

Department of Informatics, University of Oslo
P.O.Box 1080 Blindern, N-0316 Oslo, Norway

Phone: +47 22 85 24 10
Fax: +47 22 85 24 01

Email: fire@ifi.uio.no

FIRE report no. 14

5. January 1994

Jens Kaasbøll

Object-Oriented Models of
Functionally Integrated

Computer Systems

This report is accepted for publication in Journal of Object-Oriented Programming

Introduction 2

Abstract

Functional integration is the compatibility between the structure, culture and
competence of an organization and its computer systems, specifically the
availability of data and functionality and the consistency of user interfaces.
Many people use more than one computer program in their work, and they
experience problems relating to functional integration. Various solutions can be
considered for different tasks and technology; e.g. to design a common user-
interface shell for several applications, or to merge the user programs. The
solutions may require different types of technical integration.

Object-oriented methods for application development are said to be well
suited for developing components that are useful in several applications. A
framework for capturing functional integration in object-oriented analysis and
design is proposed. The framework distinguishes between the users, the parts of
the computers that are perceivable during use, and the inner parts of the
computer system. In addition, distinctions between layers of implementation are
introduced.

It is demonstrated how object-oriented models of information systems should
be modularized according to the framework. Typical solutions are characterized
by object-oriented models in the framework, including the shell and copy and
paste.

Three object-oriented approaches are examined to see whether they address
problems of functional integration. It is found that none of these approaches
cover all relevant aspects.

1 Introduction

Users of computer systems often use more than one program in their work

because no single
program supplies the desired functionality. A

user program

 can be an application, i.e. a program
developed for a specific purpose, or a general tool, e.g. a text processor, a spread sheet, an op-
erating system. System development and redesign projects often seek to integrate user pro-
grams.

Technical integration of user programs takes place within the environment provided by the
operating system and other basic software. When two user programs run in the same environ-
ment, exchanging data and invoking functions become easier than when applications run on
different operating systems.

The design issue of how to integrate user programs generates several questions at the user
side of the systems too. The research project Functional Integration through Redesign develops
techniques for improving integration between work and computer systems and perceived inte-
gration of computer systems (Braa et.al, forthcoming). Functional integration is defined to be
the compatibility between the structure, culture and competence of an organization and its com-
puter systems, specifically the availability of data and functionality and the consistency of user
interfaces. The aim of this paper is to demonstrate how conditions for functional integration
may be included in analysis and design with object-oriented methods.

Functional Integration 3

1.1 Outline

Functional integration is elaborated in section 2, and a framework will be proposed in section 3.
It will be shown in section 4 how various solutions to functional integration can be expressed
by means of the framework. The frameworks of the three approaches to object-oriented model-
ling will be evaluated in section 5 to see whether they are suitable for object-oriented models
that support design of functionally integrated systems.

2 Functional Integration

The claims on the computer systems for being functionally integrated are that data and function-
ality are available and that the user interfaces are consistent. These issues were also mentioned
by Newman (1986). A case will be outlined to illustrate typical solutions to functional integra-
tion (derived from Kaasbøll and Øgrim, 1989).

Consider two officials in charge; Tora in the Town Planning Office and Henry
in the Highways Service. Currently, there exists a database of properties with
their owners, addresses and areas, which is also used by other departments and
by banks. There is a vision of a common computerized case file for the technical
departments, based on a database system in their common United network. This
is to be integrated in their work in the following manner. Tora receives the
request to divide property, scans the request into a new record in the common
case file, retrieves data about the area of the property from the property database,
calculates the areas planned for parking and playground with her spreadsheet,
compares the request to current political resolutions, and transmits the case file
to Henry. He has the Fine operating and window system in his computer. In order
to access the case files, he has to run United on a remote server in addition.
Henry compares the request and Tora’s calculations to the planned public roads
and other infrastructure. If everything is OK, he returns the case to Tora, and he
updates the database of traffic estimates by cut and paste from United to Fine.

2.1 Adequate support

Newman emphasizes that one aspect of functional integration is to ensure that the system pro-
vides an adequate range of interactive functions (Newman, 1986, p.346).

Even if Henry would have been better off with a United based computer while
working with the case files, his current computer yielded better support for the
remaining part of his job.

This example indicates that a functionally integrated system would support both the tasks and
the users.

Determining the functionality requires knowledge about the work tasks for which a compu-
ter system will be used. However, if the programs are only adjusted to the tasks and the current
division of tasks among the users, opportunities for improving work practices may be missed.
Therefore, the system development analysis should yield knowledge of the tasks and jobs in the
which the functionally integrated system are to be used. This will ensure consideration of work

Functional Integration 4

tasks and the division of tasks among users.
Designing the functions of computer systems also requires knowledge about the subjects to

be represented by the data, called the

problem domain

. It has been assumed that functionality
of computer systems changes more rapidly than data definitions. This is because work tasks are
changed and reorganized more frequently than the problem domain. Even if recent research
shows that data models are less stable than expected (Marche 1993), the assumption has not
been rejected. To prepare the programs for future changes, object-oriented modelling for func-
tional integration should be based upon the problem domain.

