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 ABSTRACT
In medical ultrasound imaging, beam control methods
such as dynamic focusing, and dynamic aperture and
weighting give a need for more flexible control over the
receive beam. In addition the desire to increase ac-
quired framerate makes it a requirement to be able to
receive several beams in parallel for each transmitted
beam. Digital beamforming implemented with custom
VLSI chips will give these capabilities. This paper
therefore discusses various concepts for digital beam-
forming and also gives a discussion of the effect of time
delay quantization in beamforming under conditions of
steering and focusing.

1.  INTRODUCTION
Beamforming in ultrasound instruments for medical
imaging has traditionally been implemented using ana-
log delay lines. Typically arrays with between 48 and
128 elements are used. The signal from each individual
element is to be delayed in order to steer the beam in the
desired direction. This is similar to beamforming in so-
nar and radar systems. In addition ultrasound systems
need to focus the beam also. In the receive beamformer
this gives rise to the concept of dynamic focusing. For
each pulse which is transmitted from the array, the re-
ceive beamformer tracks the depth and focuses the re-
ceive beam as the depth increases. It is often also
desirable to let the receive aperture increase with depth.
This gives a lateral resolution which is constant with
depth, and decreases the sensitivity to aberrations in the
imaged medium in the nearfield. This gives a require-
ment for dynamic control of the number of elements
that are used. Since often a weighting function
(apodization) is used for sidelobe reduction, the ele-
ment weights also have to be dynamically updated with
depth.
Digital beamforming is now about to become feasible
in such beamformers. The concept has long been
known, but availability of high-speed analog to digital
converters, and VLSI technology improvements have

now made digital beamformers feasible. Some work in
this area has been reported in [1] and [2]. In addition to
obtaining a more accurate realization of a beamformer,
digital beamforming also opens up for new possibilities
such as several parallel receive beams [3] which give an
increased frame rate.
The purpose of this paper is first to review the basic
principles for beamforming by discussing direct time-
delay beamforming, and complex or real down-mixing.
The down-mixing schemes require lower sample rates
than the direct implementation if the signal’s band-
width is restricted. Second the effects of quantization of
the time delays in a digital beamformer are considered.

2.  BEAMFORMER CONCEPTS

2.1  Baseband Beamforming
This concept is a straightforward implementation of
time-delay beamforming, i.e. the output is:

(1)

where  is the output from each array element,  is
the desired dynamically updated delay, and  is the
dynamically updated weighting. The requirements for
time delay accuracy in this scheme are very high as lat-
er analysis will show. This can be overcome in two dif-
ferent ways:

 1. Interpolation.
In this scheme a relatively low sample rate deter-
mined by the maximum frequency is used and then
the data is interpolated up to the required accuracy
[4]. Typical interpolation factors are two, four and
eight. The group delay and frequency response
characteristics of the interpolator determine quality.

 2. Course delay and vernier phase shifter.
In this scheme course delays with accuracy given
by the sample rate and maximum frequency are fol-
lowed by a vernier control which is implemented
by a phase shifter tuned to midband. The phase
shifter is an approximation to a time delay and is
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exact only at the center frequency. An analysis of
the error is given in [5].

2.2  Down-Mixing
An alternative for processing an input of limited band-
width is to mix down to an intermediate frequency
(shifted sideband beamforming) or baseband. The
down-mixing can be done digitally after sampling [1]
or in the analog domain [2] prior to sampling. In addi-
tion the down-mixing can be done using a complex or
a real mixer.

 1. Complex Down-Mixing
Complex down-mixing can be formulated by shift-
ing the complex input signal in each channel by

:

(2)

Thus it is seen that there is an extra phase factor in
each channel which depends on the delay. This fac-
tor must be removed by a complex multiplication
with  in each channel. Compared to time de-
lay beamforming, the required phase accuracy is
given by the center frequency, while the required
delay accuracy is determined by the much smaller
bandwidth. This is the advantage of this scheme.

