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ABSTRACT

Real-time 2D ultrasound systems are used rou-
tinely in every hospital and are a huge success
both technically and commercially. This paper
discusses the signal processing problems that
needs to be tackled in order to move from 2D
to 3D real-time ultrasound systems.

The �rst problem discussed is that of han-
dling 2000�10000 elements in the transducer.
Sparse array methods is a way to reduce the
number of elements and cost without compro-
mising quality. Examples of performance with
sparse arrays are presented.

The second important problem is that of
frame-rate. In 3D the frame-rate will be so low
that real-time acquisition will be impossible un-
less some form of parallelism is exploited. Var-
ious ways of doing that such as multiple receive
beams, coded transmit excitation and limited
di�raction beams are discussed.

1. INTRODUCTION

Real-time 2D medical ultrasound systems are in
common use in every hospital today. The images
are of so high quality that in many medical special-
ities ultrasound is to some degree replacing other
imaging modalities. This is also due to the mo-
bility of the scanner and the simple procedures
involved in perfoming an ultrasound examination
compared to e.g. computer tomography or mag-
netic resonance imaging.
Despite this success, new ultrasound imaging

modalities are under development. One of the in-
teresting ones, both from a clinical and a technical
perspective, is 3D ultrasound. Experimental sys-
tems have been underway for a while and have
demonstrated the bene�ts. To take the �eld of
cardiology as an example, the advantages are im-
proved surgical planning due to better diagnosis
of complex anatomy like heart valves and septal
defects, unrestricted `any-plane' 2D imaging, and
improved volume quanti�cation.
In most of the demonstrated 3D systems the

data acquisition has been based on mechanical
scanning in at least one of the dimensions. One

of the main problems of 3D ultrasound is the lim-
ited frame rate achievable due to the slow data ac-
quisition, but 2D arrays with electronic scanning
in both dimensions have the greatest potential for
acceptable frame rates. This is due to the greater
beam agility and the possibility for parallel beams.
The two areas where work remains to be done in

order to achieve the goal of 3D real-time imaging
are 2D array technology and beamforming and sig-
nal processing methods and hardware realization
of parallel beam formation.

2. 2D ARRAYS

In medical imaging, 1D arrays with from 48�192
elements are used to do 2D scans [1]. In order to
achieve 3D imaging in near real-time it is neces-
sary to use 2D arrays with close to the squared
number of elements, typically 2000�10000. Since
each element needs a cable and an electronic front-
end that includes preampli�cation, A/D-converter
and digital programmable delay, it is desirable to
reduce the element count as much as possible [2].
For this reason sparse 2D arrays, where elements
are removed by thinning, are considered to be nec-
essary.
The starting point are arrays that are regularly

sampled with sample distance equal to half the
wavelength. This is the spatial equivalent of the
Nyquist criterion. It is assumed that the sampling
is regular, ie. on a square grid. The thinning
may be random or it may be found from some
sort of optimal algorithm. The trivial thinning of
just keeping the full central part of the aperture
is avoided. In this way the aperture is maintained
and thus the resolution. The remaining elements
may be weighted or they may be unweighted.
Steinberg [3] has given a comprehensive the-

ory for the unweighted randomly thinned array.
The main results for the far-�eld continuous wave
(CW) beampattern is that the sidelobe level can
be described in a statistical sense. Some distance
away from the main lobe, the ratio of the mean
sidelobe power to the main lobe peak power is
1=M where M is the number of remaining ele-
ments. This result is independent of the statistical
distribution of the elements.
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2.1. Sparse array optimization

