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Preface

This report is my thesis for the dr. scient. degree at the Department of
informatics at the University of Oslo.

This report is divided into four main parts:

� The Evolving Algebra language and extension to the Evolving Algebra
which in a better way handles modules.

� Speci�cation of compilation and evaluation of a functional language.

� Description of the Evolving Algebra interpreter, written as part of the
research leading to this report.

� Discussion and conclusion.

Each of the four parts of this report is preceded by an introduction. The
readers are referred to the introductions preceding each part of the report
for a more comprehensive description of the contents.

Here I will mention a little about how the work with the thesis proceeded.

The implementation of the Evolving Algebra interpreter was the �rst
task to be done. The task of trying out the Evolving Algebra language and
interpreter took place after the interpreter was implemented. The speci�ca-
tion of how to compile and evaluate a functional language was written and
run on the interpreter.

At an early stage the author was aware the lack of control structures in
Evolving Language. Since the Evolving Algebra itself was intended to be
used as a speci�cation language, it was desirable to try out the language
as it was de�ned, and see what could be done and what could not be done
when making a large speci�cation. The reason is that we do not want to
make too many constructions in a meta-language which is used to specify
other languages.

It turned out that the main problems with Evolving Algebra as a speci-
�cation language, was the di�culties of dividing the speci�cation into mod-
ules, if necessary. This gave rise to the �rst part of the report, where the
module extension to Evolving Algebra is speci�ed in chapter 3.

Thus, the presentation of the �rst three parts in this thesis comes in the
opposite order compared with the time order of the correspondent research
tasks.
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Introduction

This part of the report consists of the following:

� Discussion of the task of making semantic speci�cations.

� Presentation of Evolving Algebra as a semantic language.

� Description and presentation of the extension to Evolving Algebra
which make it possible to making a modular Evolving Algebra speci-
�cation.

When making a speci�cation, we will want to make the speci�cation
which is correct, easy to understand, at the desired level of abstraction
level, and possible to implement on a computer. It has also becomes a
demand that we are able to specify in an abstract way the use of computing
resources. The properties we will want a speci�cation language to hold is
the main contents in chapter 1.

The Evolving Algebra comes with the following theses [Gur93]:

� We can express the algorithm using Evolving Algebra.

� We can describe the data structure without use of code.

� We can represent the time directly.

� We do not need to change the signature in order to compute the spec-
i�cation.

In chapter 2 the formal de�nition of Evolving Algebra is stated. We
will say something about the requirements of a speci�cation language. We
proceed with a discussion into which extent the Evolving Algebra meets
those requirements stated. The possibilities of making a speci�cation at the
intended abstraction level with help of Evolving Algebra is treated. We close
this chapter with a short review of the properties of the Turing Machine,
and the lack of possibilities to make a speci�cation at a chosen abstraction
level with help of a Turing Machine.

In chapter 3 we de�ne an extension to Evolving Algebra which makes it
possible to divide an Evolving Algebra speci�cation into modules. Mecha-
nisms which permits us to make instances of a module speci�cation, specify
recursive calls on modules and specify co-routines is introduced.

5



Chapter 1

The Art of Making a

Speci�cation

1.1 A Speci�cation

1.1.1 A De�nition of Speci�cation

There are many possible de�nitions of meaning of a speci�cation. In [Mor90]
we �nd:

�The speci�cation is the principal feature of abstract programs.
Its precondition describes the initial states; its postcondition de-
scribes the �nal states; and its frame lists the variables whose
values may change.�

1.1.2 Comments Regarding the Speci�cation

The de�nition above is especially suited for formal veri�cation of a program.
We describe condition before the program is to be executed, and the formal
result of executing the program and in addition which variables is to be
changed.

We do not say anything about how the implementation is going to per-
form its task, only what the implementation is supposed to do. The use of
resources is not at all speci�ed.

As a tool to write speci�cations, several formal speci�cation languages
exists in addition to the use of natural languages1. Some of the formal
speci�cation languages (or group of languages) are:

� Denotational semantics

� Operational semantics

� Formal languages from mathematical logic, such as predicate calculus

When we use denotational semantics or a formal languages as a speci-
�cation language, we are going to say much of what we want to perform,

1Such as english, norwegian or chinese
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but not very much of how we will perform an algorithm. And the de�nition
above of what a speci�cation means, tends to support this approach to the
speci�cation language.

An alternative approach to what we would expect by a speci�cation
language, is that we want to specify what we want to perform and to certain
degree how we will perform an algorithm.

Operational semantics tends in some extent to support this approach.

With use of Evolving Algebra we go one step further in direction of
telling how an algorithm is performed. Evolving Algebra permit us in an
abstract way to specify the use of resources, such as the use of time and
space when performing an algorithm.

So we will discuss the issue of making the semantics speci�cation further,
beginning with the problem of writing speci�cation in a natural language.

1.2 Speci�cation as a Textual Description

Since the use of natural language still is in common use, when writing a
speci�cation it is natural to begin the discussion with speci�cations written
in a natural language.

1.2.1 A Simple Calculator

Consider the following speci�cation of a stack. We may write a pure textual
description, say:

The stack operation we want is the following:

1. Push an element onto the stack.

2. Pop an element of an stack.

3. Get the value of the element on top of the stack.

4. Make the initial empty stack

5. Tests if the stack is empty or not

The stack is going to be used in a simple calculator. The result
of argument given to each operation is taken from the top of
the stack, and the result of computation is stored as a new ele-
ment on the top of the stack. The �rst version of the calculator
is experimental, and therefore very simple. Only addition, sub-
tractions, multiplications and division is supported. In addition
we need to read and store the numbers to be computed.

Since the experimental version of the calculator is going to be
built on a general purpose computer equipped with hardware
instructions such as Add, Subtract, Multiply and Divide and
Store, we do not need to specify those operations further. But
we will make a program to simulate the rest of the calculator,
before we really make the calculator in hardware. So we need to

7



make a speci�cation for that program, which we will give to the
specialist of assembly programming on the NHDRM 2 computer.

The �rst time an electronic calculator was made, we could imagine a
textual description like this one above might have been the �rst approach in
order to specify the calculator. And the readers may be alerted of the lack
of precision in such a textual description.

1.2.2 Using Textual Description in Speci�cations Today

Even to day, many important speci�cation of programming languages, and
important algorithms, is made as textual description with regards to the
semantics of the languages or algorithm. We can take as two examples the
following standards:

� Core protocol for the graphical X Window System, Version 11 [AN90]

� Revised 3 Report on the Algorithmic Language Scheme [RWC86].

The X Window System is an important industry standard for window
systems. The X Window System de�ne the communication between an a
program which manage a display of graphical workstation or an advanced X-
terminal (the server) and the application (the client) program. The syntax
for the communication between the server and client is clearly de�ned in the
Core protocol. But the semantics, in this case what the server is supposed
to do when it receive the protocol message is mainly de�ned as a textual
description. The exception from this, is that the replies which may be sent
back to a client in response to certain request is more clearly de�ned.

Scheme is a Lisp dialect in widespread use. The syntax of the Scheme
language is clearly de�ned. However, the semantics is mainly de�ned as
a textual description. However, it is also a speci�cation of Scheme using
denotational semantics (See section 7.2 in [RWC86]).

It may be good reasons why the semantics of speci�cations in the example
above is given as a textual description instead of as a speci�cation using a
formal language. The reasons for using textual description to specify the
semantic may be the problems of understanding the model used in many
speci�cation languages, and the fact that many speci�cation languages do
not permit you to specify the use of resources.

Consider the speci�cation in denotational semantics for Scheme (Section
7.2 in [RWC86]). It is not part of this speci�cation that an implementation
of Scheme is required to optimize the tail recursive call. In the textual
description of the Scheme language this important property of the Scheme
language is made very clear.

This point illustrate the shortcoming of many formal speci�cation lan-
guages. Therefore we maywant to discuss in somemore depth the non-trivial
task of making a speci�cation. We will the start discussion with the informal
description of the calculator above.

2The imaginary company with the name No Hope for this Di�cult Register Machine
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1.3 Choosing an Abstraction Level

We will want to make a certain level of abstraction, when we make an
abstraction. We do not have any canonical level. So the level chosen is
dependent of why we make the speci�cation, and the intended use of the
speci�cation.

To de�ne an abstraction level we need to de�ne:

� A set of operations.

� Algorithms

� Computing steps

We may �nd some indication of the desired abstraction levels of the
speci�cation in the textual description of the NHDRM calculator above.

1.3.1 Operations

In the textual description above we have described the arithmetic operations
of the calculator. In addition we have the stack operations, such as Pop,
Push, Top and Is-empty. We can regard the instruction set as �xed at the
chosen abstraction level. We can regard the operations as the computing
medium at the chosen abstraction levels.

1.3.2 Algorithm

We have to de�ne an algorithm which re�ect the intended use of the cal-
culator. We will want to use a language which is precise enough and still
understandable for humans.

1.3.3 Computing Steps

We will also want to de�ne computer steps at the chosen abstraction level.
Then we can better limit ourselves to make the description at the desired
abstraction level. In addition, we may want to count resources like the
number of steps used to calculate an expression.

For the example of the calculator based on the NHDRM computer a
computer step corresponding to performing one instruction will re�ect the
abstraction level indicated in the textual speci�cation above.

1.4 The Principle of Abstractions

The abstraction levels as indicated above for the calculator speci�cation, is
not the only possible. We may choose a very abstract speci�cation as:

The calculator can perform the basic computer operations.

Or we can choose a much more detailed speci�cation as:
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� Telling in detail how to implement additions, subtractions, multipli-
cation and division on the calculator. Telling how to implement the
data-structure representing the the stack on the calculator.

� We may decide to use an assembly language to implement the proto-
type of the calculator. The speci�cation may be the assembly program
written.

� Or we may choose to make a Turing Machine description in order to
make an hardware independent speci�cation at a very detailed level.

� We may decide to build the calculator. And we describe how the
calculator is to be build physically.

� It is possible to go further down, and specify all the di�erent molecules
used in the calculator.

� At last we can describe the calculator at quantum mechanical level.

The principle of abstraction can be explained in the following way:

If we make a speci�cation at a more detailed level, it can be seen
seen as the same as to �code� the speci�cation made for a more
abstract level.

