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Abstract

Green's theorem evaluates a double integral over the

region of an object by a simple integration along the

boundary of the object. It has been used in moment

computation since the shape of a binary object is to-

tally determined by its boundary. By using a discrete

analogue of Green's theorem, we present a new al-

gorithm for fast computation of geometric moments.

The algorithm is faster than previous methods, and

gives exact results. The importance of exact computa-

tion is discussed by examining the invariance of Hu's

moments. A fast method for computing moments of

regions in grey level image, using discrete Green's the-

orem, is also presented.

1 Introduction

Moments have been widely used in shape analysis
and pattern recognition [1]�[9]. The (p + q)'th order
moment of an image is de�ned as

mpq =

Z
y

Z
x

g(x; y)xpyqdxdy (1)

where g(x; y) is the intensity as a function of spatial
position. The double integral is often replaced by a
double summation in discrete images

mpq =
X
y

X
x

g(x; y)xpyq (2)

In the most applications, moments of orders up to
3 are used. Higher order moments have also been ap-
plied [4]. Hu [1] proposed a set of moment invariants,
which do not depend on translation, rotation, or scal-
ing. Other types of moment invariants includes the
a�ne moment invariants recently proposed by Flusser
and Suk [8], which achieve invariance under general
a�ne transformation.

In binary images, assuming the object has pixel
value 1 and the background has pixel value 0, equa-
tion (2) becomes

mpq =
X

(x;y)2O

xpyqdxdy (3)

where O denotes the region of the object.
To generate the moments directly by using (1) or

(2) one has to perform a signi�cant amount of compu-
tation. It requires additions and multiplications both
of O(N2), where N is the vertical or horizontal size of
an image. Since the value of the moments are large,
integer words do not give enough precision, and there-
fore long integers or �oat numbers have to be used.
The upper bound for a (p + q)'th order moment is
given by Sadjadi and Hall [10],

mpq � gmax

�
Np+1 � 1

p+1

� �
N q+1 � 1

q + 1

�
(4)

where gmax is the maximal grey level. Using long in-
teger or �oat calculations further slow down the com-
putation of moments. Thus, the computational cost
limits the use of moments in on-line, and even in o�-
line applications.

Many algorithms have been developed to speed up
the computation of moments by reducing the compu-
tational redundancy [11]�[27]. Some of them work for
grey level images, some of them for binary images,
and some of them for parallel computation or optical
implementation. In this article, we propose two new
methods for fast computation of moments by using a
discrete analogue of Green's theorem. One of them is
used to compute geometric moments from binary im-
age; the other to compute moments of regions in grey
level images.

2 State of the art

In order to speed up the computation of moments,
the following techniques have been used.



1. Image �ltering or transform: Hatamian [15]
computed the moments by a causal spatial �lter. The
�ltering needs only additions of O(N2) for 2D images
and O(N) for 1D signals. Hatamian developed an al-
gorithm for computing the moments of grey level im-
ages. Fu et al. [21] found the relation between the
moments and the coe�cients of the Hadamard trans-
form of an image. For a binary image, the 10 moments
of orders up to three are totally determined by four
projections of the image, and can be computed from
the coe�cients of the 1D Hadamard transform of the
projections. The 1D Hadamard transform needs ad-
ditions of O(N log2N).

2. Delta method: A moment of an object is the
sum of the moments of all the vertical or horizon-
tal line segments of the object. � is used to denote
the length of a line segment, hence the name of the
method. The moments of a line segment can be ex-
pressed in a closed form. The method was �rst pro-
posed by Zakaria et al. [18], and then improved by
Dai et al. [19] and Li [20]. The method of Dai et al. is
called integral method since the moments of line seg-
ments are computed by integration, instead of summa-
tion used by the delta method. Given y-line represen-
tation of an object, Li's algorithm requires about 6N
multiplications and 17N additions to compute the 10
low order geometric moments for a convex object. The
delta method is suitable for binary images represented
by y-lines.