There is a long history in the radar litterature for
analysis of beampatterns for sparse arrays for the
far-�eld single-frequency case (analysis of the one-
way beampattern). In ultrasound imaging, this
was the approach used in [4] where it was partially
con�rmed that Steinberg's results for average one-
way sidelobe levels can be squared to estimate the
levels for the two-way beampattern for pulsed 2-
D arrays. In high-resolution sonar imaging there
has also been a recent interest in sparse arrays
[5, 6]. We have done work to �nd the properties of
random-like thinning patterns. It is based on opti-
mization of the one-way response by either chang-
ing the element weights or the element positions
or both [7]. Due to the properties of 2D array ele-
ments in ultrasound (high impedance, low sensitiv-
ity) it is often undesirable to weight the elements.
The goal of the work was therefore not primarily to
propose practical weighting functions, but rather
the optimization methods are used to �nd proper-
ties of the beampattern of such arrays. Of special
interest is the determination of the minimum peak
sidelobe level and comparison with the predictions
from random theory. A method was also described
for optimizing the element positions of a random-
like sparse array. This optimization gives results
that are more directly useful in an array design.
The optimization criterion is usually a mini-

mization of the maximum sidelobe. This is a crite-
rion which is related to imaging of a strong re�ect-
ing point target in a non-re�ecting background
containing other point targets. An alternative cri-
terion is to minimize the integrated sidelobe en-
ergy. In a medical imaging system, this is related
to imaging of a non-re�ecting area like a cyst or a
ventricle in a background of re�ecting tissue. Some
results on weight optimization for 1D arrays us-
ing this criterion and quadratic optimization have
been reported in [8].

2.2. The beam pattern of a planar array

The far-�eld continuous wave (CW) beampattern
of an array with N omnidirectional elements is
given as [9]:

W (~k) =
N∑
n=1

wne
j~k·~xn (1)

where the array element locations are ~xn 2 R3 with
the corresponding weights wn 2 R. The wavenum-

ber vector ~k 2 R3 has amplitude j~kj = 2�=� where
� is the wavelength.
Let the unit direction vector be ~sφ,θ =

(sin� cos �; sin � sin �; cos�) in rectangular coordi-
nates, see Fig. 1. Then the wavenumber vector is
~k = 2�~sφ,θ=�.
The elements of a 2D planar array are located

in the xy-plane with element n at ~xn = (xn; yn; 0).
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Figure 1. A 2D planar array with coordinate system.

The beampattern is:

W (�; �) =
N∑
n=1

wn exp

(
j
2�

�
sin�(xn cos � + yn sin �)

)
(2)

This is the array response to a monochromatic
wave from direction (�; �). It has the following
properties:

� For real weights, the beampattern is con-
jugate symmetric, i.e. W (kx; ky) =
W ∗(�kx;�ky).

� Symmetric arrays with symmetric weights
give a real beampattern.

2.3. Optimization of beampattern

Two optimization problems may be formulated as
linear programming problems. The �rst is a mini-
mization of the maximum sidelobe level by varying
element weights. The second problem gives rise
to a mixed integer linear programming problem
which is considerably harder to solve. It is a min-
imization of the number of active elements and an
optimization of the weights in order to achieve a
speci�c maximum sidelobe level. Due to the prop-
erties of the linear programming algorithms it is
required that the beampattern is real, i.e. that
the array is symmetric. The formulation of these
problems may be found in [7].

2.4. Example of optimized 2D sparse ar-
rays

A 2D array for 3.5 MHz with 12 by 12 elements
with half wavelength spacing in both dimensions
was considered. The array is inscribed in a circle
giving 112 elements. Random thinning to 64 el-
ements (57%) and optimization of the weighting
gives a beampattern with a sidelobe level of �12
to �15 dB. The procedure for �nding the opti-
mal thinning and weighting was then used with a
sidelobe target of �19:5 dB. The optimized layout
was then input with varying start-angles in the
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Figure 2. Sidelobe level as a function of beamwidth
for several weight-optimized uniform sidelobe cases:
112 element full array (dash-dot line) and three real-
izations of random thinning to 64 elements (dashed
lines). The best result is obtained for a layout-
optimized 62 element thinning (solid line).