As an example we may �code� the multiplication of two numbers by
adding the the �rst multiplicand as many times as speci�ed by the second
multiplicand.

So when we make a speci�cation at a certain abstraction level, we do
not want to �code� any part of the speci�cation, since the coding force us
to use a lower abstraction level than the intended level.

1.5 Using Resources

In many algorithms the use of resources, such as space and time is essential.
In fact, the use of time and space is essential in computer science. We can
not reason in a meaningful way about the computing of algorithms, if we do
not consider the use of time and space, and how to achieve reasonable use of
those computing resources. Despite this fact, many speci�cation language
do not take the use of resources into consideration.

A calculator which has very little space to store numbers, such that even
a small expression is impossible to compute, has not much value for the user.
So the user will want to know how many elements which can be stored on
the stack. In a similar way, a calculator which is only able to compute very
small number is not of much worth to the user. So the user may want to
know the maximal and minimal value of the integers the calculator support.

The time used to perform calculation has much to say for a user. You
will probably not want to wait the whole day, when the calculator perform
the multiplication of two numbers, because the calculator use an extremely
ine�cient algorithm and may be an extremely ine�cient representation of
the numbers.
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So the speci�cation has to say something about the use of resources, such
as time and space in an abstract way.

In the calculator example, the number of the basic computer operations
(e.g. add) and the number of operations on the stack (e.g. pop) may be an
abstract measure of the time the calculator will use.

The number of elements in the stack may be an abstract measure of
space to be used by the calculator.

1.6 Using the Evolving Algebra

In section 2.2 we will give the de�nition of the (core) Evolving Algebra. Here
we will discuss the use of Evolving Algebra as a speci�cation language.

How do we use the principle as outlined above when we use Evolving
Algebra as a speci�cation language?

1.6.1 Computing Medium and the Operations

In Evolving Algebra we have the static part of the speci�cation as the func-
tions and the signature associated with the functions.

This functions given in the Evolving Algebra corresponds to the opera-
tions or computer medium at the chosen abstraction levels.

The algorithm in the speci�cation is the set of transitions in an Evolving
Algebra speci�cation.

1.6.2 The Computing Steps and Transition Steps

A transition will change the computing medium in the following way:

� A constant or a function will be changed by a function update.

� New elements will be added to the universe(s) by the universe update.

What about the computing steps? We can think of each transition as a
computer step. All updates within a transition is performed simultaneously.
So the execution of a transition can be regarded as an atomic step, and
hence as a computer step.

On the other hand, every transition may consists of many updates on
several functions used in the Algebra. So we may instead consider a function
updates or the adding of some new elements to a universe as a computing
step. This steps is some sense the most basic step to be performed in an
Evolving Algebra.

However, we do not want to take any decision here what a computing
step should mean with regards to Evolving Algebra.

1.6.3 Using resources when executing Evolving Algebra spec-

i�cations

The numbers of performed function updates or the number of performed
transitions can be the abstract measure or the time used, when executing
an Evolving Algebra speci�cation.
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The number of elements added to each of the universes can be regarded
as an abstract measure of the use of space.

It is important that we measure the number of times for each transition
updates which is performed. The reason is that in a real implementation
some operations (which correspond to certain transitions or updates) may
be more costly in terms of execution time than other operations.

In the same way we have to measure how many elements is added to each
of the universes. In a real implementation adding an element to a certain
universe may be more costly in terms of space than adding an element to
another universe.

The implementation on calculator may require one more memory cell for
each new element added to the stack. When adding a new element to the
universe of numbers, we do not require more memory cells on the computer
to store the integer which is increased as long as the integer do not reach a
�xed value. Many implementation may de�ne a maximal number a integer
can have, instead of using more memory cells to store a big integer.

1.7 Understanding and Executing a Speci�cation

We will need both to understand and perform a speci�cation.

If the speci�cation is at a high abstraction levels, the di�culties in under-
standing the speci�cation may be to understand the abstract concepts used.
A speci�cation at a high abstraction levels may also be di�cult or at least
require much work to implement. That is because the abstract concepts will
have to be written into some less abstract code when implemented.

A speci�cation which is not very abstract may be di�cult to read and
understand because much details have to be speci�ced, so the speci�cation
may be very large and complicated.

The implementation of a less abstract speci�cation should be easier, since
we do not need to implement very abstract concepts. However, since the
speci�cation may be quite complicated, it may be di�cult to ensure that
the speci�cation in fact is right and is implemented right.

1.8 How to Maintain a Speci�cation

A speci�cation at an abstraction levels suited for implementation, can be
large and complicated. If we in addition take into account the use of (in
abstract terms) resources when writing the speci�cation, we will further
increase the complexity of the speci�cation.

Hence, we experience the same problems when writing such speci�cation
as computer programmers has experienced for years, when the programs to
be made becomes big and complicated.

What should we do to solve such problems?
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1.8.1 The Need of Making Modules

We can divide the speci�cation into modules. The interaction between mod-
ules should be performed in some controlled way. The reason why we would
want to partion the speci�cation into modules is to divide a speci�cation
into smaller and more manageable parts.

1.8.2 The Need of Controlling and Understanding the Algo-

rithm

In many cases we are able to logically separate the execution sequence, into
more than one execution sequence. The control of the execution sequence
can jump from one logical execution sequence 3 to another logical execution
sequence in a controlled way.

We may use the principles for recursive procedures or co-routines to
achieve such logical separation of the execution sequence of an algorithm
and still control the interaction between the modules.

In this report we will describe how the Evolving Algebra language can
be extended to permit an Evolving Algebra speci�cation to be divided into
logical modules.

This extension of Evolving Algebra language has mechanism which sup-
port the de�nition of modules which acts like co-routines or recursive pro-
cedures.

1.9 The Work with the Thesis

The work reported in this thesis is divided in three main parts:

1. Implementing an Evolving Algebra interpreter.

2. Make Evolving Algebra speci�cation for compilation and evaluation of
lambda expressions.

3. Implementing and testing this speci�cation on the Evolving Algebra
interpreter.

1.9.1 The Chronology of the Work

Here I will give a brief description of the chronology of the work with the
thesis.

The basic work of implementing the Evolving Algebra interpreter took
place in the period from the summer of 1991 to the summer of 1992.

The basic work with the speci�cation case of compiling and evaluating
lambda expressions was done in the period of from the summer of 1992 to
the the end of 1993.

In the period from the beginning of 1994 to August of 1994, the integra-
tion of the speci�cation and the prototype implementation of the speci�ca-
tion at the Evolving Algebra interpreter took place. In the same period the
last enhencement and test of the interpreter was done.

3Here we assume sequential execution.
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In the autumn of 1994, some suggestion of extension to the Evolving
Algebra language was found. The �nal work of writing this report was
made in last part of the autumn of 1994 and in the �rst three months of
1995.

This mean that the work with the speci�cation case was done in Evolving
Algebra without the extensions suggested in 3, and in such a way that it
could be executed at the interpreter without too much di�culties. However,
the work with the speci�cation case gave rise to the ideas of the extensions.

Since the Evolving Algebra interpreter was made before the speci�cation
was written, the �nal testing and re�nement of the interpreter was made in
parallel with the integration of the speci�cation and prototype implementa-
tion of the speci�cation case.

The speci�cation of compiling and evaluation of lambda expression could
be rewritten using the suggested extension to Evolving Algebra, and it
should be done in the some time in the future. Due to the constraint on
time and amount of work with the thesis, such rewrite is not done.
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Chapter 2

Evolving Algebras

We will in this chapter describe the general requirement of a speci�cation
language and then introduce the speci�cation language Evolving Algebra.

2.1 A Speci�cation Language, Requirement

Here we want to discuss the requirements to a speci�cation language.
In short we may state the requirement in the following points:

� The speci�cation written in the speci�cation language has to be easily
understood by man.

� It should be possible to run the speci�cation as a program on a com-
puter.

� It should be possible to write the speci�cation without the needs to
use decoding and encoding.

� The speci�cation language has to be de�ned in a way such that we can
compute directly on abstract data structures.

� We require that the time can be represented directly.

� We need to write the speci�cation at di�erent abstraction levels. We
will require that we can retain the speci�cation at one abstraction
level, when moving to the next level of abstraction.

2.1.1 Write an easily understood speci�cation

A speci�cation is intended to be read and understood by man.
We write a speci�cation because because we want to de�ne a language or

an algorithm in precise way (more precise than only using a natural language
to describe the algorithm or programming language).

Often the speci�cation is intended to be precise enough to be imple-
mented on a computer. And in addition the speci�cation need to be under-
stood both by the programmer and by the users.

Ideally we should be able to write the speci�cation in advance, and then
make the implementation of the language and algorithm without changing
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the speci�cation. When the implementation is done the speci�cation de�ne
what the language or algorithm is supposed to do.

In some cases we may even want to formally prove that the implemen-
tation is correct according to its speci�cation.

In all cases mentioned above we expect some persons to be able to un-
derstand the speci�cation.

2.1.2 Running the speci�cation on a computer

It is not enough to write a speci�cation only intended to be read by humans.
In many cases we need to run the speci�cation on a computer.

At �rst glance it may seems that we do not recognize the distinction of a
speci�cation and an implementation of an algorithm. That is not the case,
as we will see shortly.

Before making much e�ort in really implementing a system it might be
desirable to make a prototype implementation in order to give the users
some feeling on how the algorithm acts, and in this way give rise to further
ideas and requirements of what the algorithm should do. We will want such
a prototype implementation also to be a speci�cation, which can be changed
and used in the process of developing the algorithm further.

Often we need to meet requirements regarding the resources an algorithm
will use. We may require that the algorithm do not use too much time or
too much space during normal operation. If we can run the speci�cation
on a computer, we may be able to at least detect that the proposed imple-
mentation of the algorithm do not meet the requirements regarding time or
space. The computation of the speci�cation should give the possibilities to
estimate the use of time and space when implemented.

The speci�cation itself may only simulate the real use of time and space
of the algorithm when it is run on a computer.

For example we may need to implement an application using assembly
language to meet strict requirement regarding use of time in a real time
implementation. The speci�cation on the other hand may be implemented
in a high level speci�cation language, which only measure the time used in
terms of assembly (or machine) instructions performed (where we know the
time needed to perform the instructions on the computer to be used).