However, when integrating several programs, each of them may have its own problem
domain.

Tora’s problem domain includes the areas and shapes of properties in a region,
while the central property register has owners, addresses and areas for all
properties in the county as its domain.

When considering functional integration, the problem domains of common systems and the
problem domain associated with a single task may interfere.

2.2 Coherent user programs

The claim that computer systems should match the tasks applies to all computer usage. When
designing user programs to function satisfactorily together, Newman (1986) mentions three
questions to be considered. These are:

1. Can two or more different functions operate on the same data, and if so, how is this imple-
mented?

2. How does the user move from one function to another, and how much “state” information
is saved when he or she temporarily leaves a function?

3. What overall user-interface conventions are observed across all functions?

These issues will be considered in further detail.

Data sharing

Effort has been put into system integration to avoid retyping of data; e.g., company databases,
CIM. However, new user programs are purchased and put into use at an increasing rate. When
programs need access to the same data, and the data can neither be transferred nor referred to
electronically, the users have to re-register the data by retyping, scanning, or by other means.

In a survey, user problems of inconsistent interfaces, isolated data, and poor task support
were compared to more well-known problems of poor training and user documentation, long
response time, breakdowns, and physical strain (Kaasbøll, Braa, and Bratteteig, 1993). The
users reported that problems of inconsistent interfaces, isolated data, and poor task support were
equally serious problems as those which were already well known.

For the user to experience data sharing, it is not necessary to have one database. A shell of
functionality, consisting of common functions at a common interface to several databases is an
alternative solution. When the data resides outside the organization, a transfer function can pro-
vide the desired functionality.

Data integration

 means standardized data structures according to a conceptual schema
(Goodhue et.al., 1992, p.294). Data integration is necessary for transferring data between data-

Functional Integration 5

bases. The empirical findings of Goodhue et.al. indicate that excessive data integration may turn
out to be counterproductive. This is because a large, integrated computer system is more diffi-
cult to adjust to local needs, adapt and keep up to date than cheap software products an
organization can afford to dispose of. Security and privacy may also be in conflict with inte-
grated systems.

Tora utilizes data integration when she retrieves area from the property database.

Users may also experience that data can be shared without common data definitions. Export/
import or copy/paste may yield sufficient sharing of data (Hannemyr 1992). Such functions of-
ten copy raw data and disregard structures, and are called

context free data sharing.

Henry copies data in this way from the case file to his traffic estimate program.

In many cases where data sharing is possible, data must be reformatted to be exportable from
one program and imported into another. Specific conversion programs may be needed to trans-
fer data from one environment to another.

The first condition for functional integration is:

1. Data sharing: data integration and context-free data sharing should be possible with mini-
mal operation by the user and without having to pay attention to data formats.

Available functions

Many modern computers allow for multiprocessing of programs, and the user can interact with
each program through one or several windows. Even in these settings, remote access to other
computers may be restricted to batch processing, or awkward login procedures and limited in-
teraction time may hamper concurrent use of several applications (e.g. Fagermoen et.al., 1991).
The second condition for functionally integrated systems is:

2. Available functions: immediate access to several programs, making the programs remain in
any desired state after resuming them, with minimal operations by the user.

Interface consistency

Shneiderman proposes “strive for consistency” as his first golden rule for dialogue design
(Shneiderman, 1992, p.72). He states that consistency is the most violated of all principles.
When several programs are in use, it seems likely that the total interface of all programs will be
even more inconsistent than when only one user program is applied.

Transfer of learning from one situation to another is hampered by inconsistencies (Rosen-
berg, 1989, p.25). Consistency creates expectations of program behaviour, and if a new program
fulfils these expectations, it will increase the possibility of being accepted (Nielsen, 1989, p.5).
However, “ease of use” may conflict with principles of consistency, so the purpose of using the
computer programs has to be taken into account before insisting on consistency (Grudin, 1989).

In a functionally integrated system, the interfaces of the individual user programs should be
consistent. This means that when two programs have the same functionality, the corresponding
interface should also be similar. For example, for closing a process, the close button should have
the same colour, shape, placement, and manner of activation in all programs.

3. Interface consistency: it should be possible to implement the same functionality in different
user programs in the same interface patterns.

A Framework for Functional Integration 6

2.3 User Knowledge

In the organizations studied in the survey of functional integration (Kaasbøll, Braa, and Brat-
teteig, 1993), inconsistency, isolated data, and poor task support correlated with complaints
about training and user documentation. The users wanted to learn more about the computer sys-
tems, but complained that they had not enough time to learn.

The user interface of an integrated system should be designed to enable optimal interaction
with the system. An inquiry into four redesign projects indicated that users are very keen to con-
tinue using the interface skills they had developed with their former user programs, when
converting to the new, integrated systems (Toft, 1992, p.91). Users’ knowledge and skills
should thus also be considered when designing the interface of the integrated systems.

