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ABSTRACT

The area and the perimeter of a planar object are

two useful features to describe the shape of the ob-

ject, and again the motion of it. This paper deals

with the estimation of the two features from a dis-

crete binary image. The area can often be accurately

estimated by counting the number of pixels inside the

object. However, the estimation of the perimeter is

a problem, since many possible contours, all having

di�erent lengths, correspond to a speci�c discrete re-

alization. Thus, to develop a practical length estima-

tor, some reasonable assumption about the original

contour should be made. We assume that the bound-

ary of a blob-like object consists of chains of circular

arcs, and therefore evaluate the precision of several

area and length estimators applied to circles. The

problem of e�cient computation is also discussed.

INTRODUCTION

Let A be the area, and P be the perimeter of a

planar object. The circularity C de�ned by C =

4�A=P2 is 1 for a circle and between 0 and 1 for all

other shapes. The area, perimeter and circularity are

useful features to describe the shape of a 2D object,

and again the motion of it (e.g. in medical applica-

tions [1]). This paper deals with the estimation of

the features from a discrete binary image.

The area can often be accurately estimated by

counting the number of pixels inside an object. How-

ever, the estimation of the perimeter is a problem,

since the length of the original contour might be con-

siderably di�erent from the length of the digital con-

tour. It is impossible to reconstruct a general con-

tinuous contour from discrete data, because many

possible contours, all having di�erent lengths, cor-

respond to a speci�c discrete realization. Thus, to

develop a practical length estimator, some reason-

able assumptions about the original contour should

be made. Many authors [2]-[6] developed and eval-

uated length estimators for straight lines. One of

these estimators was also found to be accurate for

the boundaries of blob-like objects [2, 6].

We assume that the boundary of a blob-like ob-

ject consists of chains of circular arcs, and therefore

evaluate the precision of several area and length es-

timators applied to circles. The circularity C is a

scale, translation and rotation invariant shape fea-

ture. The precision of the circularity is used as one

of the measures for the evaluation. The problem of

e�cient and simultaneous computation of area and

perimeter is also discussed.

A REVIEW OF METHODS

We describe some methods to estimate the area

and the perimeter of objects represented by square

pixels.

Methods Based on Bit Quads

Gray [7] proposed a systematic approach to com-

puting the area and the perimeter. The method is

also presented in the book of Pratt [8]. Each small

region in a binary image is matched with some pixel

patterns. The number of matches for each pattern

is counted. The area and the perimeter are then

formulated as weighted sums of the counts. Gray

[7] designed a set of 2 � 2 pixel patterns called Bit

Quads:
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Let nfQg be the number of matches between the

image pixels and the pattern Q. Gray computed the

area of the object as

A =
1

4
[nfQ1g+2nfQ2g+3nfQ3g

+4nfQ4g+ 2nfQDg] (1)
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Figure 1: (a) 8 code words represent 8 direc-

tions. (b) The Freeman chain code of the object is

07054341. (c) The mid-crack code of the object is

0770755543343111. �A� indicates a start point.

and the perimeter as

P = nfQ1g+ nfQ2g+ nfQ3g+2nfQDg (2)

The area computed by Eq. (1) is equal to the num-

ber of pixels of the object, which is known to be ac-

curate. However, the perimeter formula of Gray is in

considerable error for many types of objects [8].

Pratt [8] presented more accurate formulas for the

area and the perimeter, citing an unpublished note

of Duda

A =
1

4
nfQ1g+

1

2
nfQ2g+

7

8
nfQ3g+nfQ4g+

3

4
nfQDg

(3)

and

P = nfQ2g+
1p
2
[nfQ1g+ nfQ3g+2nfQDg] (4)

Methods Based on Chain Codes

Chain coding is a method to represent a binary

object. The 8-connected Freeman chain coding [9]

uses a 3-bit code 0 � c � 7 for each boundary point.

The number c indicates the direction in which the

next boundary point is located, as shown in Fig. 1(a).

The 8-connected Freeman chain coding strategy is

shown in Fig. 1(b). There are some variations of the

Freeman chain coding, for example, the 4-connected

chain coding and the generalized chain coding [10].

The mid-crack chain coding [11] considers the

mid-cracks instead of the centers of the boundary

points. Assume that a pixel is a square with four

sides. A mid-crack is then the mid-point of a pixel

side. An example of the mid-crack coding is given in

Fig. 1(c). The mid-crack codes possess some special

properties in measuring shape features [11, 12].

Boundary chain codes can be determined using a

contour following [8], which is a traversing process

to identify the boundary of a binary object. The

algorithm requires operations of O(N).

Freeman [9] computed the area enclosed by the

contour of the Freeman chain codes c1c2 � � � cn

A =

nX
i=1

cix(yi�1+ ciy=2) (5)

where n is the length of the chain, cix and ciy are

the x and y components of the ith chain element ci
(cix, ciy 2 f1; 0; �1g indicating the change of the x-
and y-coordinates), and yi�1 is the y-coordinate of

the start point of the chain element ci in an arbitrary

coordinate system. The values of cix, ciy and yi�1
can be computed under the contour following.