However, it would be nice if it was no need to make any distinction of
implementation and a (detailed) speci�cation of an algorithm. A computer
program should ideally be easy to understand for a man, and at the same
time possible to execute on the computer without using too much resources.
So we can regard it as a goal to make a programming language to also be a
speci�cation language to some extent (at least when we are talking about a
high level programming languages).

2.1.3 Avoiding the encoding and decoding

In a speci�cation language we will avoid the use of decoding and encoding.
If we need to encode and decode data (and may be part of the algorithm),
it will clutter up the speci�cation and make it much harder to read and
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understand. The reasons why, is that encoding and decoding of data is the
same asmoving down at a lesser abstraction levels as explained in section 1.4.
The same apply to the given operations at the chosen abstraction level.

Consider the stack used in the textual description of the simple calculator
in subsection 1.2.1. For the abstraction level chosen, the abstract data
structure seems to be the stack, and the abstract operations are such as
Push and Pop. We will not want to encode and decode those operations,
and we will not want to use some other ways of organize the the stack in
our speci�cation.

Still, encoding and decoding is quite common practice, when a speci�-
cation of an algorithm is made.

Consider the use of a Turing Machine to make a speci�cation. If the
speci�cation is intended to be made at an higher abstraction level not sup-
ported by a Turing Machine, coding will be needed in order to write the
speci�cation. We do not need to make a very large Turing Machine spec-
i�cation before we experience di�culties in reading and understanding the
speci�cation.

2.1.4 Computing Directly on Abstract Data Structures

So we want to compute directly on abstract data structures given the ab-
straction level we choose.

If we can not make a speci�cation at the chosen abstraction level, we
may be forced to code the data structure to �t the lower abstraction level
permitted by the speci�cation language. Hence, we may loose the opportu-
nity to simulate or compute the use of space measured in units which �t the
chosen abstraction level.

2.1.5 Representing the time directly

We require the time to be represented directly in a speci�cation language in
steps which also �t the chosen abstraction level.

So if we need to code the operations in order to use a certain speci�cation
languages, we may not be able to compute or simulate the use of time at the
wanted abstraction level. Consider the stack again. One step of computation
at the chosen abstraction level, should be a Push or Pop operation. So we
would want to measure the time used in terms of such computation steps.

As an example of how critical the use of time may be, we can take a real
time application which shows video on a computer screen. Each picture in
the video has to be displayed at a certain fast rate. So a speci�cation has
to be made in way such that we can simulate how much it will cost to make
each picture in (an abstract terms) of time.

2.1.6 Writing the speci�cation at di�erent abstraction levels

When we make speci�cation for say an algorithm or a computer language,
we are seldom able to write a clear and understandable speci�cation and
at the same time specify all details required for an implementation of the
speci�cation, using just one level of abstraction.
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So we often need to use more than one level of abstraction in order to
write a speci�cation. It does not mean that we want to mix di�erent levels
of abstractions into one huge speci�cation.

Instead we will want to write a speci�cation at a certain abstraction level,
and then write new and a more detailed speci�cation at a lesser abstraction
level covering the part of the speci�cations which needs to be detailed or
covering the whole speci�cation if necessary. This more detailed speci�cation
should be build upon the more abstract speci�cation already written.

To write a speci�cation for a complicated algorithm or language system,
we may for example need to write the following speci�cations:

1. A speci�cation at a very abstract level which gives an overview of what
the system or algorithm is supposed to do.

2. A speci�cation at the intermediate level which gives a human insight
in how to perform the algorithm.

3. A speci�cation giving some important details of how to implement the
algorithm. This speci�cation is supposed to be written such that it
can be executed on a computer as a prototype implementation.

If the system is very complicated, we may even need to use more than
three abstraction levels in order to complete the speci�cation.

When writing the speci�cation, we need to use the speci�cation written
at one abstraction level, when writing the speci�cation at the next (lesser)
abstraction level. So we will require that the speci�cation at one abstraction
level is retained, when writing a speci�cation at the lesser abstraction level.

If we are forced to rewrite the whole speci�cation, when moving from
one abstraction level to the next lesser abstraction level much of the work
done may be wasted.

As an example we have the formula:

b = cos(a) + sin(b)

A rewrite of the whole speci�cation in order to tell how to compute
an approximation value of cos(a) and sin(b) will probably be di�cult to
understand, and di�cult to relate to the speci�cation (formula) above.

Another example can be taken from proof theory. When making a proof
we will often need to make lemmas, which in turn is used in the main
derivation. In proof theory it is examples of how derivation without use of
lemmas may be intractable, but if we permit the use of lemmas, the proof
can be given using reasonable time and space.

So we will certainly require that the speci�cation can be modularized in
some way.

2.2 Core Evolving Algebra

The Evolving Algebra language follows the model of a given abstraction
level, where an abstraction consists of:
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� The computer medium which is a set of operations.

� The algorithm executed as computer steps using the computer medium.

The de�nitions of evolving algebra are taken from [BR91c] and from [Bör90a].

De�nition 1 (Evolving algebra [BR91c]) An evolving algebra of a given

signature is a pair (A; T ) consisting of a �nite many sorted partial �rst order
algebra A and a �nite set T of transition rules of the signature.

2.2.1 Evolving Algebra and the Computing Medium

The signature in the de�nition above is called the static part of the Evolving
Algebra. The signature consists of a set of functions given in the �nite, many
sorted �rst order algebra. Those functions corresponds to the operations
which constitute the computing medium at the chosen abstraction level.

2.2.2 De�ning the Execution of Operations on the Comput-

ing Medium

The de�nitions of the transitions rule below will be called the dynamic part
of Evolving Algebra. The set of Evolving Algebra transitions corresponds to
the algorithm using the computer medium at the chosen abstraction level.

A transition corresponds to the change of the computing medium in the
following way:

� A function update change an operation or data element.

� A universe update will in addition add new elements to be used in the
algorithm.

De�nition 2 (A transition rule [BR91c]) A transition rule is an ex-

pression of the form

If condition

then

update1
...

updatek

where condition is a boolean expression. If this expression is evaluated to

�true� the updates belonging to the transition rule is executed.

There are two kinds of updates, the function update and the universe update.
To express rede�nition of a function at one point we de�ne the function

update expression.

De�nition 3 (Function update [BR91c]) A function update is an ex-

pression of the form

f(t1; : : : tn) := t
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If we need to add new elements to the universes and use the new elements
in one or more function updates we de�ne the universe update expression.

De�nition 4 (Universe update) AUniverse Update (adapted from [Bör90c])

is an expression of the form:

EXTEND U1 by temp(U1; 1)
� � �

temp(U1; nU1
)

...

Um by temp(Um; 1)
� � �

temp(Um; nUm)
WITH F1

...

Fk
ENDEXTEND

where

U1; : : : ; Um

is universes to be extended, and

temp(Ui; 1); : : : ; temp(Ui; nUi)

is temporary constants which holds the new elements to be added to the

universe Ui. F1; : : : ; Fk is function updates within the universe updates.

Constants on the form temp(Ui; j) may occur only within those function

updates which is part of the universe update.

See [BR91c] (restated in appendix B) for the formal de�nition of universe
update which is slightly more general. In this de�nition constants may
be used to determine how many elements which are to be added to the
universes, and simultaneous execution of function update instances for every
new elements added, can be speci�ed.

The interpreter described in appendix B implements simultaneous exe-
cution of instances of functions updates for every new element added to the
universes.

However, in this report we will not need to perform more than one in-
stance of the functions updates de�ned within a universe update, so the
de�nition above su�ce.

2.3 Speci�cation of How to Compile and Evaluate

a Functional Language

In this report we try to specify how to compile and execute the core of a
functional language using Evolving Algebra. In essence the evaluation of a
functional program is based on the reduction of lambda expressions.

So the plan for the speci�cation will be as follows:
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1. Convert the lambda expression to supercombinator expressions.

2. Compile the supercombinator expressions into some form of internal
expressions. The form may be some sort of graph representation or
some instructions on how to build a graph.

3. Reduce the supercombinator expressions.

The conversion of lambda expressions into supercombinators will only be
speci�ed at a very abstract level. We will give a much less abstract speci�-
cation of the two last step, using Evolving Algebra.

2.4 Evolving Algebra, Non-determinism and Par-

allelism

Evolving Algebra is clearly designed to express non-determinism and parallel
processing. So investigating the use of Evolving Algebra to specify non-
deterministic or parallel systems should be interesting. However, in this
report we do not treat speci�cation of non-deterministic or parallel systems.

2.5 The Evolving Algebra Interpreter

In addition some of the speci�cation is written in a way, such that it can be
evaluated in the Evolving Algebra interpreter. This interpreter is written as
part of the work with this dissertation. The Evolving Algebra interpreter
measure in a abstract way the use of time and space when evaluating the
Evolving Algebra speci�cation.

2.6 Gurevich Thesis

The Yuri Gurevich theses [Gur93] about Evolving Algebra says that the
Evolving Algebra has the properties as follows in the next paragraph.

For any algorithm de�ned at a certain abstraction level the following
holds:

� We can express the algorithm using Evolving Algebra.

� We can describe the data structure without use of code.

� We can represent the time directly.

� We do not need to change the signature in order to compute the spec-
i�cation.

2.6.1 Di�erent Abstraction Levels

How do the Gurevich theses apply at di�erent abstraction levels? It is not
so that the Evolving Algebra is to be used only at one abstraction level (say
the most implementation speci�c level).

21



In Evolving Algebra we are free to de�ne whichever function we need
in our speci�cation. Therefore it is quite natural to believe that Evolving
Algebra should be used to specify the computation model at di�erent level
of abstraction.

Hence, Gurevich theses is to be applied at speci�cation at arbitrary level
of abstractions. So we need to say more about the computation model at
di�erent abstraction levels.

At each abstraction level we will have

� A description of an algorithm

� An abstract data structure

� A unit of time

The abstraction levels is divided by abstraction barriers.
Now, we restate Gurevich theses as follows:

� We can express any algorithm at an arbitrary level of abstraction,
using Evolving Algebra.

� We can express any data structure at an arbitrary level of abstraction
directly, without use of decoding and encoding in Evolving Algebra.

� We can express a time unit in the algorithm as a time unit (step) in
Evolving Algebra at an arbitrary level of abstraction.

