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ABSTRACT

A method is presented which optimizes weights
of general planar symmetric arrays. It applies
to full regular arrays as well as sparse arrays
with perturbed positions.

The objective is to find a weighting of the ar-
ray elements which gives the minimum sidelobe
level of the array pattern in a specified region
- the stopband. The sidelobe level is controlled
on a discrete set of points from this region. The
method minimizes the Chebyshev norm of the
sidelobe level.

The method is based on linear programming
and is solved with the standard simplex method.
Examples of optimal weighted 1D and 2D planar
arrays are presented.

1. INTRODUCTION

In array signal processing we are interested in sig-
nals conveyed by propagating waves. To extract
these signals, we apply an array which is a group of
sensors located at distinct spatial locations. With
these sensors we can measure the wavefield at the
sensor locations. By processing these measure-
ments we may extract only those signals we are
interested in. This is done by filtering both in
time and space.

In this article we will concentrate on general
symmetric planar arrays. By general, we mean
full regular arrays as well as sparse arrays with
perturbed positions. The latter arises when we re-
move some array elements, and break the regular
A/2 interelement spacing. This is motivated from
the potential for improved resolution or reduced
sidelobe levels compared to an equispaced array
with the same number of elements [2].

1.1. Array pattern

From classical signal processing, a linear shift-
invariant system is often characterized by its fre-

quency response H(e/*T),
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In array signal processing the array pattern
W (k) plays much the same role in characterizing
an array’s performance [3]|. It corresponds to the
wavenumber frequency response of the spatiotem-
poral filter. The array pattern of a 2N element
array is given as

_ 2N 3
= aneﬂ“'f" (2)
n=1

where the array element locations are Z,, € R® with
the correspondmg weights w, € R. The wavenum-
ber vector k € R? has amplitude |k| = 27/ where
A is the design wavelength.

Consider a regular linear array with element
spacing Az = A/2. The vector-product in the ar-
ray pattern (2) then simplifies to

k- &, = |k||Z.| cosa = Tﬂ nAz (—u)

where u = sin¢ = — cosa for ¢ given in figure 1.
In this special case the array pattern is

2N
= Z w, eIy (3)
n=1

The relationship between the array pattern and
a filter’s frequency-response is now obvious as we
have the following correspondance

1.2. Symmetry

To ensure a real array pattern and a real optimiza-
tion problem, we consider symmetric arrays with
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Figure 1. A 2D planar array with spherical and rect-
angular coordinates.

symmetric real weighting. The following equalities
must then be satisfied for w, € R

WNtn = wn_) } n=1,---,N (4)

TN+4n = —Tn

By combining (2) and (4) we can write the array
pattern as a sum of cosines

W (k) = QZ:wn cos(k - T,) (5)

It is convenient to introduce a unit direction vec-
tor in spherical coordinates 5, € R3 as

(6)

Substituting this for & in (5) and using the fact
that cosa = cos(—a), we get the directive array
pattern as

N 2
W(¢,0) = 2; w,, cos (%@79 : fn) (7)

which gives the array response to a monochromatic
wave from direction (¢, 8) in space. See figure 1.

1.3. A planar array

The elements of a planar array are located in the
xy-plane. There are both 1D and 2D planar ar-
rays. The 1D linear array is a special case of the
2D planar array, since the array elements are re-
stricted to locations on the z-axis.

For a 2D planar array the rectangular coordi-
nates of array element n is &, = (2,,y,,0). The

unit direction vector from (6) has the rectangu-
lar coordinates 5 5 = (sin ¢ cos 6, sin ¢ sin 8, cos ¢).
The vector-product in (7) then becomes

Sy Tp = sin @z, cosd + y, sin 9) (8)

and the array pattern for the general 2D planar
array is

N
2
W(¢,0) = 2; w,, COS (Tﬂ sin ¢(z,, cos 8 + y,, sin 6)

(9)
where (2, ¥,,0) is the rectangular coordinate of
array element n with the corresponding weight
w, € R. X is the design wavelength and (¢,0)
gives the array’s spherical look direction.

It is convenient to write the array pattern (9) in
matrix notation. We can write it as

W($,0) = v(¢,0)"w (10)

where w = [w; --- wy]" are the element weights
and the kernel vector v(¢, 8) is given as v(¢,0) =
[2c08(2E5y0 - T1) -+ 2c08(3E8y, - fN)]T with the
vector product 5, - 7, as defined in (8).

2. OPTIMIZATION PROBLEM

When such arrays are utilized in beamforming, it
is desired that the array pattern consists of a nar-
row mainlobe and a low sidelobe level when the
array is looking along the z-axis. When the ar-
ray elements are fixed, we can optimize the array
weighting due to this criterion.