Freeman [9] computed the perimeter as the length

of the chain. The formula for the perimeter is

P = ne +
p
2no (6)

where ne is the number of even chain elements and

no the number of odd chain elements. Referring to

Fig. 1, an even chain element indicates a vertical or

horizontal connection between two boundary pixels,

having length 1, while an odd chain element indicates

a diagonal connection, which has length
p
2.

Vossepoel and Smeulders [3] improved Freeman's

method in estimating lengths of straight lines by us-

ing a corner count nc, de�ned as the number of oc-

currences of consecutive unequal chain elements in

the Freeman chain code string. The length is given

by

P = 0:980ne +1:406no � 0:091nc (7)

where the weights were found by a least-square �tting

for all straight lines with ne + no = 1000.

When the mid-crack chain codes are used, Eq. (5)

can still be used to estimate the area. In this

case, the computation of cix and ciy is more com-

plex since more possible values are involved, i.e., cix,

ciy 2 f�1; �1=2; 0; 1=2; 1g. During the contour fol-
lowing, a sequence of background-to-object transi-

tions can be detected. cix and ciy can then be de-

termined according to the types of two subsequent

transitions. To estimate the perimeter, Eq. (6) be-

comes

P = ne +

p
2

2
no (8)

Although the methods are related to the chain

coding, they can in fact determine the area and the

perimeter without generating any chain codes. The

values A, ne, no and nc can be computed by accu-

mulation during the contour following.

The methods based on the chain coding compute

the perimeter as the length of the chain, and of-

ten give an overestimated result. Kulpa [2] derived

a compensation factor for computing the length of

straight lines. With this factor, Eq. (6) becomes

P =
�

8
(1+

p
2)(ne +

p
2no) (9)



where the factor is approximately 0:948. Kulpa [2]

found that this compensation also gave good results

for most of the blob-like objects met in practice.

Dorst and Smeulders [6] proved that Eq. (9) gave

a consistent estimate for the length of a circular arc

of �=4.

Discrete Green's Theorem

Freeman's method evaluates the area of a poly-

gon enclosed by the chain elements, using an O(N)

algorithm. The result is di�erent from that of Gray's

method, which equals the area to the number of pix-

els of a discrete region. Gray used an O(N2) algo-

rithm to count the number of pixels. However, the

counting can be done in the time of O(N) by us-

ing a discrete Green's theorem [13], which computes

a sum of a two-dimensional function over a discrete

region by a summation along its discrete boundary.

The discrete Green's theorem gives exact result of a

double sum, and has been used for fast and exact

computation of geometric moments [14]. The area is

the zeroth order moment of a homogeneous region.

EXPERIMENTS AND RESULTS

The methods to be tested are the Bit Quad

methods of Gray and Duda, Freeman's method and

its analogue using the mid-crack chain codes, and

Kulpa's method given by Eq. (9). We tested the pre-

cision of these methods in estimating the areas and

the perimeters of circles of radius R having integer

values from 5 to 70 pixels.

Binary test images of the circles were generated

by giving intensity value

g(x; y) =

�
1 if (x� x0)

2+ (y � y0)
2 � R2

0 otherwise

where (x0; y0) is the coordinate of the centroid.

Using the above methods, we estimated the areas
�A and the perimeters �P of the circles, and computed

the relative errors de�ned by �relative error = (�x �
x)=x� where x is the true value. The true values of

the area and perimeter are evaluated by A = �R2

and P = 2�R.

The relative errors in area given by the Gray and

the Duda method are shown in Fig. 2(a). We see

that the area estimations of Gray and Duda are both

good. The result of the Duda method is slightly bet-

ter. The average relative error for 15 � R � 70

was 0:0003 for the Duda method and �0:0025 for the
Gray method. The mid-crack method gave a result

very similar to that of Gray. The Freeman method

underestimated the area, giving a relative error sim-

ilar to that of the Duda method if we assume that

the radius is R� 0:5.
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Figure 2: (a) The relative errors in the areas esti-

mated by the method of Gray, and Duda. (b) The

relative errors in the perimeters estimated by the

method of Freeman, and Kulpa. (c) The circularities

estimated by combining di�erent area and perimeter

estimators, i.e. Kulpa's perimeters with Gray's ar-

eas, Kulpa's perimeters with Duda's areas, and the

mid-crack perimeters with the mid-crack areas. The

radius has integer values from 5 to 70 pixels.



From Fig. 2(b) we see that the perimeters esti-

mated by using Kulpa's compensation factor is more

accurate than those estimated by the method of Free-

man, which gave an overestimation. Gray's method

was very inaccurate, giving a relative error of about

0:3 (overestimated). The methods of Duda and mid-

crack all overestimated the perimeters. The relative

errors of these two methods are similar to that of the

Freeman method if we assume the radius is R+ 0:5.

Combining the estimators of di�erentmethods, we

computed the circularities shown in Fig. 2(c). We see

that using Kulpa's perimeter estimator together with

Gray's area estimator gives the best result, which

is close to but often slightly larger than the true

value 1. It is better than combining Kulpa's perime-

ter with Duda's area although Duda's area is better

than Gray's area. This is because Kulpa's perimeter

and Gray's area are both slightly underestimated.