� We do not change the signature of Evolving Algebra when we compute
the speci�cation. That holds regardless of the abstraction levels of the
speci�cation.

We do not state any thesis about the abstraction barriers which divides
the abstraction levels.

Algorithm

What should it mean that we can express any algorithm at any abstraction
level. We may try to give a couple of examples.

Say, we want to specify operation on a stack. We should be able to
specify operation on stack directly such as:

Top Get the top element from stack.

Pop Pop of the top element from stack.

Push Push a new element on the top of the stack.

Is-empty-stack Is the stack empty?

If we instead have to translate the stack operation to some other type
of operation, say operations on arrays, we can not express the algorithm at
the abstraction level where the stack concept is used.

We may want to specify operation on a graph. Similar to the stack
example we may want to specify operations on directed acyclic graph:

22



Make-node Make a new node in the graph.

Make-edge Make an edge from one node to another node.

Get-node Get an node from the graph, which is pointed to by an edge.

Get-edges Get all edges from a speci�c node.

If we are forced to translate the operation on graphs to operation on lists
or arrays, we can not use the intended level of abstraction, when specifying
the algorithm.

Data structures

As we use abstraction levels when we specify operations, we use the abstrac-
tion levels when we specify data structure.

For the stack example we should be able to operate directly on a stack,
and should not be forced to translate the data structure to something else,
say an array representing the stack.

For the graph example we should operate directly on the graph, and not
any other data structure, say lists or arrays.

The operations on the selected data structure should be simple and vis-
ible (nothing should be hidden).

Time Unit

Given a level of abstraction we want to use the appropriate time unit.

When we operate on stack, we want to count the operations on the stack.

If we instead has to count some other type of operations, e.g. operations
on arrays which codes the stack operations, we are not able to represent the
time directly.

The same applies on graph, where we should count the operations on
graph and not something else.

Change of Signature

At the selected abstraction level the signature should remain unchanged
during the computation of the speci�cation. If there is some need to change
the signature, the Evolving Algebra transition is speci�ed in a wrong way.

The signature can be regarded as the way of specifying the data structure
when using Evolving Algebra.

2.6.2 Implementation

As a consequence of the way Evolving Algebra is de�ned, we should in prin-
ciple be able to implement an Evolving Algebra speci�cation on a computer
at the desired abstraction level.

If we want to implement a speci�cation at a very abstract level, much of
the implementation details will be hidden (left to the programmer).
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If we choose to make an speci�cation at an abstraction level where we
specify important implementation details, not very much of implementation
will be hidden.

2.7 The Turing Machine and Abstraction Levels

In this section we will discuss the Turing Machine related to the needs of
making speci�cation at di�erent abstraction levels.

2.7.1 De�nition of a Turing Machine

We take the de�nition of a Turing Machine from [FN84]:

De�nition 5 (A Turing Machine) Let � = fs0; : : : ; sng be a set called

the alphabet and let Q = fq0; : : : ; qmg be a set called the states. Let QH be

an extra state and let QH = Q [ fqHg.

A Turing Machine M over �; Q consists of three functions K, F and D

where K : Q� �! QH, F : Q� �! � and D : Q� �! fR;Lg, where R

is Right and L is Left.

2.7.2 Express an Algorithm using a TM

How can we express an algorithm when using a Turing Machine?
When a step is performed on a Turing Machine the following operations

are performed:

� Enter a (possibly new) state.

� Write a symbol on the Turing Tape.

� Move the tape to the left or to the right.

From the above, it is clear that only a certain abstraction level for a TM
is given (and this level is not very abstract).

2.7.3 Express an Data Structure on a TM

The data structure is (a possible in�nite) tape, consisting of symbols. Again
we have a given abstraction levels with regards to the data structure. To
express operations on common data structures (such as graphs) we will need
to code the data into symbols on the tape in order to represent the data
structure.

2.7.4 Express Time Units on a TM

At each step, we enter a state, write a symbol on the Turing tape and move
the tape to the left or to the right.

Again the time unit is �xed at the given abstraction levels. If we per-
form operations at higher abstraction levels, such as making a new node in
a graph, we need to translate the operation to many steps in the Turing
Machine. So we can not directly count operations on a higher abstraction
level than the level given by the Turing Machine.
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2.7.5 The Turing Theses

Consider the Turing Theses. Actually we have two Turing thesis:

De�nition 6 (Turing Thesis I) We can express any algorithm using a

Turing Machine.

The thesis above seems to capture our basic understanding of the power of
expression which the Turing Machine has. We may one day �nd a funda-
mental new way of expressing an algorithm, which may invalidate Turing
Thesis I. But, to day the Turing Machine can be regarded as one of the basic
way of expressing an algorithm.

De�nition 7 (Turing Thesis II) We can express any algorithm using a

Turing Machine step by step using a Turing Machine.

If we add the words step by step to the Turing Thesis I, the thesis does not
hold. We are simply not able to express algorithm which operates on more
complex data structures than the one way tape (e.g. tree or graph), using
the Turing Machine if we in addition require that the algorithm should work
step by step. A graph has to be translated to some expression which can be
stored on the one ways in�nite tape, using the de�ned TM alphabet. The
requirement of translation (or �coding�) from a certain abstraction level to a
lesser abstraction level, breaks the �step by step� assumption in the Turing
Thesis II.

The strong Turing Thesis corresponds to the Gurevich Thesis (See sec-
tion 2.6)
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Chapter 3

Abstractions and Modules

3.1 Computing Models

When we write a speci�cation we will use some models of computation.

When thinking about computation models, we may or may not consider
use of resources, such as:

� Use of space (abstraction of computer memory).

� Use of time (abstraction of computer time).

We may want to get an abstraction, such that we do not consider the
use of resources, or we may use a speci�cation language which do not allow
speci�cation of resources to be used in the computing. If we use such a
model, the computation model use:

1. Unlimited space

2. Unlimited time

When we re�ne the speci�cation (or make an implementation to be run
on a computer) we have to take into account the use of time and space.
That is so, because in the real life we will never have an unlimited amount
of resources, and we will want to know the use of those computing resources.
Therefore it is important to specify the use of time and space, and in addition
keep track of the use of time and space in a prototype implementation or
a real implementation. If we are not able to do talk about the use of time
and space, it is quite di�cult to say very much which is meaningful about
the process of computation.

If we use a speci�cation language which does not permit use of the re-
sources to be part of the speci�cation, the re�nement towards an implemen-
tation which uses speci�c amount of resources might be made in a more or
less arbitrary way.

Even worse, we might not know if it is possible (or feasible) to implement
the speci�cation.
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3.1.1 Including the Use of Resources in the Speci�cation

We may choose to specify the use of resource, such as time and space at any
abstraction levels of the speci�cation.

Then we take into consideration the use of resources in the whole speci-
�cation process from the highest abstraction level possible, toward the im-
plementation of the speci�cation.

A speci�cation language which allow us to specify the use of resources
should give us better precision compared with a speci�cation language which
does not allow us to specify use of resources.

3.2 Abstraction Levels and Making Modules

The Evolving Algebra speci�cation language lets us specify use of resources
such as use of time and space in an abstract way. We may also make quite
detailed speci�cation, or we may choose to make the speci�cation at a more
abstract level.

However, questions such as how to maintain di�erent abstraction levels,
and how to make gradually re�nements of the speci�cation arise.

In a speci�cation language which does not permit us to talk about use
of resources, or which is bound to a certain (low) abstraction levels, it will
not be so natural to focus on those problems.

3.2.1 Abstraction Barrier

How can we make an abstraction barrier in Evolving Algebra? The way
to make an abstraction barriers, is to specify appropriate functions, with
appropriate signatures, and let the functions be the abstraction barrier for
the chosen level of abstraction.

We can do it for a chosen abstractions level, and make the speci�cation
at this level.

The problems arise when we want to re�ne the speci�cation from the
given abstraction level. If we do not want to write the whole speci�cation
again, choosing another abstraction level, we have no clear way of how to
proceed.

This type of problems do not come as a surprise. Similar problems had
to be solved in programming languages suitable to implement large systems.

Making procedure de�nition and invoke the de�ned procedures is very
common in higher level programming languages.

When implementing a larger system, we will have to make modules in
order avoid an unmanageable size of complexity.

We may also want to divide the implementation in modules at the same
abstraction level. Such modules should cooperate and exchange information.
Co-routines can be seen as �procedures� which invoke each others.

What about a speci�cation language? Should we be concerned about
such problems, when making a speci�cation? The speci�cation language
should be de�ned in a way such that we can tell exactly how a procedure
call are to be implemented in a programming language. Do we not intermix
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the speci�cation language and the target programming language we want to
specify?

The answer to the question posed is discussed below.
If the speci�cation language just tell us what should be done at a certain

(high) abstraction level and in addition we may not be able to specify use of
resources, the need of dividing the speci�cation may not arise. The problem
of giving an understandable and precise enough speci�cation will probably
be the only problem which we try to solve, using such a speci�cation lan-
guage.

On the other hand, if the speci�cation language permit us to talk about
the resources and in addition permit us to choose the abstraction levels,
we may be able to make a very detailed, large and complex speci�cation.
Then, we will get the same problems when making the speci�cation as we
experienced when using programming languages.

So when we try making abstractions at di�erent abstraction levels and
in addition we also specify the use of resources, we may make a too complex
speci�cation, or we may need to rewrite the whole speci�cation when we
choose a new level of abstraction. Therefore we may need to make modules
in order to embed the speci�cation at a lesser abstraction level into the
speci�cation at the higher abstraction level. We may also want to divide
the speci�cation at a certain abstraction levels into modules in order to avoid
a too complex speci�cation.

3.2.2 Modules

In this subsection we will say something more about specifying a system in
parts.

3.2.3 Co-routines

We may also divide a system in modules at the same level and let the
modules co-operate. To do so, we will specify co-routines. Co-routines may
be regarded as routines which call each other and suspend its execution until
the other routine has done its task, and then resume the execution.

3.2.4 Making Procedures

We may divide a system into a hierarchy, making a main program, or (hope-
fully) a main speci�cation, and make subroutines to execute functions called
by the main program (or speci�cation). Subroutines may in turn call other
subroutines.