3. Computation via corner points: The geomet-
ric moments can be computed via corner points in the
boundary of the object. The boundary between two
corner points is a straight line. Strachan et al. [17],
Leu [22], and Singer [23] computed the double inte-
gral over the object by summing up the integrals over
some simple regions each containing one straight line
boundary. The integral over such a simple region can
be expressed in a closed form. Jiang and Bunke [24]
used Green's theorem to transform the double integral
to a single integral. The single integral along a straight
line between two corner points can be expressed in a
closed form. To compute the geometric moments via
corner points implies additions and multiplications of
O(C), where C is the amount of the corner points.
Since a large amount of computation are required for
each corner point, the method is e�ective for objects
with simple shape.

4. Green's theorem: Green's theorem [28] eval-
uates a double integral over a region by a single in-
tegration along the boundary of the region. It is im-
portant for moment computation since the shape of a
binary object is totally determined by its boundary.

Li and Shen [25] proposed a fast moment computa-
tion method by using Green's theorem. The moment
kernel updating technique is used so that the algo-
rithm needs only additions of O(L), where L is the
length of the boundary of the object. The method
is e�ective, but not accurate, since Li and Shen used
an approximation of Green's theorem in digital image
lattice. There exists discrete Green's theorem [29] for
exact computation. By using a discrete analogue of
Green's theorem, Philips [26] proposed a method giv-
ing exact results. Unfortunately his method is not as
e�ective as the method of Li and Shen. We proposed
a method [27] which is as e�ective as the method of Li
and Shen, and gives exact results. In this article, we
introduce a new method, which is faster than previous
methods, and achieves exact computation of geomet-
ric moments. We also apply discrete Green's theorem
in grey level images, and present a method for fast
computation of moments of grey level regions.

5. Contour following: Contour following [30] is
to go through and label the object boundary pixels
clockwise or anticlockwise. Fu et al. [21] used contour
following to make the projections of a binary image.
To use Li and Shen's method or compute the moments
via corner points, contour following must be applied.
To use the delta method, contour following can be
applied but then the start point and the end point
in a line segment must be paired. Contour following
is an O(N) algorithm to locate an object in a binary
image. To locate the object by scanning the image
or by recursively including the neighbor points from
a seed point will need O(N2) operations. The main
disadvantage of contour following is that holes of the
object will not be considered. If an object contains
holes, the moments of the holes have to be subtracted.

Di�erent methods give di�erent precision, depend-
ing on the size, shape and complexity of the object.
Exact computation means to obtain results as if the
moments were computed by a double sum as in equa-
tions (2) and (3). A good precision is important to
achieve invariance for Hu's moments [1]. Dai et al. [19]
evaluated the moment invariants of Hu computed by
the exact evaluation of geometric moments and by an
integralmethod, and found that the results of the inte-
gral method were more sensitive to the sampling. The
integral method is better for shapes with only vertical
and horizontal edges. In this case, the integral method
gives the true value of the moments. For the 10 low
order moments, the di�erences between the results of
the integral method and the exact computation have
been formulated by Dai et al [19]. A more thorough
discussion of the precision is given in Section 6.



3 Discrete versions of Green's theorem

Green's theorem [28] relates a line integral around a
simple closed plane curve C to an ordinary double in-
tegral over the plane regionO bounded by C. Suppose
that the curve C is piecewise smooth, and functions
M(x; y) and N(x; y) are continuous and have contin-
uous �rst-order partial derivatives in O, thenI

C

M dx+N dy =

Z Z
O

f(x; y)dA (5)

where
H
C
denotes a line integral along C in anticlock-

wise direction, and

f(x; y) =
@N(x; y)

@x
�
@M(x; y)

@y
(6)

Direct applyication of Green's theorem on a dis-
crete region by changing the integrations in equa-
tion (5) to summations results in an approximation,
i.e., X

C

(M�x+N�y) �
X
O

f�x�y (7)

Li and Shen [25] used this approximation to compute
geometric moments. The results are poor when the
object is small, or the shape of the object is complex.

There are di�erent versions of discrete Green's the-
orem which relate a sum over a region to a sum along
the boundary. One of the di�erences between them is
in the de�nition of the boundary.