In medical imaging, typically transducers have had
a bandwidth in the order of 40-50% of the center
frequency. Therefore there is a potential for a sav-
ing by a factor of two in the sample rate using this
scheme. As transducers tend towards relative band-
widths up to 80%, the saving in sample rate disap-
pears. Other disadvantages are the need for a
complex mixer and delays, and a phase multiplier
in each channel prior to the beamformer.

 2. Real Down-mixing
A real input signal can be expressed by the complex
envelope:

(3)

For this signal the beamformed output should be:

(4)

In order to avoid the complex delays, real down-
mixing can be used. Assume that each channel is
moved down to an intermediate frequency by mix-
ing with , and then delayed.
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The beamformer output after filtering out the com-
ponents at  is:

(5)

This is equivalent to:

(6)

Compared to (4), in addition to a change of center
frequency, an extra phase factor of  has been
added and needs to be compensated for. This phase
factor can be included in the mixer for each channel
and be dynamically updated. The advantage over
the complex mixer scheme is that only one delay
line per channel is required.

3.  TOLERANCE ANALYSIS
An array may deviate from the ideal characteristics in
the form of a phase aberration, or in element gain. It
turns out that the most critical one is a deviation in
phase, as for instance caused by quantization effects in
the time delays or offsets in the element locations. The
time delays are determined by the steering and focus-
ing, and the distribution of the phase error over the ar-
ray may be divided into the following cases:

 1. Random phase errors are assumed to be uncorrelat-
ed from element to element and give rise to a
sidelobe structure which is also random as a func-
tion of angle and which can be characterized by a
mean sidelobe level.

 2. Focusing with a quantized quadratic time delay
function gives rise to discrete sidelobes near the
main lobe.

 3. Periodic errors occur in unfocused uniform arrays
(i.e. with uniform distance between individual ele-
ments) when steered to certain directions and give
rise to strong discrete sidelobes.

 4. Steering in combination with focusing gives dis-
crete quantization sidelobes that often are higher
than those caused by focusing alone. They are
therefore of importance since they determine the
worst-case sidelobe level in a focused imaging sys-
tem.

All four cases will be discussed for the direct time-de-
lay beamformer.
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3.1  Model
The effect of time or phase errors can be found by con-
sidering the time delay, low-pass beamformer:

(7)

whereh(t, ,r) is the beamformer output,xm(t) is the in-
put from element numberm in an array withM ele-
ments, andwm is the weighting or apodization. The
time-delay for each element, , is determined by the
direction, , that the array is steered to and in a focused
system also the depth,r. When the beamformer is
steered to a direction,  off broadside in the far-field,
the time delays are given by:

(8)

whered is the interelement distance andc the velocity
of sound. If the beamformer is focused at the point

, an additional focusing time delay is added:

(9)

where the approximation is the Fresnel approximation.
A narrowband signal will now be assumed and com-
plex notation will be used in order to model the effect
of errors in the down-mixed, baseband output from the
beamformer. First, let the signal be a continuous sine-
wave of frequency , received from a point
source at  with source delay  given by (8) and
(9):

(10)

The beamformer delays found from (8) and (9) will be
quantized to , where  is integer andfs is the
sampling frequency. The level of the sidelobes (wheth-
er random or discrete) is given by the number of quan-
tization steps per period of the beamformed signal, .
The oversampling ratio is  i.e. the ratio of the
sampling frequency and the signal frequency. After
quantization of the delay, there will be a phase error per
element,em, in the range . Likewise the
amplitude is assumed nominally to be unity, and to
have an error  that varies from element to element.
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The output of the beamformer can then be expressed as:

(11)

Thus the desired response is seen through a phase grat-
ing. The beam pattern is obtained as the time average
and is:

(12)

It is here separated in a slightly perturbed desired re-
sponse and an additional undesired response. When the
phase and amplitude errors are small, the trigonometric
terms may be expanded in a power series, and an ap-
proximation may be obtained by retaining the first
terms.