weight optimization algorithm. The peak sidelobe
level can now be reduced down to �20 to �22 dB
(Fig. 2). Each curve is the result of between 5
and 8 optimizations with di�erent start values for
the azimuth angles. The sidelobe value should be
compared to the value predicted for mean side-
lobe level of 1=64 = �18:1 dB, and shows that
there is a potential of getting a peak value which
is 3 dB lower than that predicted for the mean if
optimized thinning patterns can be found. This is
about the largest array size where optimized ele-
ment layouts can be found with reasonable use of
computer resources using the linear programming
methods. The four element layouts are shown in
Fig. 3. An example of a beampattern is shown in
Fig. 4.
Further examples may be found in [7]. Algo-

rithms that are suitable for optimizing more real-
istically sized arrays with thousands of elements
must be based on heuristic methods that do not
guarantee global convergence [10, 6]. Present re-
search is focused on faster optimization methods
and on understanding better the relationship be-
tween image quality and the thinning. Alternative
ways based on periodic thinning have also been
proposed [11].

3. FRAME RATE IN 3D IMAGING

The problem of getting high enough framerates
may be illustrated by an example using a typical
cardiac transducer array. Assume a frequency of
f = 3:5 MHz and a velocity of sound of c = 1540
m/s. The wavelength is � = c=f = 0:44 mm. The
framerate in 1D, 2D, and 3D imaging will now be
found.
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Figure 3. Element layouts for 112 element full array
thinned to three di�erent random 64 element layouts
and a 62 element optimized layout. The random
arrays are sorted according to the peak sidelobe level
in Fig. 2 with Random 1 having the highest peak
sidelobe level for large beamwidths.
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Figure 4. Beampattern for weighted, optimally
thinned layout (62 elements out of 112)
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3.1. 1D Framerate

The Pulse Repetition Frequency (PRF) is the 1D
framerate, or the framerate in M-mode (Motion
mode � a mode where a beam is stationary in
space and samples a line in time). It it determined
by the maximum required depth.

PRF = c=2dmax (3)

Since ultrasound attenuation increases with fre-
quency, the maximum depth will decrease with fre-
quency. For our example, a typical depth will be
dmax = 15:4 cm. This gives PRF = 5000 Hz.

3.2. 2D Framerate

The 2D framerate must be found from the
beamwidth in the azimuth direction:

�az,−3dB = k−3dB � �=Daz (4)

where k−3dB = 0:89 for an unweighted trans-
mitter. According to the sampling theorem there
must be at least two beams per beamwidth, thus
the distance between beams is �az = 0:5 � �az,−3dB.
A typical azimuth aperture of Daz = 19 mm gives
a beamspacing of �az = 0:6◦. For a sector size,
�AZ , the number of transmit beams is:

Naz = �AZ=�az (5)

The 2D framerate is determined by the PRF
and the number of transmit beams per frame:

FR2D = PRF=Naz (6)

An azimuth sector of �AZ = 90◦ in our exam-
ple will require Naz = 152 beams and the result-
ing frame-rate will be FR2D = 32:8 frames/second
which is an acceptable frame-rate. It may also be
increased by for instance restricting the sector size
(zooming).

3.3. 3D Framerate

There are several ways that 3D acquisition can
take place, but one of the simplest ones is tilting
acquisition. It can be implemented both with me-
chanically moving 1D arrays or with a 2D array
and electronic scanning. A sampling in the eleva-
tion (short-axis) direction similar to the one in the
azimuth (long-axis) direction takes place. Thus
the angular spacing in the elevation direction is:

�el = 0:5 � k−3dB � �=Del (7)

The number of scans in the elevation direction
is:

Nel = �EL=�el (8)

Maximum 3D framerate is:

FR3D = FR2D=Nel (9)

Assume an aperture in the elevation direction of
Del = 13 mm. The elevation beam-spacing is then
�el = 0:86◦. For a sector size of �EL = 60◦, the 3D
frame-rate will be FR3D = 0:47 volumes/second.

4. INCREASING FRAME-RATE

The result for 3D framerate is much lower than
desired. In fact, one would have liked to have the
2D frame-rate in 3D. The question is: How can one
achieve an increase of 50�100 in 3D frame-rate?
Several ways to achieve this have been proposed.