3.1 Tang's version

Tang [29] de�nes the boundary L in a natural way:

L = fpjp 2 O; 9q 2 N4(p); q 62 Og (8)

where N4(p) denotes the set of the 4 neighbors of a
pixel p. Tang's formula isX
O

f(x; y)=
X
L

(Fx(x; y)DY (x; y) + f(x; y)CY (x; y))

(9)

where

Fx(x; y) =

xX
i=0

f(i; y) (10)

In Tang's paper,DY (x; y) and CY (x; y) are de�ned by
the Freeman chain code representation of the bound-
ary. They can also be de�ned by the coordinate (x; y)
of the boundary point, as we give below

DY (x; y) =

8<
:

1 (x� 1; y) 2 O; (x+1; y) 62 O

�1 (x� 1; y) 62 O; (x+1; y) 2 O

0 otherwise

CY (x; y) =

�
1 (x� 1; y) 62 O

0 otherwise

Figure 1: The simple bug contour following strategy.

Figure 2: The backtracking contour following strategy.

3.2 Philips' version

Philips [26] de�nes the boundary in another way.
Let @O+ = f(x; y)j(x; y) 2 O; (x + 1; y) 62 Og and
@O� = f(x; y)j(x; y) 62 O; (x+1; y) 2 Og, the bound-
ary @O is de�ned as @O = @O+ [ @O�. Philips' for-
mula isX

O

rxf(x; y) =
X
@O+

f(x; y)�
X
@O�

f(x; y) (11)

where rxf(x; y) = f(x; y)�f(x�1; y). Note that @O
is not a closed boundary of the region O. It is the west
and east boundary. A dual formula can be obtained if
the north and south boundary is given.

3.3 Our new version

We associate the discrete Green's theorem with the
contour following algorithm [30]. In contour following,
a conceptual bug goes through all boundary points.
Simple bug contour following should be used for 4-
connected regions, and backtracking contour following
should be used for 8-connected regions. During sim-
ple bug contour following, the bug makes a right turn
when it is in the background, and makes a left turn
when it is in the object, as illustrated in Fig. 1. In
backtracking contour following, the bug makes a right
turn when it is in the background, and returns back
to the previous point when it is in the object. This is
illustrated in Fig. 2.

A background-to-object transition can have four
possible directions, 0, 1, 2, and 3, as illustrated in
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Figure 3: The four possible directions of background
to object transition. The squares present the bound-
ary points in the object, with coordinate (x; y).

Fig. 3. Thus, a transition is denoted by a quadru-
ple (x; y;�x;�y) which consists of a point coordi-
nate (x; y) and (�x;�y) giving directional informa-
tion. The set of the transitions is de�ned as

T0 = f(x; y;�x;�y)j(x; y) 2 O; (x; y + 1) 62 O;

�x = 1; �y = 0g

T1 = f(x; y;�x;�y)j(x; y) 62 O; (x+ 1; y) 2 O;

�x = 0; �y = �1g

T2 = f(x; y;�x;�y)j(x; y) 62 O; (x; y + 1) 2 O;

�x = �1; �y = 0g

T3 = f(x; y;�x;�y)j(x; y) 2 O; (x+ 1; y) 62 O;

�x = 0; �y = 1g

T = T0 [ T1 [ T2 [ T3

Note that one boundary coordinate can correspond to
more than one transitions. In practical computation,
only a triplet is to be registered under the contour
following. As wewill see later, only a triplet is involved
in the computation.

By using contour following and the transition con-
cept, we present a formula for the discrete Green's
theorem X

O

f(x; y) =
X
T

Fx(x; y)�y (12)

where Fx(x; y) is de�ned by equation (10). If we de�ne
Fy(x; y) =

Py

i=0 f(x; i), then we obtain a dual formulaX
O

f(x; y) =
X
T

Fy(x; y)�x (13)

Assuming thay an object O consists of rows of points,
and that the x-coordinates of the start point and the
end point of the row r are x1(r) and x2(r), equa-
tion (12) can be proved as follows:

X
O

f(x; y) =
X
r

x2(r)X
x=x1(r)

f(x; y)

=
X
r

(Fx(x2(r); y)� Fx(x1(r)� 1; y))

=
X
T3

Fx(x; y)�
X
T1

Fx(x; y)

=
X
T

Fx(x; y)�y

Equation (13) can be proved in a similar way.