Training and documentation should be designed for enabling the users to master the inte-
grated system. Therefore, the knowledge needed for interacting with the new system must be
determined.

2.4 The Claims of an Object-oriented Model

The design issues to consider in an object-oriented model are the sharing of data, the availability
of functions, and the consistency of the interface. The issues in the environment of the computer
system include the problem domain, tasks, users’ work, and the users’ computer skills.

3 A Framework for Functional Integration

The proposed framework separates the

problem domains,

 the

users

 and the

computers

, see
figure 1. The computer is divided into two parts, the

representation of the problem domain,

 and
the

shell providing functions and data.

 The available functions and data are also called the

func-
tionality

 of the system. The representations of the problem domains should be shared by many
users, while a specific shell is dedicated to a specific user and task.

Since functional integration is based on the user experience, the user’s view of the computer
must be included in the framework. Since the users operate their computer through the user
interface, the user’s view of these parts of the computer should be included in the framework.
However, designers also need to consider the objects that provide the functions, data, and the
interface. Therefore, the technical perspective of the designer on these issues are also included.
The “Functions and data for task and user” and the “Shell providing functions and data” in
figure 2 are thus two perspectives on the same, functionality component of the computer.

The user interface is omitted in the basic framework. It will be included in an extended ver-
sion by means of the relation defined in the following section.

3.1 The Realization Relation

Signs are entities that can represent phenomena distinct from themselves. For example, the
word “road” represents a physical structure apart from the written text in which the word itself
appears. The data and transformations of data which occur in a computer can be regarded as
signs, because they represent the problem domain. A theory of signs is therefore applicable to
data and data transformations, and the sign concept in structural semiotics will be applied to ex-

A Framework for Functional Integration 7

press several of the claims for functional integration in a simpler way.
In structural semiotics, a

sign

 is a relation between the contents (the signified) and the
expression (the signifier) (Andersen, 1990). The

contents

 are what the sign is about, correspond-
ing to the problem domain. The

expression

 in computer systems is the data and their
transformations.

An expression has a substance that acquires a form (Andersen, 1990, p.69). The

form

 is the
distinctive properties of the sign, while its

substance

 is a particular way of realizing the form
(Andersen, 1992, p.17). For example, black lines in the shape of letters may be a forms on a
surface (the substance). The form is

realized

 in the substance. The words “realize” and “reali-
zation” will be used to denote the technical meaning defined here.

The contents in the problem domain may be traffic estimates of a road. The
figures typed in the computer and appearing on the screen are the expressions
that represent the traffic estimates. The figures are in the form of arabic numbers
in a spread sheet. The substance is the keys (when typed) and the screen (when
displayed).

Computers do not only store data, they change data as well. The realization relation between
form and substance can be extended to the transformation of data.

When deleting a road from the database of traffic estimates, the selection of the
road and of the text

Delete

 that appears in a menu constitutes the form of the
transformation, while the pointing and clicking constitute the substance.

The realization relation between form and substance is also used for categories of signs. A class
of objects representing a category in the problem domain can therefore be a form. Another ex-
ample is a function available for users to invoke. When considering classes, user functions, or
other parts of computer software, their

specification

 may be regarded as the form. A program

Figure 1: The basic framework for Functional Integration. The area inside double borders can be
developed by object-oriented modelling. The “Functions and data for task and user” is the user view
and the “Shell providing functions and data” is the technical view of what is usually called the
functionality of the computer.

Problem domains Problem domains

Understanding of
Problem domain

and task knowledge

Functions
and data

for task and
user

Shell providing
functions and

data

Representations of
problem domains

User view Technical view

Users
Computers

A Framework for Functional Integration 8

that realizes a specification is called an

implementation.

 Therefore, there is also

a realization
relation between specification and implementation.

The functionality specifies which data can be manipulated and by which functions, and var-
ious user interfaces can be implementations of the functionality. Therefore, the functionality is
realized in the user interface.

The conditions for functional integration can now be expressed as follows:

1 and 2:

 Data sharing

 and

availability of functions

should be realized such that the users have
to pay minimal attention to the implementation.

3.

Interface consistency:

 The same functionality specified in different user programs should
be realized in the same implementations.

There is a strong correlation between specification and implementation in computers. When an
implementation is executed, it is highly predictable that the corresponding specification is fol-
lowed, because errors tend not to appear at random.

The users also have to master the realization relation. They have to know that to make the
computer fulfil a specific function, specific behaviour is required. This is part of the skills
required to master a system.

However, people’s knowledge and behaviour is not predictable to the same extent as com-
puter processing. A user may push a button that triggers an unintended function. Therefore,
there is a weaker regularity between the user’s knowledge of the function and its implementa-
tion than between specification and implementation in the computer. Similarly, the relation
between the form of a user’s action and the substance of her/his behaviour is not as predictable
as the realization relation of computers. Training and documentation should strengthen the
users’ knowledge of the relation between specification and implementation.

To be able to deal with only one concept, the realization relation is defined in general for
both computer processing and people’s behaviour to be a regular correspondence between form
and substance of signs, data, transformations of data, and categories of these.

