
A Method to Optimize Weighting of General PlanarArraysBjørnar Elgetun1 Sverre Holm11Department of Informatics, University of Oslo, Oslo, NorwayABSTRACTA method is presented which optimizes weightsof general planar symmetric arrays. It appliesto full regular arrays as well as sparse arrayswith perturbed positions.The objective is to �nd a weighting of the ar-ray elements which gives the minimum sidelobelevel of the array pattern in a speci�ed region- the stopband. The sidelobe level is controlledon a discrete set of points from this region. Themethod minimizes the Chebyshev norm of thesidelobe level.The method is based on linear programmingand is solved with the standard simplex method.Examples of optimal weighted 1D and 2D planararrays are presented.1. INTRODUCTIONIn array signal processing we are interested in sig-nals conveyed by propagating waves. To extractthese signals, we apply an array which is a group ofsensors located at distinct spatial locations. Withthese sensors we can measure the wave�eld at thesensor locations. By processing these measure-ments we may extract only those signals we areinterested in. This is done by �ltering both intime and space.In this article we will concentrate on generalsymmetric planar arrays. By general, we meanfull regular arrays as well as sparse arrays withperturbed positions. The latter arises when we re-move some array elements, and break the regular�=2 interelement spacing. This is motivated fromthe potential for improved resolution or reducedsidelobe levels compared to an equispaced arraywith the same number of elements [2].1.1. Array patternFrom classical signal processing, a linear shift-invariant system is often characterized by its fre-

quency response H(ej!T ),H(ej!T ) = 2NXn=1hne�jn!T (1)In array signal processing the array patternW (~k) plays much the same role in characterizingan array's performance [3]. It corresponds to thewavenumber frequency response of the spatiotem-poral �lter. The array pattern of a 2N elementarray is given asW (~k) = 2NXn=1wnej~k�~xn (2)where the array element locations are ~xn 2 R3 withthe corresponding weights wn 2 R. The wavenum-ber vector ~k 2 R3 has amplitude j~kj = 2�=� where� is the design wavelength.Consider a regular linear array with elementspacing �x = �=2. The vector-product in the ar-ray pattern (2) then simpli�es to~k � ~xn = j~kjj~xnj cos� = 2�� n�x (�u)where u = sin� = � cos� for � given in �gure 1.In this special case the array pattern isW (u) = 2NXn=1wne�jn�u (3)The relationship between the array pattern anda �lter's frequency-response is now obvious as wehave the following correspondance!T $ �uhn $ wn1.2. SymmetryTo ensure a real array pattern and a real optimiza-tion problem, we consider symmetric arrays with
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Transducer arrayFigure 1. A 2D planar array with spherical and rect-angular coordinates.symmetric real weighting. The following equalitiesmust then be satis�ed for wn 2 RwN+n = wn~xN+n = �~xn � n = 1; � � � ; N (4)By combining (2) and (4) we can write the arraypattern as a sum of cosinesW (~k) = 2 NXn=1wn cos(~k � ~xn) (5)It is convenient to introduce a unit direction vec-tor in spherical coordinates ~s�;� 2 R3 as~s�;� = � ~kj~kj (6)Substituting this for ~k in (5) and using the factthat cos� = cos(��), we get the directive arraypattern asW (�; �) = 2 NXn=1wn cos�2�� ~s�;� � ~xn� (7)which gives the array response to amonochromaticwave from direction (�; �) in space. See �gure 1.1.3. A planar arrayThe elements of a planar array are located in thexy-plane. There are both 1D and 2D planar ar-rays. The 1D linear array is a special case of the2D planar array, since the array elements are re-stricted to locations on the x-axis.For a 2D planar array the rectangular coordi-nates of array element n is ~xn = (xn; yn; 0). The

unit direction vector from (6) has the rectangu-lar coordinates ~s�;� = (sin� cos �; sin� sin �; cos�).The vector-product in (7) then becomes~s�;� � ~xn = sin�(xn cos� + yn sin �) (8)and the array pattern for the general 2D planararray isW (�; �) = 2 NXn=1wn cos�2�� sin�(xn cos� + yn sin�)�(9)where (xn; yn; 0) is the rectangular coordinate ofarray element n with the corresponding weightwn 2 R. � is the design wavelength and (�; �)gives the array's spherical look direction.It is convenient to write the array pattern (9) inmatrix notation. We can write it asW (�; �) = v(�; �)Tw (10)where w = [w1 � � � wN ]T are the element weightsand the kernel vector v(�; �) is given as v(�; �) =�2cos(2�� ~s�;� � ~x1) � � � 2cos(2�� ~s�;� � ~xN )�T with thevector product ~s�;� � ~xn as de�ned in (8).2. OPTIMIZATION PROBLEMWhen such arrays are utilized in beamforming, itis desired that the array pattern consists of a nar-row mainlobe and a low sidelobe level when thearray is looking along the z-axis. When the ar-ray elements are �xed, we can optimize the arrayweighting due to this criterion.The idea is to minimize the sidelobe level in acontinious region R of the ��-plane. See �gure 2.We want to suppress signals from these directions,thus this region corresponds to a �lter's stopband.Remark that the array pattern is symmetric aboutthe �-axis; W (��; �) = W (�; �). This leaves uswith only the right halfplane in optimization. Thepassband in this case is minimal in the sense thatit consists only of the �-axis.2.1. Optimization formulationThe optimization problem may now be statedloosely asMinimize array pattern level in stopbandwSubject to normalized array pattern levelin passband (11)
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−π/2Figure 2. The optimization regionR in the ��-plane.The constraint of a normalized array patternlevel in the passband is written asW (0; �) = 2 NXn=1wn = 1 (12)The stopband regionR is then discretisized intoM gridpoints R = f(�1; �1) � � � (�M ; �M)g. Theabsolute array pattern level �s on the discrete setR is de�ned as �s = max�;�2R jW (�; �)j (13)A more formal optimization formulation of (11)is now obtained with (12) and (13)Minimize �swSubject to W (0; �) = 1jW (�; �)j � �s 8 (�; �) 2 R(14)This optimization problem can be transformedinto one of the standard linear programming ma-trix forms Minimize cTxSubject to Ax � b (15)The problem in (14) may be written in standardform (15) by introducing block matrices for c;x;Aand b. Let the variable vector x consist of theweights w and the array pattern level indicator