4 Computing geometric moments of

binary objects

By using the discrete analogue of Green's theo-
rem, we present a fast method to compute geomet-
ric moments, de�ned by equation (3). Substituting
f(x; y) = xpyq into (12), we have

mpq =
X
T

xX
i=0

ipyq�y =

X
T

0
@xp+1yq

p+1
+
xpyq

2
+

pX
j=2

1

j
Cj�1
p Bjx

p�j+1yq

1
A�y
(14)

where Cj�1
p is a combination number and Bj is the

j'th Bernoulli number. Let

uij =
X
T

xi+1yj�y (15)

Then equation (14) becomes

mpq =
upq

p+ 1
+
up�1;q

2
+

pX
j=2

1

j
Cj�1
p Bjup�j;q (16)

This is our formula for geometric moment computa-
tion. The moment mpq is a linear combination of ujq
for j = 0; � � � ; p. The 10 low order moments, which are
often used in applications, can be computed as

2
664

m0q

m1q

m2q

m3q

3
775 =

2
664

1 0 0 0
1=2 1=2 0 0
1=6 1=2 1=3 0
0 1=4 1=2 1=4

3
775

2
664

u0q
u1q
u2q
u3q

3
775

In our earlier algorithm [27], we proposed to com-
pute the monomials xiyj for each transition registered
under contour following, and uij, as de�ned in (15),
are computed by accumulation. xiyj can be computed
by updating, as proposed by Li and Shen [25], so that
only additions are required.



Now we propose a more e�ective method to com-
pute uij . Suppose an image consists of scan-lines l(y),
and a set of transitions in this scan-line is T (y)

T (y) = f(x; y;�x;�y)j(x; y;�x;�y) 2 T;

(x; y) 2 l(y)g (17)

We de�ne vi(y) as

vi(y) =
X
T(y)

xi+1�y (18)

We compute vi(y) for i = 0; � � � ; p and all y-
coordinates. This can be implemented by using p+1
arrays of size N . During contour following, the array
entries are updated.

Comparing equation (15) with (18), we have

uij =
X
y

vi(y)y
j (19)

which means that uij is the j'th moment of a 1D signal
vi(y). A fast algorithm for computing moments of a
1D signal was proposed by Hatamian [15]. Letting
v0i (y) be the result of Hatamian �ltering of vi(y), we
have

v0i (y) =

yX
k=N

vi(k) (20)

Applying the Hatamian's �lter recursively, we obtain

v
j
i (y) =

yX
k=N

v
j�1
i (k) (21)

Then the 1D moments uij are linear combinations of

v
j
i (1). For j � 3 we have

2
664

ui0
ui1
ui2
ui3

3
775 =

2
664

1 0 0 0
0 1 0 0
0 �1 2 0
0 1 �6 6

3
775

2
664

v0i (1)
v1i (1)
v2i (1)
v3i (1)

3
775

Hatamian �ltering of a 1D signal requiresN additions.

Our new method to compute the geometric mo-
ments can be implemented in three steps:

1. The contour following is applied, and a triplet
(x; y;�y) is recorded for each transition from the
background to object. Then the array entries
vi(y) are accumulated for i = 0; � � � ; p, see equa-
tion (18)

2. Apply Hatamian �ltering to vi(y) for i = 0; � � � ; p
and obtain v

j
i (y) for all i and j.

3. Compute the moment mpq as a linear combina-

tion of vji (1).

Li [20] also computed geometric moments by 1D
moment computation. However our method is more
e�ective since we do not need to determine the start,
and the stop point, and the length of each line seg-
ment. For the computation of the 10 low order mo-
ments, it requires, in addition to the operations for
contour following, 3 multiplications and 4 additions
for each T1 and T3 transition in the �rst step. The
second step needs 10N additions. The last step needs
only a few multiplications and additions. So totally it
needs about 10N + 8S additions and 6S multiplica-
tions in addition to the contour following, where S is
the amount of line segments of the object.