4.1. Parallel receive beams

This mode is used routinely in sonar where often
the whole sector, �AZ is illuminated so that 2D
frame-rate is equal to the PRF . It cannot be used
in the same way in ultrasound due to the increased
reverberation level in the medium and the inten-
sity limitations due to the risk for biomedical haz-
ard. An adaptation of the method was �rst pro-
posed for ultrasound in [12]. If the transmit beam
is made a little wider than usual, a receive beam-
former with several parallel beams can be used to
acquire several beams at slightly o�set angles. To-
day 2�4 parallel beams are used for 2D imaging,
giving an increase in frame-rate by the same factor
in (6). In 3D, this number may be squared giving
a factor of 4�16.
For 4 parallel beams in each dimension in the ex-

ample, the 2D frame rate will increase to FR2D =
131:2 frames/sec, and the volume frame rate will
increase to FR3D = 7:5. A decrease of the azimuth
angle to�AZ = 60◦ will give an additional increase
to FR2D = 196:8 and FR3D = 11:3. For car-
diac imaging, where the heart moves with about a
beat per second in a normal subject, the volume
frame-rate is still a little low, but for more sta-
tionary organs it is satisfactory. Even higher rates
are achievable if the angular sampling theorem is
slightly violated. The parallel beam approach re-
quires hardware in the form of parallel receivers.

4.2. Coded transmit pulses

Instead of sending a wide transmit beam, in this
approach a transmitted signal consisting of many
coded pulses, each one individually beamformed
for a unique direction is sent [13]. It is proposed
to send one in each of the desired azimuth direc-
tions. On reception, each direction is recovered by
a pseudoinverse operator implemented in the form
of a transversal �lter bank. The pseudoinverse op-
erator is the key to the performance because it
eliminates correlation artifacts that are due to the
non-zero correlation between the di�erent coded
sequences used for transmission. Standard pro-
cessing like a matched �lter is not able to do that.
This system would allow for 2D data acquisi-

tion at the same rate as 1D data acqusition, eg.
FR2D = PRF = 5000 Hz in the example. When
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used in a 3D system, with parallelism only in the
azimuth direction, a 3D frame rate of FR3D = 0:47
volumes/second would increase by the number of
azimuth beams Naz = 152 to FR3D = 71:5 vol-
umes/second which is an acceptable �gure.

The cost would be a new transmitter design with
the ability to send coded pulses in many direc-
tions simultaneously and a new receiver design,
both of them with greatly increased complexity.
The method needs to be validated for proper op-
eration in a medium which is aberrating and has
attenuation, and in a situation where peak and
average intensitites are limited due to the risk for
biomedical hazard.

4.3. Limited di�raction beams

In [14] it is proposed that di�erent limited-
di�raction beams may be summed to give array
beams. Such beams may be used in conjunction
with the transmission of plane waves, where the
array-beams are used for reception. It is claimed
that the image may be recovered using the Fast
Fourier transform and thus simplify beamformer
hardware. The frame-rate increase is achieved
since only a single transmission is required to il-
luminate the whole volume. Thus 3D framerates
equal to the PRF is achieved. One limitation is
that since a single plane wave is used, steering is
not possible, limiting the application to those of
linear arrays. The limitations mentioned for the
coded transmission method may also be applica-
ble.

5. CONCLUSION

The main signal processing challenges in order to
achieve real-time 3Dmedical ultrasound have been
outlined. The problem of reducing the number of
elements in order to save cost in the front-end of
the medical imaging instrument was discussed and
examples of optimized ways to thin an array were
shown.

Since this paper has focused on signal process-
ing, the problem of making the 2D array trans-
ducer has not been addressed. This gives chal-
lenges in material technology, acoustics and con-
nection technology.

The problem of getting high enough update rate
for the scanned volume was then discussed and an
example given that illustrates the problem. The
limited velocity of sound is really the fundamental
problem. Possible solutions are found in exploiting
parallelism by acquiring several beams in the im-
age simultaneously. This can be done by parallel
receive lines, transmission of coded pulses, and by
Fourier reconstruction of the imaged object using
limited di�raction beams.
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