(13)

Thus, in the far-field where  varies linearly
with m as given by (8), the beam pattern consists of the
desired response and additive terms which are given by
the Fourier transform of the time delay error and the
amplitude error over the array. For a focused system,
the Fourier transform generalizes to a focused delay
sum with  and  given by the sum of (8) and (9), but
the analysis of the effect of errors is essentially the
same. The properties of the phase error in the two cases
are however quite different as will be shown here.
The properties of the weighting function are important
in the subsequent analysis and therefore some charac-
teristics will be defined. The normalized Coherent
Power Gain (CPG) and the normalized Incoherent
Power Gain (IPG) are defined as:

(14)

The ratio of the two is in spectral analysis called the
normalized Equivalent Noise Bandwidth (ENBW). In
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the context of spatial processing a more suitable term is
Equivalent Noise Beamwidth:

(15)

Hamming weighting will be used in later examples
with ENBW=1.36.

3.2  Random Phase Quantization Lobes
In the case of uncorrelated phase quantization error
from element to element the analysis is particularly
simple. The ratio of the desired response and the undes-
ired response can be found from the expectation of the
first and second terms of (13). The desired signal will
be coherently added in the beamformer. The error com-
ponent is assumed to be uncorrelated and will therefore
be incoherently added. Although the phase quantiza-
tion error in a sense is deterministic since it can be pre-
dicted from the quantization process, the case when the
errors on individual channels are uncorrelated implies
that one can consider the error to be a realization of a
white, random process. That kind of phase quantization
error will therefore be referred to as random. It has a
uniform distribution over the quantization range

, and a variance of .The re-
sulting average voltage noise to signal ratio or sidelobe
level is:

(16)

This expression has been known for a long time in the
radar literature [6].
The random error squared will be distributed according
to a χ2 distribution with 2 degrees of freedom (expo-
nential distribution). The peaks of the squared error
will therefore be a factor of 4.6 above the mean (1%
percentile). The peak one-way sidelobe level (voltage)
is therefore:

(17)

An example of such a beampattern is shown in Fig. 1

3.3  Focusing quantization sidelobes in an
unsteered system
In this case, the delay is given by (9) with . It is
assumed that the Fresnel approximation is valid. The
phase is:

(18)

In the equation the phase has been expressed as a func-
tion of . In that case the phase quantization error is a
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sawtooth function and it can be expanded in the follow-
ing Fourier series:

(19)

It is seen that the phase of the functions in the expan-
sion are themselves focusing functions. The interpreta-
tion of this equation is that the phase quantization error
manifests itself as subsidiary foci at locations:

(20)

Thus the response in the focal point is the sum of many
defocused beams which all contribute to a raised
sidelobe level [9].
In order to find the level of the sidelobes it is more in-
structive to look at the phase quantization error as a
function of element number. Usually only the central
part of the error is regular and is the main contributor to
sidelobe peaks. Its extent can be found by equalling the
phase from (18) with half the quantization step. The re-
sult is:

(21)

wherer is the focused range and  is the apertu-
re. To a first approximation this can be considered as
one period of a cosine-shaped bulge over the central
part of the array with amplitude . The cosine is of
period . The result is that there will be two spu-
rious peaks offset by a wavenumber of  or
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Fig. 1 Beampattern showing random side-
lobes for a 5 MHz array with 128 ele-
ments. This is achieved by focusing to
20 mm and steering to 1 degrees and
with quantization to 10 MHz.

exp je φ( )( )
1–( ) k π Mq⁄( )sin

π k 1 Mq⁄+( )
---------------------------------------------exp jkMqφ( )

k ∞–=

∞

∑=

rk
r

kMq
----------= k 0≠,

Mcentral
2M
D

-------- rλ
Mq
------- 

  1 2/
=

D Md=

π Mq⁄
2Mcentral

π Mcentrald( )⁄



5

angles . The level of each peak
can be found as in [8] and is given by the product of the
correlation between a cosine and the actual central part
of the quantization error, the quantization step-size and
the fractional part of the aperture:

(22)

There will also be additional peaks further away from
the main lobe as shown in Fig. 2.