The 3 multiplications for each transition are used to
compute xi from x. In some computational environ-
ment, addition is much faster than multiplication. In
this case we can use Li and Shen's updating technique
[25], requiring only additions, to compute xi, since x is
changed at most by 1 from one transition to the next.
Using the updating, 10 additions are used instead of
3 multiplications.

5 Computing moments of grey level

region

Hatamian [15] proposed a fast algorithm to com-
pute moments of grey level images, de�ned by equa-
tion (2). Sometimes we do not need to compute the
moments of the whole image, but some regions of the
image, as de�ned below

mpq =
X
O

g(x; y)xpyq (22)

where O denotes a region. The zeroth order moment
of a region is the correlation of the grey level function
and the region.

We present a method to compute (22) by using
the discrete version of Green's theorem. Substituting
f(x; y) = g(x; y)xpyq into (12), we have

mpq =
X
T

xX
k=0

g(k; y)kpyq�y (23)

Let

Gp(x; y) =

xX
k=0

g(k; y)kp (24)

Equation (23) becomes

mpq =
X
T

Gp(x; y)yq�y (25)



Let

vp(y) =
X
T(y)

Gp(x; y)�y (26)

where T (y) are the transitions in scan-line l(y) as de-
�ned by equation (17). Then we have

mpq =
X
y

vp(y)y
q (27)

We see that the moment mpq can be computed as the
q'th order moment of a 1D signal vp(y).

Our method to compute the moments given by
equation (22) is stated as follows: First compute
Gp(x; y) from g(x; y), then apply contour following.
For each transition, the values of vp(y), de�ned by
equation (26) and implemented as an array, are accu-
mulated. Then we apply Hatamian �ltering on vp(y)
and obtain vjp(y) for j = 0; � � � ; q. The moment mpq is

then a linear combination of vjp(y).

To compute the 10 low order moments, we need
to compute Gi(x; y) for i = 0; � � � ;3. This requires
4N2 additions and 3N2 multiplications. These mul-
tiplications can, if desired, be changed to additions
by applying Li and Shen's updating. To accumulate
vi(y) we need 4 additions for each T1 and T3 transition.
Hatamian �ltering of vi(y) needs 10N additions.

If the moments are to be computed in more than
one regions in the image, the values of Gi(x; y) are
computed only once. Thereafter only about 10N +
8S additions are required for each region. Thus, we
gain more computational advantage if there are more
regions.

6 The precision of the computation

The standard two-dimensional discrete moments
mpq of f(x; y)

mpq =
X
y

X
x

g(x; y)xpyq (28)

will vary for a given shape depending on the spatial
position of the object. Translation invariance is ob-
tained using the central moments

�pq =
X
x

X
y

(x� 	x)p(y � 	y)qg(x; y) (29)

where

	x =
m10

m00
; 	y =

m01

m00
(30)

(a) (b)

(c)

Figure 4: Three test images.

Scaling invariant central moments are obtained by the
normalization

�pq =
�pq

(�00)

; 
 =

p+ q

2
+ 1; p+ q � 2 (31)

A set of seven combinations of the second and third
order normalized central moments, invariant to trans-
lation, rotation and scale change, due to Hu [1], are
often cited:

�1 = �20 + �02

�2 = (�20 � �02)
2 +4�211

�3 = (�30 � 3�12)
2+ (3�21 � �03)

2

�4 = (�30 + �12)
2 + (�21 + �03)

2

�5 = (�30 � 3�12)(�30 + �12)�
(�30 + �12)

2 � 3(�21 + �03)
2
�

+(3�21� �03)(�21 + �03)�
3(�30+ �12)

2 � (�21 + �03)
2
�

�6 = (�20 � �02)
�
(�30 + �12)

2� (�21 + �03)
2
�

+4�11(�30 + �12)(�21 + �03)

�7 = (3�21 � �03)(�30 + �12)�
(�30 + �12)

2 � 3(�21 + �03)
2
�

+(3�12� �30)(�21 + �03)�
3(�30+ �12)

2 � (�21 + �03)
2
�

Strict invariance is achieved by assuming a contin-
uous image function and a double integral over the
region. Due to the digital nature of the image, the
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Figure 5: Invariant moments as computed by the new method (solid line) and by the method of Li and Shen
(dashed line): (a) �1 of the triangle, rotation: 0� � 90�, (b) �2 of the triangle, rotation: 0� � 90�, (c) �3 of the
triangle, rotation: 0� � 90�, (d) �1 of the square, rotation: 0