3.3 Evolving Algebra and modules

The sequential Evolving Algebra has the following main property with re-
gards to modules:

� An Evolving Algebra speci�cation is entirely within only one name-

space.
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� The Evolving Algebra execution control consists of only one sequence
of execution steps.

From the above we can see that no possibilities of dividing the speci�cation
into modules is build into the sequential Evolving Algebra. So we may
want to discuss how to extend Evolving Algebra to support speci�cation of
di�erent type of modules in a systematic way.

The extensions to the Evolving Algebra has to be made in a simple and
understandable way, such that the speci�cation language is not cluttered up
with mechanisms di�cult to understand and reason about.

3.3.1 Embedding the Modules into Subroutines

If we want to make modules to be invoked like procedure calls in conven-
tional programming language we need to �nd a way to embed modules at
abstraction level n into the module at abstraction level n � 1 invoking the
modules (abstraction level 1 is the most abstract level of a speci�cation).

We have to make decision about the following issues:

� The name-space has to be de�ned

� The change of control when invoking a subroutine and returning from
the subroutine.

� The exchange of data between the invoking environment and the sub-
routines.

We have to make speci�cation of which names the subordinate mod-
ule will import from the invocation environment, and which names can be
exported to the invocation environment after the subroutine is �nished.

We may specify where in the invoking sequence the control is transferred
to the subroutine, and the point of return after the subroutine is �nished.

3.3.2 Dividing a Speci�cation into Co-routines

If we are going to make modules in a speci�cation language which acts like
co-routines in a speci�cation language, we may require the following:

� The exchange of information between the modules have to be speci�ed
in a simple and clear way.

� The change of control between the invoking environment and the co-
routines must be speci�ed.

� The name-spaces has to be de�ned

3.3.3 Naming Strategy

We will often want to use new name space when executing a subroutine or
co-routine de�nition. This name-space should be di�erent from the calling
environment and other instances of the co-routine or subroutines and from
other routines which is to be executed.
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In a module in the speci�cation language it is natural to make a new
name space for the module. We need to do the task in a simple and under-
standable way. One way to do so, could be to assign a fresh unique name to
each instance of the de�ned modules and append the instance module name
to all names used in the module speci�cation.

3.3.4 Import and Export of Names

If we choose a new name space for a module, we want some of the names to
be used strictly within the modules, when other names may be exported or
imported by modules in order to exchange data between modules.

So we need a simple way of de�ning export from a name-space and import
to a name space in the extension of Evolving Algebra.

3.3.5 Execution Control Strategy

When executing a subroutine, the sequence of execution in the invoking
environment will be broken. The control is given to a new sequence of
execution given in the subroutine. This sequence is then executed (possibly
broken by invocation of other subroutines) until the end, and the execution
resumes in the invoking environment at the point after invocation of the
subroutine.

When executing a co-routine, the sequence of execution is given to the co-
routine and the co-routine is executed until a point where a new co-routine
or the co-routines invoking environment is given the control. The execution
of the co-routine is then suspended. When the co-routine is invoked again
the execution continue after the point where the co-routines gave up the
control the last time.

Eventually the co-routines is �nished and receive the status as inactive.

So, we have to extend the sequential Evolving Algebra, such that more
than one execution sequence can be speci�ed, and such that change of control
from one execution sequence to another together with speci�cation of return
points can be speci�ed.

3.4 Specify the Control Strategy for Di�erent Types

of Modules

In this section we will look closer into how to implement a control strategy
for Modules in Evolving Algebra which is divided into modules.

Each co-routine or subroutine, and the main program can be seen as a
logical unit. A routine is generating a logical executing sequence, during the
routine is run. A jump to subroutine or to a new co-routine can be seen
as a suspension of the invoking execution sequence. And this sequence is
resumed when the control returns to the invoking routine.

So, we will look closer into the change of control when using subroutines
or co-routines.
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3.4.1 Making Co-operating Modules

In a programming language, we often want to specify co-routines in order
to make parallel programming possible. That is not the reason why we
could want to extend the speci�cation languages to ease the speci�cations
of co-routines in addition to procedures. The reason to make co-routines as
part of a speci�cation languages, is that some speci�cation of computation
problems may be di�cult to express without use of modules which works
together at the same level.

When making the speci�cation of co-routines we have to specify the
point where a suspended co-routine are to be invoked next time, and the
return point when a detach is invoked from a co-routine. We may have
a situation where one (instance of) a co-routine is invoked. This instance
gives the control to another (instance of) co-routine, and the return point
to the invoking routine for the �rst co-routine is inherited by the next co-
routine. So if the next co-routine says detach, then the control of execution
is transferred to the invoking routine.

3.4.2 The Game Strategy Example

To investigate a little further the use of co-routines, we will use game strategy
as an example (See [Wan77]).

Suppose we want to try di�erent strategies of a game. Two modules act
as players, where the �rst player makes a move, and then gives the control
to the other player which makes a move, and then gives the control to the
�rst player. When one of the player wins the game, the control is given to
the module which started the two players modules.

How could we express the move of control between the players using an
extension to Evolving Algebra.

Our �rst approach could be to extend the Evolving Algebra by making
Modules and let the co-routine statements be a part of Evolving Algebra.

Then, we would get the following Extended Evolving Algebra transitions
for the modules:

Module: START THE GAME

if not(game-finished)

then

Call(PLAYER-ONE)

game-finished=True;

End Module

This transition issue the call statement to start the game.

Module: PLAYER-ONE

if game-won

then

Detach;

The transition above �nish the game if the player one module beats the
player two module.
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if not(game-won)

game-status:=next-move-player-one;

Resume(PLAYER-TWO);

End Module

Here the player one makes a move and gives the control of execution to
player two.

Module: PLAYER-TWO

if game-won

then

Detach;

The transition above �nish the game if the player two module beats the
player one module.

if not(game-won)

game-status:=next-move-player-one;

Resume(PLAYER-ONE);

End Module

Here the player two makes a move and gives the control of execution to
player one.

3.4.3 Specify Call, Detach and Resume

What should we mean with such statements as Call, Detach and Resume?
For people which know about object oriented programming, the meaning is
quite clear and could be expressed as follows:

Call This statement starts the co-routine given as argument to the Call
statement. The name of the routine which issue the Call statement
(and eventually other necessary information) is transferred to the co-
routine called as the return information.

Resume This statement gives the control of execution from one co-routine
to another co-routine which is given as the argument to the Resume
statement. The return information held by the co-routine issuing Re-
sume is transferred to the co-routine which is given the control of the
execution.

Detach Returns the control to the routine given in the return information
(the Module which issue the Call statement).

Is it possible to �nd mechanisms to express more directly in a speci�ca-
tion language the meaning of Call, Resume and Detach, with regards to the
control of execution? Since we are working with the speci�cation we want
as simple and �exible mechanisms as possible to express transfer of controls
to another execution sequence.
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In object oriented programming, each execution sequence will maintain
for itself, which statement to execute next1. So exchange address informa-
tion, such as the next transition to be executed, between modules is not
necessary. So we have to keep track only of the modules involved, when
executing co-routines.

Then, we may translate the Call, Resume and Detach as follows:

Call(<co-routine>) ==> Invoke(<co-routine>,<it-self>)

Resume(<co-routine>) ==> Invoke(<co-routine>,

<inherited-return-module>)

Detach ==> Invoke-return(<inherited-return-module>)

The second argument given to the Invoke statement, is supposed to be the
name of the module which gets the control when Invoke-return is called.

The Game Strategy Example

The Game Strategy Example where Evolving Algebra is extended by using
Invoke and Invoke-return (instead of Call, Resume and Detach) will be as
follows:

Module: START-THE-GAME

if not(game-finished)

then

game-finished=True;

Invoke(PLAYER-ONE,START-THE-GAME);

fi

if game-finished

then

normal-termination:=True;

fi

End Module

Module: PLAYER-ONE

if game-won

then

Invoke-return(START-THE-GAME);

fi

if not(game-won)

game-status:=next-move-player-one;

Invoke(PLAYER-TWO,START-THE-GAME);

fi

End Module

Module: PLAYER-TWO

if game-won

1Due to Ole Johan Dahl, who �rst discovered this fact.
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then

Invoke-return(START-THE-GAME);

fi

if not(game-won)

game-status:=next-move-player-one;

Invoke(PLAYER-ONE,START-THE-GAME)

fi

End Module

3.4.4 Making Subordinate Modules

We may want to make Evolving Algebra speci�cation such that a module
which calls a subordinate module. The subordinate module executes its task
like a subroutine in a conventional programming language and returns to the
calling module when the task is executed.

In the calling module we may think of an Evolving Algebra transition
calling the subordinate module as follows:

Module: CALLING ROUTINE

if test

then

...

Call-sub(SUBORDINATE-MODULE)

....

End Module

Module: SUBORDINATE-MODULE

....

If test-for-return

then

...

Return

End Module

Also in this case we would want to simplify the Call-sub and Return
statement.

So we translate this to statement as follows:

Call-sub(<co-routine>) ==> Invoke(<sub-routine>,<it-self>)

Detach ==> Invoke-return(<calling-module>)

So the calling and subordinate modules will be written as follows:

Module: CALLING ROUTINE

if test

then

...

Invoke(SUBORDINATE-MODULE,CALLING-ROUTINE)

...
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End Module

Module: SUBORDINATE-MODULE

....

If test-for-return

then

...

Invoke-return(CALLING-ROUTINE)

End Module

3.4.5 Making Instances of the Players

In the preceding example we did not make use of explicit created instances of
a module. Instead we de�ned di�erent modules for each of the two players.
In the Invoke and Invoke-return we could use the name of the modules as
parameters, since we had only one instance of each module.

Now, we will want to create more than one instance of each module.
Since we will not be able to refer to every instance directly, we will need
some new mechanisms in the Extended Evolving Algebra to refer to the
instances created:

Inherited-module A command which retrieves the module instance given
as the second argument to the Invoke command.

Itself A command which retrieves the name of the module instance itself,
when it is executing.

In addition we will need to extend Evolving Algebra with a mechanism
to create new instances of a module. So we may think of instances of a
module as elements added to special universes which has the same name as
the name of the module de�nitions.

So we may de�ne a special new instance update which create a new
instance in the same way as a universe update. We will extend the Evolving
Algebra with the following de�nition:

De�nition 8 A instance update is an expression of the form:

MAKE INSTANCES of M1 by instance(M1; 1)
� � �

instance(M1; nM1
)

...