The framework derived from the realization of the user knowledge and of the computer is
shown in figure 2. The representations of problem domains can be implemented in other
objects, e.g. in objects which determine data formats.

3.2 Detailed Framework

The encapsulation concept captures the realization relation between specification and imple-
mentation for a class of objects (Andersen, 1992, p.16–17). An object providing data and func-
tions for the user may be organized as an encapsulation of an interface part specifying data and
behaviour, and a hidden data and procedure part implementing the specification.

However, encapsulation is not the only way realization is obtained. For example, the object
providing data and functions may also be realized in a user interface object, which again may
be realized in objects provided by a user interface management system. Sometimes this is
referred to as layers of implementation in the computer. Even if the layers might be fuzzy, the
realization of software must follow the pattern of a directed graph down to e.g. a relational data-
base, operating system, and finally to hardware. The object orientation may be abandoned at any
layer. Figure 3 shows the framework with realization down to physical matter.

When an object is realized in another object, the relation between them takes place through
message passing, being calls of services, methods, procedures, or whatever mechanism for

A Framework for Functional Integration 9

transfer of program control and parameters the language may provide.
The realization relation may also be implemented through inheritance. For example, the

objects providing functions and data may be programmed as subclasses under general user
interface classes.

The realization relation can thus be realized through

•

encapsulation,

•

message passing (call service, method, procedure), and

•

inheritance.

For the general framework, it is not significant which of these forms that is used. The property
of the relation that is useful in object-oriented modelling and design is that several layers of re-
alization can be separated, or that realization relations between classes can be described in a di-
rected graph.

The realization of the functions and data available to the user can be regarded both from a
user and from a technical point of view. The technical implementation may involve window
objects, graphical objects, etc., and these may again be realized in the facilities of a user inter-
face management tool.

Since the realization relation is extended to any number of layers in the technical view of
computers, it may turn out useful to regard realizations along several layers from the user view
as well.

Users may regard the realization of the interface in different ways. Even if the technical
interpretation of the computer is object-oriented, the user evaluates a computer system in terms
of its usability. The following four aspects may, e.g., be considered:

Figure 2: One layer of Realization in the framework for Functional Integration. The line denotes
the realization relation. The area inside double borders can be developed by object-oriented modelling.

Problem domains Problem domains

Understanding of
Problem domain

and task knowledge

Functions
and data

for task and
user

Shell providing
functions and

data

Representations of
problem domains

Task specific inter-
face knowledge

User inter-
face

User interface
objects

Data formats

User view Technical view

Users
Computers

A Framework for Functional Integration 10

 (a) Styles. The expressions in the interface are realized in graphical and linguistic styles. If
the styles of two user programs differ, the interfaces are not consistent. Windows may be
realized in specific styles, e.g. Motif, OpenLook, Mac.

 (b) Geometric shapes and movements. A style is realized in geometric shapes and move-
ments, e.g., the lines and curves of a letter, the lines and patterns of a window, the speed of
the cursor.

 (c) Colours and contrasts. Shapes and movements are again realized in colours and differ-
ences between colours, i.e. contrasts.

 (d) Perceivable hardware. The three above-mentioned aspects are simply ways in which
properties of perceivable hardware are interpreted.

Figure 3: The Framework for Functional Integration. The line denotes the Realization relation.
Shaded areas of computers are independent of user programs. Shaded areas of users are independent
of tasks. Light shaded are partly independent. The area inside double borders can be developed by
object-oriented modelling.

Problem domains Problem domains

Understanding of
Problem domain

and task knowledge

Functions
and data

for task and
user

Shell providing
functions and

data

Representations of
Problem domains

Task specific inter-
face knowledge

Interface UI objects Implementation
objects, realized in
other objects, …

realized in

Styles UI implementa-
tion objects, …

realized in
General computer

skills and
perceptual motor

skills

 Geometric
shapes and
movements

UI management
tool

Database system,
etc.

Colours
and Con-

trasts

Operating system, communication sys-
tem, other basic software

Perceivable
hardware

UI hardware Hardware

User view Technical view

Users
Computers

Evaluation of the Proposed Framework 11

Several issues of user competence are also considered. It is not assumed that these should be
described in any object orientation way.

Users have detailed knowledge of the functionality, interface, styles, shapes, colours, and
hardware they use frequently. They also have general understanding of computing, and they
have general skills in speech, writing, pattern recognition, perception, detailed movements, etc.
Even if it is not possible to identify realization relations between these skills in general, there
may be correspondence between, e.g., a certain meaning, a written expression, its shape and
colour.

4 Evaluation of the Proposed Framework

The framework is intended to cover the issues of functional integration. This claim will be eval-
uated for each of the three conditions.

1. Data sharing

Data integration

In the example of Tora and Henry, data is to be transmitted between the property
database and the case file. One desired function is to get the area of a property.
The property database can be considered to have an object for each property,
with a service that returns its area. The case-file system could have an object for
each case, and each case object contains one old property object and any number
of new property objects, illustrated in figure 4. The object that supports Tora
could be a specialization of the property object in the case file, with an added
service for fetching the area from the property database.