�s. The full linear program is stated asMinimize � 0TN 1 � " w�s #wSubject to2666664 1TN 0-1TN 0v(�; �)T �1�v(�; �)T �1 3777775 " w�s # � 2666664 1�100 37777758 (�; �) 2 R (16)2.2. DualityEvery linear program has another program asso-ciated with it. One of them is called the primalproblem and the other is called the dual problem.From linear programming theory, the duality theo-rem assures us that if an optimal solution exists toeither of them, then the other also has an optimalsolution and the objective value coincides.Since the solution to both programs are ob-tained by solving either one, it may be advanta-geous to solve the dual program rather than theprimal itself.The full linear program in (16) has an A matrixwith 2M + 2 rows and N + 1 columns. M is thenumber of discrete points on R and N are halfthe 2N element weights by symmetry. For mostpurposes M > N . With this kind of problem it ismore e�ective to solve its dual [1]Maximize bTySubject to ATy = cy � 0 (17)where c;x;A and b is as above. The optimal solu-tion to the primal is established as a transform ofthe optimal dual solution. Let y� be the optimalsolution to the dual problem. Then the optimalsolution x� to the primal problem isx� =A�10 b (18)In (18) A0 is the rows from A corresponding tothe basic variables in y�. These are the nonzeroelements in y�.



Linear array with 64 active elements

No thinning − Weight range 19.1 [dB]
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Response to uniform weighted array   −6 dB BW: 2.11 [deg]
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From: 3.00 [deg]   Sidelobe level: −38.7 [dB]   −6 dB BW: 2.82 [deg]Figure 3. The optimal weights and the array re-sponse to a 1D regular array. The response to theunweighted array is given as a reference.3. EXAMPLESThe following examples were all set up with MAT-LAB and solved using the general linear optimizerCPLEX. The problems were solved on a DEC-5000/200.3.1. 1D regular arrayFirst a linear array with 64 elements was opti-mized. The stopband region was � 2 [3; 90] de-grees. The optimal weights and array responseis plotted in �gure 3. The characteristic Cheby-shev weighting spikes appear at each end element.With M = 512 gridpoints, the optimal weightswere obtained after 7:0 seconds.3.2. 1D sparse and perturbed arrayThen a 128 element array was thinned 25 % andthe elementpositions perturbed. The stopband re-gion was � 2 [2; 90] degrees. The optimal weightsand array response is plotted in �gure 4. This op-timization took 13:4 seconds with M = 512 grid-points.

Linear array with 96 active elements

25.0 % thinning − Weight range 43.4 [dB]
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Response to uniform weighted array   −6 dB BW: 1.06 [deg]

0 0.5 1 1.5
−50

−40

−30

−20

−10

phi

R
e

s
p

o
n

s
e

 [
d

B
]

From: 1.00 [deg]   Sidelobe level: −21.1 [dB]   −6 dB BW: 1.23 [deg]Figure 4. The optimal weights and the array responseto both a uniform and an unweighted 1D irregulararray.
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Response to uniform weighted array   −6 dB BW: 8.57 [deg]
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From: 9.00 [deg]   Sidelobe level: −17.4 [dB]   −6 dB BW: 8.57 [deg]Figure 6. The array response to both a uniform andan unweighted 2D sparse array, viewed from side.3.3. 2D sparse arrayFinally a 256 element array was thinned 50%. Theelement positions are given in �gure 5. The stop-band region was � 2 [9; 90] and � 2 [��=2; �=2]degrees. The optimal array response is plotted in�gure 6, and was obtained after 30:8 seconds withM = 1024 gridpoints.4. CONCLUSIONThe method was shown to converge for three verydi�erent arrays within resonable time. The formu-lation is simple, and it would be a an easy task forinstance to restrict it to positive weights.The method will also apply to both 1D and 2D�lter design with slight modi�cations.The problem formulation is in a standard linearprogramming form and is solved e�ectively by theSimplex method. This is advantageous since thereare many implementations available.
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