Mm by instance(Mm; 1)
� � �

instance(Mm; nMm

)
WITH F1

...

Fk
END MAKE INSTANCES
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where

M1; : : : ;Mm

is module de�nitions, and

instance(Mi; 1); : : : ; instance(Mi; nMi
)

is temporary constants which holds the new instances of the module Mi.

F1; : : : ; Fk is function updates within the instance updates. Constants on the

form instance(Mi; j) may occur only within those function updates which is

part of the instance update. The module name to be used in the instance

update must be de�ned in the Evolving Algebra speci�cation.

The Game Strategy Example Revisited

We can now restate the game example using two instances of the same
module. The new mechanisms introduced above will be used.

The START-THE-GAME module exists in only one instance during a
run, so it is not strictly necessary to use the Inherited-module command in
this example. Instead we could chosen to refer to the instance by using the
name of the module in the Invoke and Invoke-return call argument.

However, we will later need the Inherited-module command, when we
are going to specify recursive calls of a module below, so we will use it in
the game example as well.

Module: START-THE-GAME

if not(game-finished)

then

MAKE INSTANCES of PLAYER by instance(PLAYER,1)

instance(PLAYER,2)

WITH

next-game-instance(instance(PLAYER,1)):=instance(PLAYER,2);

next-game-instance(instance(PLAYER,2)):=instance(PLAYER,1);

first-instance:=instance(PLAYER,1);

END MAKE INSTANCES

Invoke(first-instance,Itself)

game-finished=True;

End Module

if game-finished

then

normal-termination:=True

fi

Module: PLAYER

if game-won

then

Invoke-return(Inherited-module);

if not(game-won)
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game-status:=next-move;

Invoke(next-game-instance(Itself),Inherited-module);

End Module

An Instance

We need to approach the meaning of the term instance of a module.

An instance of a module should have the following components 2:

� A pointer to the module de�nition.

� A unique instance identi�er.

� The part of the Evolving Algebra which can be used to create the own
state for the instance, When a new instance of a module is created, an
initial state is set for the instance of the module.

A de�nition of an instance of the module is given later in this chapter.

Even if we do not explicit create instances, a de�nition of a module imply
the creation of at least one instance of the module.

3.4.6 Recursive Calls

To be able to recursive invoke modules, we need to explicit create new in-
stances of the module. So we will try to specify how we can specify recursive
calls using the extension introduced so far.

Normal Recursion

Module DEMO-REC

....

if invoke-itself

then

MAKE INSTANCES of DEMO-REC by instance(DEMO-REC,1)

WITH

Invoke(instance(DEMO-REC,1),Itself);

END INSTANCES

fi

if return-from-me

then

Invoke-return(Inherited-module)

End Module

fi

2A de�nition of an instance of the module is given later in this chapter.
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Tail Recursive Call

To describe how to optimize the tail recursive call using extended Evolving
Algebra, we replace Itself as the second argument to Invoke by Inherited-
module. That means we will not return to the invoking instance after �n-
ished with the new instance of the module invoked by a recursive call. The
calling instance can therefore be safely discarded, when issuing the tail re-
cursive call. So we optimize the tail recursive call as we want to in Extended
Evolving Algebra.

Module DEMO-TAIL-REC

....

if invoke-itself

then

MAKE INSTANCES of DEMO-TAIL-REC by instance(DEMO-TAIL-REC,1)

WITH

Invoke(instance(DEMO-TAIL-REC,1),Inherited-module);

END INSTANCES

if return-from-me

then

Invoke-return(Inherited-module)

End Module

As en example of a tail recursive call which needs to be optimized, we
specify the top level of an interpreter:

Module MY-INTERPRETER

if not(user_finished)

then

result:=eval_command(command)

MAKE INSTANCES of MY-INTERPRETER by instance(MY-INTERPRETER)

WITH

Invoke(instance(MY-INTERPRETER,1),Inherited-module)

END INSTANCES

fi

if user_finished

then

Invoke-return(Inherited-module)

fi

End Module

We can assume that the calling instances of the Interpreter which we will
not return to will be discarded, such that not more than two instances3 of

3The two instances are the calling instance, and the new instance to be invoked

recursively. The initial start of the interpreter might also be regarded as a third instance of

the interpreter module which we should return to just before we exits from the interpreter.

However, we will de�ne a start module to do the initializing and termination of the

interpreter.
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the interpreter will exist at the same time. So the user can safely use the
interpreter speci�ed above without fear of exhausting the memory on the
computer.

As a general rule, we can assume that instance of a module which is not
referenced by any other instances of a module is garbage instances which is
to be discarded.

If a tail recursive call without optimizing had to be used, the maximum
number of instances which exists at the same time would be equal to the
number of commands executed by the interpreter. In this case the inter-
preter would soon or later run out of memory.

To make the initial start of the interpreter we may de�ne a module as
follows:

Module START-STOP-MY-INTERPRETER

if not(user-finished)

then

state:=set-initial-state

MAKE INSTANCES of MY-INTERPRETER by instance(MY-INTERPRETER)

WITH

Invoke(instance(MY-INTERPRETER,1),Itself)

END INSTANCES

fi

if user-finished

then

state:=set-finished-state

fi

End Module

Here we start the interpreter, telling that the interpreter should return to
the START-STOP-MY-INTERPRETER when �nished.

The speci�cation above is an abstract description of an interpreter. We
have not made any speci�cation of what the interpreter is supposed to do.

3.4.7 Name Spaces and Modules

We will need to de�ne the name space for an instance of a module, for all
instances within a module de�nition and for more than one module de�ni-
tion.

Functions Created for an Instance

When de�ning a module we will want to let some of the function be used
only in one of the instances of the module. Such functions are declared as
private in the module. Other functions may be shared by more than one
instances of a single module de�nition.

So we extend the de�nition of a module to include the signature of all
functions which is private to an instance of a module:
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BEGIN PRIVATE FUNCTIONS

....

example_get: DATA --> RESULT

....

example_start==Initial-value

....

END PRIVATE

The statements which initialize functions private to an instances is run
once for each new instance.

Functions Created for All Instances Within a Module

In addition we may want to include functions to be shared among more than
one instance of the module in the module de�nition:

BEGIN SHARED WITH ALL INSTANCES

....

get_shared_inst_data: DATA --> RESULT

...

example_start==Initial-value

...

END SHARED

The statements which initialize functions shared by all instances is run once
when the running of Evolving Algebra starts.

3.4.8 Components of a Module

So an Evolving Algebra Module will consists of the following items:

� The name of the module de�nition.

� The signature for the private functions within an instance.

� Statements to set the initial state for a new instance of a module.

� The signature for the shared functions for all instances of the module.

� The statements to initialize the shared functions.

� The Evolving Algebra transitions using the Evolving Algebra exten-
sions de�ned above.

� The end mark of the module.

3.4.9 Function to be Used Within More than One Module

De�nition

We will want some functions to be used within more than one module de�ni-
tion. To avoid any misunderstanding we will prefer to de�ne such signatures
outside any module de�nition. The de�nition may be as follows:
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SHARE WITH MODULES: MY-INTERPRETER, START-STOP-MY-INTERPRETER

...

get_shared_with_modules: DATA --> RESULT

..

END SHARED

All functions shared between more than one global modules, are also
shared among all instances of the modules. We have no way to explicit
name the instances which is created dynamicly, so we do not need to consider
the possibility of sharing functions with for example only one instance from
module A and one instance from module B.

We may also want to de�ne functions visible to all modules:

GLOBAL

...

get_global: DATA --> RESULT

...

END GLOBAL

Global functions is visible everywhere.

Set Initial values of Shared Functions

All functions shared between more than one instances that needs initial
values, will receive the initial values when the Evolving Algebra speci�cation
starts to run.

3.4.10 An Instance and a Revised De�nition of the Evolving

Algebra State

We are now ready to de�ne what an instance of an Evolving Algebra module
means:

De�nition 9 An instance of an Evolving Algebra module consists of the

following parts:

� Pointer to the part of the Evolving Algebra speci�cation within the

module.

� A unique identi�er of the instance.

� The special de�ned constants which helps to control the jumps between

instances at execution time.

� The part of the �nite, �rst order and many sorted algebra de�ned

within the private functions part of the module de�nition.

The speci�cation of the module itself is shared among all instances of the
module.

The unique identi�er of the instance may be constructed as pair con-
sisting of the module name and a unique identi�er for all instances of the
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module, provided the module names are distinct within the Evolving Alge-
bra speci�cation.

The special constants to control the jumps between instances de�ned, is:
Itself and Inherited-module4.

When an instance is created a new copy of the private functions part of
the module is made 5

The private functions are initialized as de�ned in the module when a
new instance is created.

The private part of the algebra will be modi�ed during the run of the
instance when the transitions de�ned in the module is running.

Discarding an Instance of a Module

We have given example of how we can optimize a tail recursive call by giving
Inherited as the second parameter of the Invoke instead of Itself. This
way of optimize the tail recursive call relays on the following assumption:

Instances of modules where the system can not return to, is to
be discarded.

So, which instances should be discarded? The answer is simple. All
instances which is not referenced from other instances can and should be
discarded.

An implementation could mark the instances of a module which is not
to be discarded.

So an instance which is:

� Referred in non-local constants or functions should be marked as ref-
erenced before an Invoke statement is executed.

� Referred in the second parameter to Invoke should be marked as ref-
erenced before the Invoke statement is executed.

If needed, we may eventually introduce a construct in Extended Evolving
Algebra to explicit discard an instance of a module. However, if we do so,
we have to make sure to remove every reference to an explicit discarded
instance of a module from the functions and constants, when we implement
an Extended Evolving Algebra interpreter.

3.4.11 A De�nition of State in Extended Evolving Algebra

The de�nition of the state has to take into account the fact that part of
the Evolving Algebra speci�cations may be shared between instances and
modules. So we need to restate the de�nition of an Evolving Algebra state
as follows:

4The list of special constants can be extended, if needed.
5We do not require the private part of the algebra to be present when de�ning a new

module. However, if more than one instance of a module is made, the absence of a private

part do not make the instances what we expect it to be.
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De�nition 10 A state (within an instance of the module) is the �nite, �rst

order many sorted algebra consisting of all functions visible when an instance

of the module is executed.