The condition for functional integration was also that the users should have to pay minimal at-
tention to the user interface.

In this data integration example, the area could be fetched from the property
database automatically upon generation of the case file objects. If user control is
desired, there could be a

Calculate

 choice in a menu, like the one indicated in
figure 4.

Context-free data sharing

Tora and Henry also copy and paste frequently. Tora moves data between the
case file and her spreadsheet, and Henry copies from the case file into his traffic
estimates data.

Copy and paste is a way to transfer data by means of a cutbuffer in a user interface management
tool. It has the benefit of being independent of particular user programs when their interface is
realized by means of the tool.

Henry has a more complex way of copying and pasting than Tora, because he
has to use two user interfaces. He can copy from the case file simply by dragging
the text. The text is placed in a cutbuffer, which he can paste by the

Paste

Evaluation of the Proposed Framework 12

command in his traffic estimate program under Fine, illustrated in figure 5. The
text can also be pasted in United programs with command/click.

The figure suggests that there is no message passing directly between the user programs. The
data to be transferred is passed through two cutbuffers with which the programs can interact.
Even if the two user programs had used a single cutbuffer, the separation would still have ex-
isted.

The total separation of the programs implies that changes made to them will not affect their

Figure 4: The objects involved in retrieving area data from the property database to the case file
system. The objects below the dotted line are the user interface objects. Coad and Yourdon’s notation
is used. User and Problem domains are omitted from the figure.

Objects and
UI objects for task and user

Computerized
case files

Central Property
database

User view Technical view

Text:=Calculate

Triggering:

Property for town
planning.Get area

Get area

Property

Area

Property for
town planning Property

Area

Send
area

Field

Leading
Size
Menu choices

AreaField

Calculate area

Leading:=Area
Size:=8
Menu1 1

1

Area

Reshape
Calculate

Evaluation of the Proposed Framework 13

ability to transfer data in this way. However, the cutbuffers allow only restricted formats, which
means that some data structures get lost.

In the case of two buffers that are operated with different keys and that provide different
functionality, the user interface should also reflect this. One of the golden rules for user interface
design is to “minimize the memory load on users” (Shneiderman, 1992, p.79). Having to handle
two invisible cutbuffers, each with its own functionality and interface (keystrokes and mouse
movements) violates this rule. The memory load could be lessened if the buffers were visible
together with the codes for handling them. Greater emphasis on training should also be consid-
ered in this case.

Figure 5: Copy and Paste. The data is transferred from one program to another through cutbuffers in the
window systems. The two user programs are completely independent of each other. Intermediate objects and
message passing are omitted for clarity. The user, problem domains, and representation of problem domains are
omitted from the figure.

United operating sys-
tem

Fine UI and operating sys-
tem

Objects for task and user

Henry’s view Technical view

Contents
Copy:

Update Contents
Paste:

Cutbuffer

ASCII seq
Copy:

Update ASCIIseq

Fine.Cut-
buffer.Copy
(ASCIIseq)

Cutbuffer

Enter in Add #H Cars/h To Cars/h

Curly Street 4 35 Coal
Blvd

317

Area

Households

Address

1234m2

35b Curly Street

4

Property

Estimates

Enter Conseq Report Map

#Households
Cars/h
To
Update#H:

Add #H

Street
Address
Area
#Households

Property

Current approaches 14

2. Available functions

Assuming an object-oriented method which allows each object to have its own action sequence,
each functionality object can have its own process underway or suspended. Each process could
also have, e.g., a window interface object attached, enabling the user to perceive and manipulate
each process. Current window technology enables switching between windows by moving a
mouse, etc.

Access to remote computers or restricted data could also be available as separate processes,
requiring passwords to open, but otherwise in line with the claims for minimal user action.

3. Interface consistency

Two user programs will, in a general sense, have some common functionality, e.g., to find an
item that satisfies certain conditions; to insert an object; to provide assistance; to modify text.
To support transfer of learning, it should be possible to implement equal functionality in the
same user interface.

Interface objects of the same class that can be used by several user programs will provide
sufficient consistency. A user-interface management tool could have classes for buttons, fields,
tables, etc.

Several “layers” of implementation are indicated at the User view: styles, geometric shapes
and movements, colours and contrasts. User-interface objects can be designed for any such
aspect. It may be useful to vary the consistency in any of these aspects, e.g., to separate the pres-

entation of two programs by using different colours.

This demonstration shows that the three conditions for functional integration can be handled in
the framework.

5 Current approaches

Other frameworks for object-oriented modelling have also been proposed. A recent comparison
of object-oriented analysis and design methods identifies 28 key aspects of the methods (Mon-
archi and Puhr, 1992). The methods differ in terms of which parts of the world they are being
used to model. The aspect of identification of user interface classes was found in three of the 23
methods in the comparison. The coupling of functionality and user interface was not mentioned
in the comparison of methods.