The idea is to minimize the sidelobe level in a
continious region R of the ¢f-plane. See figure 2.
We want to suppress signals from these directions,
thus this region corresponds to a filter’s stopband.
Remark that the array pattern is symmetric about
the @-axis; W(—¢,0) = W(,0). This leaves us
with only the right halfplane in optimization. The
passband in this case is minimal in the sense that
it consists only of the #-axis.

2.1. Optimization formulation

The optimization problem may now be stated
loosely as

Minimize
w

array pattern level in stopband

Subject to normalized array pattern level
in passband
(11)
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Figure 2. The optimization region R in the ¢8-plane.

The constraint of a normalized array pattern
level in the passband is written as

W(0,0):innzl (12)

The stopband region R is then discretisized into
M gridpoints R — {(1,01) -+ (és,03)}. The
absolute array pattern level 6, on the discrete set

R is defined as

6, = max |W (¢, 0)] (13)

¢,0€ER

A more formal optimization formulation of (11)
is now obtained with (12) and (13)

Minimize b,
w

Subject to W (0,0) = 1
(W(9,0) <6, V(,0)€R
(14)
This optimization problem can be transformed
into one of the standard linear programming ma-
trix forms
Minimize c¢Tx
(15)

Subject to Ax <b

The problem in (14) may be written in standard
form (15) by introducing block matrices for ¢, x, A
and b. Let the variable vector x consist of the
weights w and the array pattern level indicator

0,. The full linear program is stated as

w
Minimize [0 1] [ 5 ]
w
Subject to
1% 0 1 (16)
-1y 0 w ~1
; <
v(g,0)F -1 b5 0
_V(¢70)T -1 0
V(¢,0)€R

2.2. Duality

Every linear program has another program asso-
ciated with it. One of them is called the primal
problem and the other is called the dual problem.
From linear programming theory, the duality theo-
rem assures us that if an optimal solution exists to
either of them, then the other also has an optimal
solution and the objective value coincides.

Since the solution to both programs are ob-
tained by solving either one, it may be advanta-
geous to solve the dual program rather than the
primal itself.

The full linear program in (16) has an A matrix
with 2M -+ 2 rows and N + 1 columns. M is the
number of discrete points on R and N are half
the 2N element weights by symmetry. For most
purposes M > N. With this kind of problem it is
more effective to solve its dual [1]

Mazimize by

1
Subject to Ay c (17)
y 0

IA

where ¢, x, A and b is as above. The optimal solu-
tion to the primal is established as a transform of
the optimal dual solution. Let y* be the optimal
solution to the dual problem. Then the optimal
solution x* to the primal problem is

x* = A;'b (18)
In (18) Ay is the rows from A corresponding to

the basic variables in y*. These are the nonzero
elements in y*.
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Figure 3. The optimal weights and the array re-
sponse to a 1D regular array. The response to the
unweighted array is given as a reference.

3. EXAMPLES

The following examples were all set up with MAT-
LAB and solved using the general linear optimizer
CPLEX. The problems were solved on a DEC-
5000/200.

3.1. 1D regular array

First a linear array with 64 elements was opti-
mized. The stopband region was ¢ € [3,90] de-
grees. The optimal weights and array response
is plotted in figure 3. The characteristic Cheby-
shev weighting spikes appear at each end element.
With M = 512 gridpoints, the optimal weights
were obtained after 7.0 seconds.

3.2. 1D sparse and perturbed array

Then a 128 element array was thinned 25 % and
the elementpositions perturbed. The stopband re-
gion was ¢ € [2,90] degrees. The optimal weights
and array response is plotted in figure 4. This op-
timization took 13.4 seconds with M = 512 grid-
points.
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Figure 4. The optimal weights and the array response

to both a uniform and an unweighted 1D irregular
array.
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Figure 5. Element distribution of the 2D sparse array.
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Figure 6. The array response to both a uniform and
an unweighted 2D sparse array, viewed from side.

3.3. 2D sparse array

Finally a 256 element array was thinned 50 %. The
element positions are given in figure 5. The stop-
band region was ¢ € [9,90| and 6 € [-7/2,7/2]
degrees. The optimal array response is plotted in
figure 6, and was obtained after 30.8 seconds with
M = 1024 gridpoints.

4. CONCLUSION

The method was shown to converge for three very
different arrays within resonable time. The formu-
lation is simple, and it would be a an easy task for
instance to restrict it to positive weights.

The method will also apply to both 1D and 2D
filter design with slight modifications.

The problem formulation is in a standard linear
programming form and is solved effectively by the
Simplex method. This is advantageous since there
are many implementations available.
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