3.4.12 Start of the Execution of Modules

Since we can only use Invoke and Invoke-return to jump between modules,
we need to de�ne one module as the main module.

So we introduce a clause:

MAIN MODULE is STARTING-MODULE

The module STARTING-MODULE is the module which starts the execution of
the Evolving Algebra de�nition.

3.4.13 Components of The Extended Evolving Algebra Spec-

i�cation

We can now write an sequential Evolving Algebra speci�cation using mod-
ules. An Evolving Algebra speci�cation with modules consists of the follow-
ing components:

� Signature for one global set of functions.

� Signature for sets of functions which is to be shared by more than one
module de�nition.

� Statements which sets the initial state of the shared and global func-
tions.

� Clause telling the name of main module which initiates the execution
of the Evolving Algebra de�nition.

� All module de�nitions.

We will not permit any transition to be de�ned outside a module.

3.4.14 Threads

We have separated the jump of control between the Evolving Algebra execu-
tion sequences de�ned as modules and the name-spaces which is to be used
in modules.

One reason for this separations is to be able to easily express one of the
type of multithreading in an Evolving Algebra speci�cation.

Multithreaded programming is to set up more than one logical execution
sequence (thread), and let all execution sequences be executed in almost
the same name space. Some data has to be private even in multithreaded
programming.

To apply the technique outlined above on threads, the threads need to
be the type of threads where a thread itself issues the command which gives
the control to another thread.

43



If an external process (or thread) is used to transfer the control between
threads, we can (probably) not specify this type of threads using the exten-
sion to Evolving Algebra as outlined above.

3.5 Other Language Constructs

A person used to make program in higher order languages, will probably
miss language constructs such as

� While loops

� Nested If-else constructs and more general Case constructs

� Lack of the possibilities to explicit create a set of assignments to be
executed in sequence.

What about the lack of such usual language constructs in a speci�cation
language?

Provided we have solved the problems with regards to partion the spec-
i�cation into modules, the lack of language constructs listed above does not
seem to be very serious.

As an example, we may take the iteration construct. If we �nd a way
to extend the speci�cation language to make subordinate modules, we may
specify the invocation of a module in place of an iteration construct. The
module will contain the iteration body, and the guard in Evolving Algebra
can be made such that the guard is true as long the iteration step should be
executed.

With regards to more general If, Else or Case constructs, we may sim-
ply extend Evolving Algebra speci�cation language with such constructs, if
needed.

If we prefer to let the Evolving Algebra language be as simple as possible
(after introducing modules), it is not di�cult to translate If, Else and Case
constructs to the simple If statement.

We may also extend Evolving Algebra to execute certain function up-
dates in a sequence, instead of executing those updates simultaneous.

The function updates to be executed in sequence can also be replaced
by a composite function construct. As an alternative the set of transitions
can be guarded by a status constant which determines the sequence of the
updates to be executed.
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Part II

Compilation and Evaluation

of a Functional Language, a

Speci�cation
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Introduction

This part will contain the speci�cation regarding compilation and evaluation
of a functional language. Two types of evaluations and compilations are
speci�ed:

� The template instantiation machine.

� The G-machine.

The template instantiation machine approach emphasize the aspect of
evaluation, while the G-machine emphasize the aspect of compiling a func-
tional language.

This part will consists of the following:

� Discussion of the how to make speci�cation in Evolving Algebra at the
desired abstraction level (See chapter 4).

� The speci�cation for compilation of supercombinator de�nition. A
supercombinator de�nition is part of a functional language (See chap-
ter 5).

� Speci�cation of how to evaluate a supercombinators in form of graph,
or in form of instruction to make a graph (See chapter 6).

� Extending the speci�cation to handle strict and lazy arguments. (See
chapter 7)

� Howwe could use themodule extension of Evolving Algebra to improve
the speci�cation made in the previous chapters (See chapter 8).
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Chapter 4

Maintaining Abstraction

Levels

In this chapter we will discuss the problem and the requirement of de�ning
abstraction levels when we write a speci�cation.

In addition we will begin the description of a speci�cation for a lambda
compiler and the lambda evaluator at a very abstract level.

Together with the speci�cation given in the two subsequent chapter, we
experience the problem which we might have, in �nding suitable abstraction
levels for the speci�cation to be made.

The problem of �nding a suitable abstraction level may be connected to
the problem of dividing a speci�cation into suitable modules.

4.1 The Problem of De�ning Abstraction Levels

in a Speci�cation

It seems to be the case, that the problem of de�ning di�erent abstractions
levels is overlooked, when we try to make speci�cation for algorithms or
programming language. So we will take a look on this problem, before
we jump to the Evolving Algebra speci�cation of a Lambda Compiler and
Evaluator.

4.1.1 The Turing Machine as a Speci�cation Language

As explained in section 2.7 we can not use a Turing Machine to make a
speci�cation at an arbitrary abstraction level (unless we accept to encode
and decode part or the whole of the speci�cation). So, when we do not
want to use the abstraction level that suits the Turing Machine, we face the
problem of �nding another suitable speci�cation language.

4.1.2 A Graph Machine

A. Kolmogrov designed a machine similar to the Turing Machine, except
that this machine operates on a graph, instead to be restricted to operate
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on an in�nite tape. So this graph machine permit a more abstract de�nition
than a Turing Machine speci�cation.

This machine gave rise to the Evolving Algebra as a speci�cation lan-
guage [Gur93].

4.1.3 The Evolving Algebra

The Evolving Algebra speci�cation language generalize the ideas from Kol-
mogrov's Graph Machine. The static part of the Evolving Algebra is used
to de�ne a suitable data structure (e.g. a graph), and the dynamic part
operates on the data structure de�ned.

In this way we open up the possibility of de�ning the (at least to some
degree) abstraction level, by de�ning a suitable data structure corresponding
to the abstraction level.

4.2 Other Examples Compared with of the Lambda

Compiler and Interpreter Speci�cation

In this section we will compare the speci�cation of the Evolving Algebra
speci�cation of a lambda compiler and interpreter in this report with the
following examples:

1. The Evolving Algebra speci�cation of the C language.

2. The Evolving Algebra speci�cation of the Prolog Compiler.

4.2.1 The C-language Speci�cation Example

In [GK93] the semantic of the C language is speci�ed.

The Use of Transitions

The transitions is written in a form of nested rules dividing the di�erent
cases using if, elseif, else and endif.

Only function updates are used within the transitions. No universe ex-
tension or contraction is used.

The use of Transitions in The Lambda Compiler and Interpreter

Speci�cation

The transitions use the simple if to state the precondition in the transitions.
Universe extension and function updates are used within the transition.

The Type of Evolving Algebra Functions Used

The following types of function is used in the C-language example:

Dynamic function Updates is permitted on a dynamic function.

Static function Updates is not permitted on the static function.
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External function The value of the function is permitted to vary each
time the transition which use the function is performed. This type
of function permits communication with the world outside the spec-
i�cation domain (e.g. input from the user will be speci�ed using an
external function).

It is worth noting that the use of external functions seems to replace the
use of universe extension. In the speci�cation the allocation of memory is
speci�ed with help of an external function.

It seems that the speci�cation is based on the assumption that the infor-
mation inherited from the syntax at compile time is build into some of the
static functions. No Evolving Algebra transitions is speci�ed for the while,
do-while and for statement. The same is the case for labeled and compound
statement.

The Type of Functions used in The Lambda Compiler and Inter-

preter Speci�cation

Mainly dynamic and static function are used. The author was not aware of
the possibility of using external functions when the main part of speci�cation
was written 1.

The C-language Speci�cation

The speci�cation is divided into four algebras which specify:

1. Handling C statements.

2. Evaluating expressions.

3. Allocate and initialize memory.

4. Handling function de�nitions

The �rst algebra which handles the semantics of C statements, specify
the semantics for following types of statements:

Expression, selection, iteration, jump, labels and compound state-
ments.

The second algebra which covers expressions, specify the semantics of
conditional, logical expression, general mathematical expression, assignment,
increment, addressing expression, dereferencing, array reference, casting,
function invocation, identi�ers, and a sequence of expressions (where all
expressions in the sequence is evaluated and the value of the last expres-
sion in the sequence is returned). In addition the semantics for the sizeof
operator, casting expression and constant expression, struct and union

references and bit �elds references is de�ned.

1The use of external function is not according to the usual de�nition of a function,

since an external function may return di�erent values when invoked at di�erent time.
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The third algebra which handles the semantics of initializing and allo-
cation of memory specify the semantics of declaration, automatic variables
and non local jumps, identi�ers and initializers.

The fourth algebra for function de�nitions specify the semantics for func-
tion invocation (for the caller and callee) and the semantics for global vari-
ables.

The Lambda Compiler and Interpreter speci�cation

The speci�cation is divided into the following main parts:

� Compilation and evaluation of the template instantiation machine.

� Compilation and evaluation of the G-machine.

Abstraction Levels Used in the Speci�cation of the C language

The speci�cation of the C programming language does not seem to have
many levels of abstraction. We have the speci�cation of expression which
may be regarded to be at one level of abstraction. This speci�cation is in
turn embedded in the more general speci�cation of a statement.

The algebras which specify how to allocate and initialize the memory and
how to handle function de�nition, completes the speci�cation at the same
abstraction level as the speci�cation of expressions. A stack is introduced
in the speci�cation of function de�nition in order to specify how to resume
from a function call. The introduction of the stack does not change the level
of the abstraction (at least according to the author opinion).

When necessary part of the C language is left unspeci�ed by using ora-
cles. Oracles is Evolving Algebra function which takes an unspeci�ed value
from the world outside the domain of speci�cation. A value which an oracle
gets, may vary every time an Evolving Algebra speci�cation is performed.

Abstraction Levels Used in the Lambda Compiler and Interpreter

speci�cation

The lambda compiler and interpreter speci�cation has two distinct abstrac-
tion levels (See subsection 4.2.3).

4.2.2 The Prolog Speci�cation Example

A full speci�cation of Prolog in Evolving Algebra can be found in [Bör90a], [Bör90b]
and [Bör90c]. The core Prolog and built-in predicates for the control part
of the Prolog is speci�ed in [Bör90a], and the rest of the built in predi-
cates is speci�ed in [Bör90b] (for �les, terms, arithmetic and input output)
and [Bör90c] (predicates for database manipulations).