One of the three methods addressing user interface covered the development process only,
and not the OOA/D product. Since user-interface properties are central to functional integration,
only the two approaches covering user-interface classes will be considered further (Coad and
Yourdon, 1991a and b; Iivari, 1991). An additional method not covered in the comparison
addresses user-interface properties (Mathiassen et.al., 1993). This method will be considered as
the third approach.

5.1 Coad and Yourdon

Coad and Yourdon propose an object-oriented analysis of the Problem Domain, which is the

Current approaches 15

part of the world that the data should represent (Coad and Yourdon, 1991a). The result is a Prob-
lem Domain Component, consisting of objects, which will represent the problem domain. How-
ever, when it comes to object-oriented design, Coad and Yourdon refer to the Problem Domain
Component as the structure of the objects inside the computer (Coad and Yourdon, 1991b). No
explanation of this shift of interpretation is given.

The object-oriented analysis should also consider the “Systems responsibilities: an arrange-
ment of things accountable for, related together as a whole” (Coad and Yourdon, 1991a, p.9,
53). This seems to be functional requirements derived from the tasks which the computer sys-
tem is supposed to support.

In object-oriented design, three more components are added to their framework, see
figure 2. These are the Human Interaction, the Task Management, and the Data Management
Components. In addition, Coad and Yourdon propose to analyse users’ Tasks and Skills.

The design of the Human Interaction Component starts by categorizing the users and inves-
tigating their Tasks and Skills. The design includes selecting the functions, organizing them in
a menu hierarchy and formatting them according to principles of interface design (Coad and
Yourdon, 1991b, pp.56–64). The Task Management Component should identify events and
control the program execution. The Data Management Component creates the relation between
the Problem Domain Component and the data management structure in which the data are
stored.

Evaluation

Data formats can be modelled in the Data Management Component, and this is satisfying for
the technical support for data sharing. Coad and Yourdon have one Problem Domain in their
framework. This does not adequately represent one user who integrates some domains covered
by some systems and other users who integrate other overlapping domains. Data integration is
therefore not covered sufficiently.

The Problem Domain Component seems to be realized in the Task Management Component
and the Data Management Component. The Task Management Component provides sequenc-
ing of program components. Therefore Coad and Yourdon’s method can provide support for
program availability.

Figure 6: The Framework of Coad and Yourdon (1991a and b). The issues inside the double border
are parts of the object-oriented model

Problem domain

Systems responsibilities.
Tasks

Human
Interaction
Component

Problem Domain Compo-
nent

Users’ computer skills Task Man-
agement

Component

Data Man-
agement

Component

User Technical view of computer

Current approaches 16

The interface component of Coad and Yourdon also includes aspects of functionality, since
it is determined by selecting the appropriate functions for given tasks. Therefore, the realization
relation between functionality and user interface is hidden inside the Human Interaction
Component.

Coad and Yourdon also address the issues of tasks and user knowledge of computers. How-
ever, this is not included in any systematic manner in their framework. Besides, it is not clear
how their System Responsibility interferes with their Tasks. System Responsibility is consid-
ered here as the total need for functionality in the user organization, while the Tasks are the
individual work operations, each making a contribution towards the need for functionality.

Coad and Yourdon’s framework does include data sharing between systems, even though
their framework has a component for data implementation. The other issues of functional inte-
gration are covered. However, the task and the user knowledge issues are treated superficially,
and the functionality is not separated from the user interface. In addition, the user view of the
computer is omitted.

5.2 Iivari
Iivari proposes a framework for design of application systems. Three “levels of abstraction,” the
organizational, the conceptual, and the technical levels constitute the core concepts of the
framework (Iivari, 1991).

The organizational level covers the organizational context and the users. The required func-
tionality of the computer system, the IS Use Acts (Iivari p.210), is derived from knowledge of
the users, see figure 7.

The conceptual level contains the Universe of Discourse, the IS specifications, and the User
interface. The Universe of Discourse is the problem domain, which is used to identify software
objects. The Information Type objects are intended for handling input/output, queries, etc. This
seems to express the functionality, which is also covered by the IS Use Acts. However, in an
analogy with structured analysis, Iivari classifies every data store, flow and transformation
under the Information Type objects. This may indicate that he also includes some internal
processing between the Objects of the Universe of Discourse. His example shows a “Customer-
order-info” object of the Information Type, which is to provide output. This object seems to be

Figure 7: The framework of Iivari (1989 and 1991).

Universe of Discourse

Task IS Use Acts and
Information Type objects

Objects of Universe
of Discourse

Application Dependent
user interface

General user interface

Objects of abstract technology

User Technical view of Computer

Current approaches 17

a response to an IS use act. The Information Type object is therefore interpreted as a more
detailed specification of the IS Use Acts.

Iivari also includes an Application Dependent and a general User Interface Component
(Iivari 89). There are also Objects of abstract technology in the Technical level. The latter are
intended to cover basic software, and these objects are not included in his example.

The objects may be concurrently active.