� � 90�, (e) �1 of the aircraft, rotation: 0
� � 90�, (f)

�2 of the aircraft, rotation: 0
� � 90�, (g) �3 of the aircraft, rotation: 0� � 90�, (h) �1 of the triangle, length of

the right-angled side: 7�224 pixels.



moment invariants computed digitally are not strictly
invariant. The precision of the computation of the
seven invariant moments of Hu are often quoted, as
discussed and tested by Gonzalez and Woods [31]. It
can be shown [32] that the set of moment combina-
tions is still invariant under image translation if they
are computed by the exact computation. But under
digital processing, the invariant moments are expected
not to be strictly invariant under image rotation and
scale changes.

The method of Li and Shen, using an approxima-
tion of Green's theorem, is not accurate for small ob-
jects or objects with complex shape. By using the
new exact method, the precision is largely improved.
Three binary images, as shown in Fig. 4, are used to
test the precision of the new method and the method
of Li and Shen, in respect to the invariance of Hu's
invariant moments. Fig. 4(a) shows a test image of a
triangle with 120 pixels. Fig. 4(b) shows a test image
of a square with 225 pixels. They are small objects.
Fig. 4(c) shows a test image of an aircraft with 7086
pixels, which is complex in shape.

While the objects are rotated around their centroids
clockwise from 0 to 90 degrees, the invariant moments
of the three objects are computed by both methods.
The results are shown in Fig. 5(a)�(g). The invari-
ant moments computed by the new method are repre-
sented by the solid lines, while that computed by the
method of Li and Shen are represented by the dashed
lines. We see that the values computed by the new
method are very stable under image rotation, while
the values computed by the method of Li and Shen
vary much.

We have shown the test results of the �rst three in-
variant moments of the triangle and the aircraft, and
the �rst invariant moment of the square. For other in-
variant moments of these �gures, the results are simi-
lar.

For the triangle and the square, we can compute
the true values of the invariant moments analytically:
�1 of the triangle is about 0:2222, �2 of the triangle is
about 0:0123, �3 of the triangle is about 0:0055, and
�1 of square is about 0:1667. Thus we see that the
values computed by the new method are close to the
true values.

Also, the new method is much less sensitive to sam-
pling than the method of Li and Shen. This is demon-
strated by comparing the invariant moment �1 of the
triangles of di�erent sizes. The triangle of the largest
size (right angle side = 224 pixels) is �rst created,
and is then successively down sampled by a factor of
2. The smallest triangle has a right angle side of 7 pix-
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Figure 6: Error (�� = ��� �) in estimated orientation

(��) as a function of true rotation angle (�) of the air-
craft object in Fig. 4, for the new method (solid line)
and the method of Li and Shen (dotted line).

els. The results of the new method and the method
of Li and Shen applied on these triangles are shown in
Fig. 5(h). We see that the new method is much more
stable under scale changes, and thus may be very use-
ful in scale space applications of invariant geometric
moments.

An alternative way of achieving rotation invariance
is to estimate the object orientation angle, given by

�� =
1

2
tan�1

�
2�11

�20 � �02

�
(32)

and compute the normalized central moments in a ro-
tated coordinate system. The error in the estimated
orientation, as obtained by the two di�erent meth-
ods, is given in Fig. 6 as the aircraft object is rotated
around its centroid. We see that the new method gives
an insigni�cant orientation error compared to the er-
ror introduced by the method of Li and Shen.

7 Conclusion

By using a discrete analogue of Green's theorem, we
propose a new method to compute the geometric mo-
ments of binary images. Compared to previous meth-
ods, the new method is faster, and gives exact results
as if the moments were computed by a double sum
over the object area. Exact computation is important
to achieve invariance of Hu's moments, specially for
small and complex objects.

We also apply the discrete Green's theorem in grey
level images, and propose a fast method to compute
moments of regions in grey level images. The method
is particularly e�ective when the moments are to be
computed in a number of regions in an image.
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