alternative scheme 

should be to decompose the broadband excitation s(t) into a sum of narrowband 

excitations si(t), i.e. 

 

( ) ∑
=

=
m

i
i tsts

1

)(  .     (6) 

 

When the bandwidth of each component is narrow enough, the attenuation effect can be 

simulated at the center frequency of each narrowband component [4]. Then, the model 

(5) for single frequency excitation is applied to each narrowband component source si(t) 

with their respective central frequency, and we get m sets of semi-discrete FEM system 

equation 

 

( )tsKpcpcfp iii
y

ii =++ 2
02 &&& α ,    (7) 

 

which fi is the central frequency of si(t). Although the FEM discretization for matrix K is 

only done once for all, the repeated solution of m sets of ordinary differential equation 

systems (7) is quite time-consuming given that each (7) is a semi-discrete FEM equation 

of large ODEs. The parallel solution of all temporal ordinary equation sets (7) could be 

crucial to improve the efficiency.  

 

In terms of the superposition principle under the linear system, the response of a 

broadband excitation s(t) is a sum of those of all of its narrowband component excitations 
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( ) ∑
=

=
m

i
i tptp

1

)(  .    (8) 

 

(6), (7) and (8) outline the basic methodology of the present scheme. Fig. 1 illustrates the 

schematic solution procedure via the frequency decomposition of a broadband pulse.   

 

B1(f) s1(t) p1(t) 

∑ s(t) Bi(f) si(t) pi(t) p(t) 

Bm(f) sm(t) pm(t) 

 

Fig. 1. Schematic procedure of frequency decomposition time domain model 

 

 

The major sources of error of the present mathematical model are  

1) the central frequency of narrowband component source in (7) is approximately 

used as in the single frequency case; 

2) the formulation (5) for single frequency excitation itself is also an approximate 

analog of the damping effect which ignores the transient solution. 

 

Since there is no need to calculate the fractional power of matrix K, the present model is 

computationally more efficient compared with the mode superposition model given in 

[1]. However, the present model also faces a new computing challenge: the repeated 

(about ten times) solution of ODEs (7) for all narrowband responses.  
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4. Bandpass filters for frequency decomposition 

 

This section addresses the bandpass filter issue, a key part of the present broadband time 

domain model. The filter is to perform frequency-dependent alterations of a signal, i.e. 

filtering. As shown in Fig. 1, a set of the bandpass filter Bi(f) divide the broadband s(t) 

into a sum of narrowband si(t). One of the simplest, fastest and convenient approaches to 

alter the frequency properties of a signal by filtering is to apply the linear frequency-

domain filter 

 

( ) ( ) ( )fSfBfS ii = ,     (9) 

 

where f denotes the frequency parameter, Bi is the transfer function as shown in Fig. 1, S 

the Fourier transform of the input broadband signal s(t),  Si the Fourier transform of the 

filtered narrowband signal si(t). (9) can be equally expressed as a convolution operation  

 

( ) ( ) ( ) τττ dtsbts ii −= ∫
∞

∞−
,   (10) 

 

where bi is the inverse Fourier transform of the frequency domain filter Bi. Filtering in 

frequency domain gives superior performance compared with the other filters design 

techniques. Its main drawback is to require complete signal accessible. This is not an 

issue in our medical ultrasound case. Some typical bandpass filters are illustrated and 

briefly commented in Table 1 [6].   
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Table 1. Typical bandpass filters 

  

 

Box filter 

This filter is an ideal frame aperture. A frame using this 

filter distributes the time samples regularly over the 

specified amount of time.  

 

Gauss filter 

The gauss filter simulates the behavior of a tube camera. 

The time behavior looks like a bell where the samples are 

concentrated in the middle of the frame.  

 

Shutter filter 

The shutter filter simulates the shutter of a mirror reflex 

camera. In the first quarter of the frame the shutter opens. 

Then the shutter remains open for the half time and then 

the shutter closes. Under Blizzard II the proportion is 

fixed to 1:2:1.  

 

 

He [4] recommended the use of the Gauss filter to minimize the reconstruction error. This 

is owing to that if the system transfer function is Gaussian, the Gaussian solution for an 

impulse input is an excellent approximation of the exact causal solution for most 

application problems [7]. Each bandpass filter used in [4] has a Gaussian magnitude 

function 

 

( )
( ) 211 






 −−−−

= B
Biff

i

L

efB
π

, i=1,2,…,n,   (11) 
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where 

1−
−=

m
ffB LH ,    (12) 

 

fL and fH respectively denote the lower and upper limits frequencies. Since the energy at 

higher frequency components are dissipated much more rapidly that those of lower 

frequencies, it may be more efficient to divide the frequency in a non-uniform fashion 

unlike (12). We will explore this issue in the later research. [4] pointed out that the 

division number m is not necessary big since the experiments show that m=10 or so 

produces very accurate reconstructions. As an example, the energy spectrum of a 

broadband source is illustrated in Fig. 2, where Wf is the bandwidth and fC central 

frequency.  

 

 

 
E  

 

 

 

Wf 

 

 

 

 
fH fL fC f  

 

Fig. 2. A broadband pulse 
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5. Dispersion analysis  

  

With the Duhamel integral and when α0fi
y<ωj, where ωj are the eigenvalues of matrix K 

in (7), we can have the solution of each modal equation (7)  

 

( ) ( ) ( ) ( ) { }∑ ∫ ++−= −−−
m

j
ijijijij

tcf
ij

t tcf
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c
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i )))
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00

0
βατττ ατα  (13) 

 

where αij and βij are calculated using the initial conditions, and the distorted phase 

velocity ijc)  dependent on the attenuation is calculated by 

 

y
ijij fcc 22

0
2 αω −=) .    (14) 

 

(14) shows that the viscous effect causes the dispersion. When α0fi
y >ωj, the solution of 

(7) is 

 

( ) ( ) ( )∑∫
−+−−−− ++−=

m

j

ftctcf
ij

fcttcf
ij
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and under critically damped (α0fi
y=ωj), the solution is  

 

( ) ( ) ( ) (∑∫ ++−= −
m

j
ijij

tcft

jiii tedftrstp
y

i βατωττ α0

0
,, ),  (16) 

 

where h and r are the impulse response function of systems. It is well known that the 

ultrasound wave is heavily attenuated while traveling through soft tissues. The transient 

solutions, which are the second right terms of (13), (15) and (16), are rapidly evanescent 

and the frequency spectrum of the propagating ultrasound wave is close to that of its 
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transducer excitation source. Thus, it is reasonable to split the broadband ultrasound wave 

in terms of the excitation frequency spectrum. 
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