Evaluation

Iivari also has only one Universe of Discourse, prohibiting data sharing between systems. The
data sharing inside the Objects of the Universe of Discourse seems to follow the same principle
as the framework developed to take care of functional integration.

Iivari’s objects may be concurrently active, but it is not clear whether they have internal
action sequencing. The concurrently active objects support program availability.

The separation between IS Use Acts and Information Type objects on one side, and User
Interface on the other, makes up for the realization relation. It seems possible to achieve inter-
face consistency by making functions of the same class be presented by the same interface
object.

Iivari’s framework seems to lack objects that determine the format of internal data. The
user’s view of the interface is also missing. No concepts for users’ skills were found. Data shar-
ing between systems is not covered in the framework.

5.3 Mathiassen et.al.
Mathiassen, Munk-Madsen, Nielsen, and Stage (1993) have developed a framework for object-
oriented analysis and design. In addition to attributes and procedures (services), their objects
contain actions, in the tradition of Jackson System Development (Jackson, 1983) and the pro-
gramming language Beta (Kristensen et.al., 1987).

The framework is illustrated in figure 8. One Problem Domain occurs. Mathiassen et.al.
include both the Problem Domain and the users’ interpretation of it (the Object System) in their

Figure 8: The Framework of Mathiassen et.al. (1991). The Object System is the users’ interpretation
of the Problem Domain.

Problem
Domain

Object System Functions Model Other
technical
systems

Interface Interface to
Other Systems

User view Technical view

User
Computers

Conclusion and Further Research 18

framework. During analysis, an object-oriented model of the Object System should be built.
This model is used to structure the Model (of the Problem domain) in the computer during
design. Analysis also includes requirement specification of Functions and Interface.

The Interface differs from Coad and Yourdon by including both user interface and interface
to other technical systems, e.g., sensors and other computers. It is not specified how the inter-
face to other systems should be built. The Functions and the User Interface are seen from a user
perspective. It may well be that the Functions and the Interfaces can be modelled object-ori-
ented when determining their technical properties.

Mathiassen et.al. also mention the relation between the Problem Domain and the Applica-
tion Domain, which is the users and the computer system together (Mathiassen et.al, 1993, p.7–
9). This relation seems unclear in the framework, however.

Evaluation

Mathiassen et.al. also lack the Task Management Component. However, each object in their
method has its own action sequence, such that the objects in the Model can handle multi-
processing without external control.

The separation between Function and Interface makes up for the realization relation in the
same way as for the framework for functional integration.

Data is shared through the Interface to Other Systems. In the framework for functional inte-
gration, several representations of problem domains could be included. To achieve functional
integration with the Mathiassen framework, the coupling to other systems could be utilized.
Their Interface to Other Systems can include data formats for data transfer too.

The framework seems to lack objects that determine the format of internal data, and it also
lacks concepts for users’ computer skills.

5.4 Summary of Existing Frameworks
None of the existing frameworks cover every aspect of functional integration. Coad and Your-
don’s method includes users’ computer skills. Iivari includes basic software into his framework.
Mathiassen et.al. bring remote communication into their framework. Iivari and Mathiassen
et.al. also have the advantage of basing their method on concurrent objects, thereby avoiding
additional objects for control.

6 Conclusion and Further Research

The Framework

The conditions for functional integration were:

1. Data sharing: data integration and context-free data sharing should be possible with mini-
mal operation by the user and without having to pay attention to data formats.

2. Available functions: immediate access to several programs, making the programs remain in
any desired state after resuming them, with minimal operations by the user.

References 19

3. Interface consistency: It should be possible to implement the same functionality in different
user programs in the same interface patterns.

It is argued and demonstrated by an example that the proposed framework handles these condi-
tions for functional integration. It is necessary to include user knowledge in the framework to
provide a background for the design of training and documentation. However, there is no cor-
respondence between object-oriented modelling of the computer system and the way user
knowledge should be treated.

There is no obvious obstacle to adapting current object-oriented methods to the proposed
framework. Some of the methods, e.g. Coad and Yourdon (1991 a and b) and Mathiassen et.al.
(1993) suggest sequences and iterations in analysis and design corresponding to their frame-
works. Therefore, it would be necessary to determine where in the methods the elements of the
proposed framework should be included.

The Realization Relation

Even if encapsulation describes the realization relation, there is no specific notation or mecha-
nism in existing object-oriented methods to support the relation in general. Ideas are found in
the ensemble/role concepts in Beta (Kristensen et.al., 1987). Since the realization relation sup-
ports modularization, it seems worthwhile to investigate how it should be precisely defined.

Context free Data Sharing

Several cutbuffers appear when several operating systems and window systems are integrated
on a computer. Making cutbuffers visible on the screen is a way to reduce memory load. Prac-
tical experiments with the appearance and form of cutbuffers should be carried out.

Data integration vs. syntactic data sharing may be a choice to make in development projects.
Goodhue and Wybo (1992) suggest that data integration could be counterproductive between
organizational units that differ substantially, and that greater instability makes the situation even
worse. Since copy/paste is independent of the data definitions, this could be solutions to claims
for data sharing when data integration is not wanted. Empirical evidence should be gathered on
this problem.