Other combinations do not give good results. As

an example we show the results when the areas and

the perimeters are both computed by the mid-crack

method.

We can observe that the variance of the error is

large when the value of R is small. This is because

the spread of the ground truth is large when R is

small, and suggests that we should have a su�ciently

large resolution in order to obtain a good estimation.

DISCUSSION

Di�erent methods have di�erent computational

complexity. Using the Bit Quads, the order of the

computation is N2. (We assume that an image has

N2 pixels.) It can be reduced to N by using a con-

tour following algorithm.

The area can be formulated as the number of pix-

els in the object, or an integration over an approxi-

mated continuous region. The perimeter can be for-

mulated as the length of the boundary of a polygon,

approximating the original object. This length can

be multiplied by a compensation factor, giving a bet-

ter estimation. All the length estimators presented

above can be generalized as a linear model

P =w
T
n (10)

where the object is characterized by a set of counts n,

such as the counts of the pixel patterns, or the counts

of the even and odd chain elements. The perimeter

is computed as linear combinations of the counts,

using w as a set of weights. Nonlinear estimators for

straight lines have also been developed [6].

We tested the accuracy of several area and perime-

ter estimators for circles, assuming that the bound-

ary of a blob-like object is approximately a chain

of circular arcs. From the above experiment, we

see that Gray's Bit Quad method gives a good es-

timation of the area, but a bad estimation of the

perimeter. Gray's method has been improved by

Duda in both the area and the perimeter estima-

tion. But there is still a large bias in the perime-

ter which causes a relative error of about 5 per-

cent, and Duda's method overestimates the perime-

ter compared to the area. Freeman's method and

the mid-crack method give results which are similar

to that of Duda's method, but improve the compu-

tational performance by reducing the order from N2

to N . The perimeters computed by Kulpa's method

are much better than all the other methods, giving

a small underestimation.

Di�erent methods may have di�erent assump-

tions of the location of the object boundary. The

mid-crack method assumes that the boundary goes

through the mid-cracks, and Freeman's method as-

sumes that the boundary goes through the centers

of the boundary pixels. The two boundaries are lo-

cated in a distance of a half pixel. That means the

area and the perimeter estimated by the mid-crack

method are always larger than those estimated by

the Freeman method.

To compute the circularity, the best result is ob-

tained by using Gray's estimator of the area and

Kulpa's estimator of the perimeter. However, they

can not be computed simultaneously. Gray's area is

equal to the number of pixels in the region, which

can be computed by using a discrete Green's theo-

rem. This suggests the use of the discrete Green's

theorem [13, 14] instead of Gray's algorithm. Then

the two estimators can be computed simultaneously

by a contour following. Analogous to Green's theo-

rem, the discrete Green's theorem evaluates a dou-

ble sum over a discrete region by a single summation

along the discrete boundary of the region, and thus

gives computational advantages. As shown in a re-

cent paper [15], it can also be extended to estimate

the volume of a 3D object.

The results of the test, using test images of circles,

should be useful for other blob-like objects. However,

di�erent shapes may require di�erent perimeter esti-

mators. It is therefore interesting to see how a good

estimator can be found for a given type of shape. If

one desires an optimal estimator, a faithful charac-

terization (a set of counts) should be made. Dorst

and Smeulders [6] believed that it was very di�cult,

and was even impossible for circular arcs. But, as

a method to analyze a given characterization, they

divided the parameter space of the continuous data

(one dimensional R-space for the case of a circle)

into regions each corresponding to one value of the

discrete characterization n. The region imply the

spread of the ground truth for a given value of n.

Vossepoel and Smeulders [3] used three counts (see

Eq. 7) as a characterization to estimate the length

of straight lines. They found the optimal weights by

a least-square �tting. This method suggests a way

to design a linear estimator. Using the linear model



given by Eq. 10, the problem of �nding a good esti-

mator is to �nd a set of counts (also known as the

characterization of the discrete data [6]), and then to

determine the optimal weights.

CONCLUSION

In this paper, we give a review of several area and

perimeter estimation techniques. The area, perime-

ter and circularity are features used in shape anal-

ysis. An accurate estimation of the circularity de-

pends on accurate estimations of the area and the

perimeter. The area of a binary region can be ac-

curately estimated by counting the number of the

pixels inside the region. However, to estimate the

perimeter is more di�cult. To �nd a good perime-

ter estimator, it is necessary to make some assump-

tions about the boundary of the object. We assume

that the boundary is a chain of circular arcs. This

assumption should be useful for many blob-like ob-

jects met in practice. Many estimators have been

tested for circles of di�erent sizes. We conclude that

with a su�ciently large resolution all the methods

give good estimations of the area, and the method of

Kulpa gives a good estimation of the perimeter. To

compute the circularity, the best result can be ob-

tained by using Kulpa's perimeter, and Gray's area,

which is the number of the pixels of the region. The

Gray's area can be computed by a discrete Green

theorem. Then the area and the perimeter can be

computed simultaneously and e�ciently, based on a

contour following algorithm.
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