3.4  Discrete quantization lobes in an unfocused
system
The third effect of delay quantization is discrete quan-
tization lobes that resemble grating lobes. In contrast to
the previous point where the energy was defocused in
depth, some of the energy is now used for undesired di-
rections. This has been analyzed in the radar and sonar
literature [6], [7], and occurs whenever the quantization
error over the array becomes periodic. For an unfo-
cused, uniform array, excited with CW, with element
distanced, and a time delay quantization to accuracy

, Gray [7] has given the condition
for a periodic time delay quantization error over the ar-
ray:

(23)

In comparing with (8) it is seen that this corresponds to
the case when steering of a subarray ofq elements gives
a time delay which is an integral number,p, of delay
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Fig. 2 Beampattern showing quantization
sidelobes around the mainlobe due to
focusing for an unsteered 5 MHz array
with 128 elements, focused to 90 mm
and with quantization to 10 MHz.
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  θp q,sin⇒ p
q
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steps. The subarray is repeated periodically over the ar-
ray when steered to direction . There is a close re-
lationship with grating lobes in linear arrays. The
periodic quantization error gives rise to discrete side-
lobes whose direction are given by the grating lobe di-
rection in an array with element distance :

(24)

There is a very large number of combinations ofp and
q that will give valid angles, and therefore it is impos-
sible to avoid discrete quantization lobes merely by
avoiding to steer the array in certain directions. A clos-
er analysis of the quantization lobes and their level is
therefore necessary.
The worst-case quantization lobe is forq=2, where
there will beM/2 periods of the quantization error.
The worst case is that every element will have a phase
quantization error of , i.e. plus or minus half
the quantization step. The angles that give worst-case
quantization lobe are , , , etc.
The ratio of sidelobe to unquantized mainlobe level is
the sum of the quantization error over theM/q subar-
rays relative to the coherent sum of the mainlobe,
which forq=2 is:

(25)

Fig. 3 gives an example of the beampattern obtained in
this case.
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Fig. 3 Beampattern showing quantization
sidelobes due to steering to 14.48 de-
grees (p=1,q=2) in the far-field for a 5
MHz array with 128 elements, and with
quantization to 10 MHz.
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There are three conditions that enhance this effect:

 1. A regular array geometry, i.e. a uniform, non-
curved linear or phased array

 2. Continuous wave transmission

 3. Far-field operation

The last condition is never satisfied in ultrasound imag-
ing, and will help to decrease the quantization sidelobes
in a medical ultrasound system in contrast to e.g. most
sonar and radar systems. This leads to the last case, that
of discrete sidelobes in combination with focusing.

3.5  Discrete Quantization Sidelobes and
Focusing
In [8] expression (25) has been generalized to the case
of a focused array. In that case only a subarray of length

, contributes to the periodic phase quantiza-
tion error.  is the same as was found in (21).
When it is small compared to , the worst-case dis-
crete quantization lobe level is reduced by a factor:

(26)

Thus the sidelobe level becomes:

(27)

This is the worst-case sidelobe level in a beamformer
which is focused. A beam plot that illustrates this case
is shown in Fig. 4.
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Fig. 4 Beampattern showing quantization
sidelobes due to a combination of steer-
ing and focusing. Conditions are as in
Fig. 3 with the addition of focusing to 90
mm.

4.  CONCLUSION
Several structures for realizing digital beamformers
have been discussed. An analysis of quantization errors
in a straight-forward implementation of a baseband
beamformer has also been given. It has been shown
how the sidelobe level due to phase quantization is af-
fected by the time delay quantization step and by steer-
ing and focusing in the imaging system. A rule-of-
thumb value for the time delay quantization step is that
it should be in the order of the inverse of ten to twenty
times the center frequency of the signal in order not to
give noticeable effects.
It is expected that in the coming years digital beam-
formers will become a standard in medical ultrasound
imaging systems due to their vastly improved capabili-
ties for beam control, and for the possibility they offer
for parallel receive beams.
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