7 References

Andersen, P.B. (1990) A Theory of Computer Semiotics: Semiotic approaches to construction
and assessment of computer systems Cambridge University Press, Cambridge

Andersen, P.B. (1992) “Computer Semiotics” Scandinavian Journal of Information Systems
Vol.4, pp.3–30

Braa, K; Bratteteig, T.; Kaasbøll, J.; Smørdal, O. and Øgrim, L. “Barriers and Triggers for
Development for Functional Integration— A case study” In Bansler, Bødker, Kensing,
Nørbjerg, Pries-Heje (eds.) Proceedings of the 16th IRIS Rapport Nr.93/16, Department of
Computer Science, University of Copenhagen, 1993, pp.361–375

Coad, P. and Yourdon, E. (1991 a) Object oriented Analysis 2nd Edition, Yourdon Press, NJ

References 20

Coad, P. and Yourdon, E. (1991 b) Object oriented Design Yourdon Press, NJ

Fagermoen, F.E.E.; E.M. Lund; L.E.Mathisen; L.N.Rørvik; and H. Østgaard (1992) External
Databases at Stabekk Social Security Office (In Norwegian) Student Report no.36, Department
of Informatics, University of Oslo

Goodhue, D.L.; Wybo, M.D.; Kirsch, L.J.(1992) “The Impact of Data Integration on the Costs
and Benefits of Information Systems” MIS Quarterly, September 1992, pp.293–311

Grudin, J. (1989) The Case Against User Interface Consistency Communications of the ACM
32, 10, pp.1164–1173

Hannemyr, G. (1992) Open Systems: Technology, strategy, and practice (In Norwegian)
Universitetsforlaget, Oslo

Iivari, J. (1989) “Levels of Abstraction as a Conceptual Framework for an Information System”
In E.D. Falkenberg and P. Lindgreen (eds.) Information System Concepts: An In-depth Analysis
Elsevier, North Holland, Amsterdam, pp.323–352

Iivari, J. (1991) “Object-Oriented Information Systems Analysis: A framework for object
identification” In Proceedings of the Twenty-Fourth Annual Hawaii International Conference
on System Sciences IEEE, pp.205–218

Jackson, M. (1983) System Development Prentice-Hall, New Jersey

Kaasbøll, J. and Øgrim, L. (1989) Memo on the flow of cases in the technical departments in the
Municipality of Oslo: Can Norsk Data’s “Task Flow” be used for cases concerning division of
property? (in Norwegian) Internal memorandum, Department of Informatics, University of
Oslo

Kaasbøll, J., Braa, K. & Bratteteig, T. (1993) “User Problems Concerning Functional
Integration in Thirteen Organizations” In D. Avison, J.E. Kendall, and J.I. DeGross (eds.)
Human, Organizational, and Social Dimensions of Information Systems Development IFIP
Transactions A-24, North Holland, Amsterdam, pp.61–81

Kristensen, B.B.; Madsen, O.L.; Møller-Pedersen, B.; Nygaard, K. (1987) “The BETA
Programming Language.” In Shriver, B.D. and Wegner, P. (eds.) Research Directions in Object
Oriented Programming MIT Press

Marche, S. (1993) “Measuring the stability of data models” European Journal of Information
Systems Vol.2, No.1, pp.37–47

Mathiassen, L.; Munk-Madsen, A.; Nielsen, P. A.; and Stage, J. (1992) “Modelling Events in
Object-Oriented Analysis” In Bjerknes, Bratteteig & Kautz (eds.) Precedings of the 15th IRIS
Department of Informatics, University of Oslo, pp.742–757

Mathiassen, L.; Munk-Madsen, A.; Nielsen, P. A.; and Stage, J. (1993) Object Oriented
Analysis (In Danish) Aalborg, Forlaget Marko

Monarchi, D.A. and Puhr, G. I. (1992) “A Research Typology for Object-Oriented Analysis and
Design” Communications of the ACM Vol.35, no.9, pp.35–47

Newman, W. (1986) Designing Integrated systems for the office environment McGraw-Hill,
Singapore

References 21

Nielsen, J. (ed.) (1989) Coordinating User Interfaces for Consistency. Academic Press, Boston

Nierstrasz, O.; Gibbs, S.; and Tsichritzis, D. (1992) “Component-Oriented Software
Development” Communications of the ACM Vol.35, no.9, pp.160–165

Rosenberg, D. (1989) A Cost Benefit Analysis for Corporate User Interface Standards: What
price to pay for a consistent “look and feel” In: Nielsen, 1989, pp.21-34

Shneiderman, B. (1992) Designing the User Interface: Strategies for Effective Human-
Computer Interaction Second edition, Addison Wesley, Reading, Mass.

Toft, J. H.B. (1992) From Old to New Computer Systems: — Data modelling, prototyping,
conversions, and training (Master thesis in Norwegian) Department of Informatics, University
of Oslo