The Use of Transitions

A transition has form of a simple if statement. Function updates and
universe extension is used in all three reports which together gives the spec-
i�cation.
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Universe contraction is used in the �rst of the reports (See [Bör90a]) of
the speci�cation. So the reclaim of memory after computation of a goal,
or backtracking after failure to compute a goal is made explicit with use of
contraction in the speci�cation.

The Use of Transitions in The Lambda Compiler and Interpreter

Speci�cation

In the speci�cation used in this report, function updates and universe exten-
sion are used within a transition which has form of a simple if statement.
Contraction is not used. The universe extension is de�ned such that ele-
ments to more than one universe can be added and referred to simultaneous
within one universe extension.

The reason why not using contraction is that we can assume that the
recycle of memory is done by a general garbage collector, which can be
abstracted out from the speci�cation.

The Prolog Speci�cation

The speci�cation is divided into two main part:

1. The Core Prolog and the built-in control predicates.

2. The Rest of the built-in predicates in Prolog.

Abbreviations of part of transition rules is used in order to ease the
reading of the speci�cation.

The Core Part of the Prolog Speci�cation

The speci�cation of the Core Prolog consists transitions for the following
operations:

� Stop rule, which applies when all possible goals are tried and all pos-
sible solutions are computed.

� Success rule. This rule applies when a goal is computed with success.

� The failure rule. This rule applies if one of the subgoal can not be
computed. Prolog backtracks since the goal can not be satis�ed.

� The subgoal success rule. This rule applies when the current subgoal
has been computed. Prolog then try to satisfy the next subgoal.

� Try next clause rule. This rule applies when the head of a clause in
the program can not be uni�ed with the head of the subgoal. Prolog
tries the next clause in the Prolog program.

� The selection rule. This rule applies when the head of the clause in
the program uni�es with the head of the current subgoal. A new
current goal is made. The tail of the clause becomes the new current
subgoal, and the tail of the current subgoal and the tail of the current
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goal becomes the remaining subgoals in the new goal. The current
substitution is extended with the most general uni�er.

� The cut rule. This rule applies when the special cut operator occur.
Prolog starts working at the rest of the current subgoal, and the back-
tracking point is updated to be the backtrackings point for the current
subgoal (The e�ect of this rule is that possible alternate goals are cut
o�).

The stop rule, the subgoal success rule 2, the failure rule 3, the selection
rule and the cut rule is speci�ed again in [Bör90b]. This speci�cation is is
done in a way such that there is no need to use contraction in the failure
and cut rule.

The Built-in Predicates in the Prolog Speci�cation

The transitions for the following built-in predicate in Prolog are given in the
�rst report [Bör90a]:

true, repeat, fail, not, call, and, or.

In the second report [Bör90b] the transitions for the following database
built-in predicates are given:

asserta, assertz, retract, clause.

In addition the semantics for the following built-in control predicates are
speci�ed again in [Bör90b]:

fail, call, conjunction, disjunction.

This speci�cation is done in order to �t a slightly changed signature.
In the third report [Bör90c] the semantics are speci�ed for the following

predicates �le manipulation predicates:

see, seeing, seen, tell, append, telling, told.

The semantics for the arithmetic, terms and input-output predicates are
also speci�ed in [Bör90c].

The Abstraction Levels in the Prolog Speci�cation

The speci�cation of the Prolog interpreter in Evolving Algebra seems to
divide the abstraction into several abstraction levels. To some extent the
speci�cation can also be divided into modules.

In the reports, [Bör90a], [Bör90b] and [Bör90c], the execution tree of
Prolog is represented as a stack structure. The abstraction levels of the
speci�cation obtained, therefore seems to be based on and follow this par-
ticular representation of Prolog.

2Renamed to the goal success rule in [Bör90b]
3Renamed to the backtrack rule in [Bör90b]
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The division into abstraction levels and the chosen representation of
Prolog's data structure seems to be a result of a careful analysis of the data
structure used in the Prolog interpreter. However, no systematic general way
of �nding the di�erent abstraction levels seems to appear, when reading the
speci�cation 4.

The following main abstraction levels (or modules) is obtained in the
speci�cation of Prolog:

1. Speci�cation of the Core Prolog, including cuts.

2. Speci�cation of the built-in control predicates.

3. Speci�cation of the built-in database predicates.

4. Speci�cation of the built-in manipulation predicates.

5. Speci�cation of the built-in arithmetic, terms and input-output pred-
icates.

The enumeration begins with the most abstract level and increase when
the each level becomes less abstract. At each abstraction level, mainly dis-
tinct and di�erent property of the Prolog language is speci�ed.

4.2.3 Speci�cation of a Lambda Compiler and Lambda Eval-

uator

When the author made the speci�cation in the Lambda Calculus Compiler
and Evaluator, the author was unable to �nd more than two clearly distinct
abstraction levels. It might be the case that it is not possible to �nd a
greater number of abstraction levels or some clever person may be able to
�nd some other abstraction levels given the problem.

But the main question is not if there are more abstraction levels or not
when making this particular speci�cation. The problem is how to �nd the
possible abstraction levels when writing a speci�cation.

We need a more systematic way to �nd and de�ne the abstraction levels
and thus re�ne the speci�cation from a very abstract one to a more de-
tailed speci�cation. Those issues still seems to remain unsolved as far as we
are concerned with the speci�cation languages, and therefore the problems
needs to be addressed in future research with regards to speci�cation and
speci�cation languages.

4.3 The Prolog Execution Tree Example Rewrit-

ten Using Modules

We will in this subsection take slightly di�erent approach to the speci�cation
of Prolog. In [BR94] the execution of Prolog is described in terms of a search
tree of possible solutions. Here we will see how we can specify the build of the
Prolog search tree using recursive modules as described in subsection 3.4.6.

4In fact, the author of this report found it di�cult both to understand exactly how the

division into abstraction levels is done, and to see clearly all the abstraction levels used.
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4.3.1 The Execution Tree

The Prolog execution tree has nodes which can be seen as state of the Prolog
execution. Each node has branches where each branch represents a possible
continuation of the Prolog execution. Each branch in the tree can represent
the one of the following situations:

1. A possible computation which failed, due to the failure of �nding a
most general uni�er with the �rst literal in the current goal and the
head of the clause.

2. A computation which has been completed with success giving one pos-
sible answer to the question.

3. The branch representing a computation which is not ended. The cur-
rent node will be at the end of this branch.

The Prolog search strategy can be described as a depth �rst search, in
the sense that each branch in the graph is expanded as far as possible before
the systems tries an alternative branch or backtracks.

The Prolog execution tree is build during the execution of a Prolog ques-
tion. The build of the tree goes as follows:

1. The execution starts with the root node as the current node.

2. An ordered set of candidate clauses are taken from the Prolog program.
As many new nodes as the number of candidate clauses are created as
sons of the current node. Each of the candidate clauses are assigned
to each son of the current node.

3. Then each of the clauses is tried in the given order until either a suc-
cessful uni�cation with the head of the clause and the �rst literal in
the current goal is found, or no candidate clause is left. If a successful
uni�cation takes place, the node with the successful candidate clause
becomes the new current node. If no candidate clauses are left the sys-
tem bactracks, such that the father of the current node again becomes
the current node.

4. If all the sequence of all goals are successfully computed the Prolog
interpreter stops with success. The user is asked he or she wants to try
another solution. If the user is not satis�ed, the the system backtracs
and a search for another solution starts.

5. If the goal is successfully computed the systems proceeds with the next
goal.

Here we will adapt the Evolving Algebra speci�cation from [BR94] for
core Prolog using the module extension of Evolving Algebra. For a full
speci�cation of the Prolog interpreter we refer to [BR94].
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4.3.2 Move Down and Up in the Execution tree

Moving down and up in the execution tree can be done in terms of recursive
modules. When moving down in the tree, a recursive call is made. When
we move upwards in the tree, because we need to backtrack, we just end the
current instance of the module.

Each time we move down in the Prolog execution tree, we will need to
make all sons to the node we visit for the �rst time.

goal==take_goal(fst_decgl(decglseq(currnode)))

act==fst_term(goal)

given_mgu==mgu(act,(rename(cl_head(clause(cll(fst_node(cands(currnode))))))

,vi))

new_goal==cl_body(clause(cll(fst_node(cands(curr_node)))))

cutpt==take_node(decglseq(currnode))

cont==add_decgl(make_decgl(rest_terms(goal),cutpt),rest_decgls(decglseq))

new_deqglseg==apply_subst

(given_mgu,(add_decgl(make_decgl(rename_goal(new_goal,vi)),

father(currnode)),

cont))

% Some abbreviations of signatures.

GOAL=TERM*

DECGOAL=GOAL x NODE

Here we state some abbreviation which we will use in the transitions below.
We will as far as possible use ordinary Evolving Algebra functions.

MAIN MODULE is TOP-LEVEL

BEGIN GLOBALS

take_goal: DECGOL --> GOAL

take_node: DECGOAL --> NODE

fst_decgl: (DECGOAL + MARK)* --> DECGOAL + MARK

scnd_decgl: (DECGOAL + MARK)* --> DECGOAL + MARK

rest_decgl: (DECGOAL + MARK)* --> (DECGOAL + MARK)*

make_decgl: (GOAL x NODE) --> DECGOAL

add_decgl: DECGOAL x (DECGOAL + MARK)* --> (DECGOAL + MARK)*

type_of_decgl: {DECGOAL + MARK} --> {Decgoal,Mark}

fst_term: GOAL --> TERM

rest_terms: GOAL --> GOAL

rename: TERM x VIND --> TERM

rename_goal: GOAL x VIND --> GOAL

cl_body: CLAUSE --> LIT*

cl_head: CLAUSE --> LIT

fst_node: NODE* --> NODE

rest_nodes: NODE* --> NODE*

apply_subst: SUBST x (DECGOAL + MARK)* --> (DECGOAL + MARK)

comp_substs: SUBST x SUBST --> SUBST

addind: VIND --> VIND
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...

END GLOBALS

For the de�nitions of other global functions, see [BR94].

BEGIN SHARED WITH MODULES: TOP-LEVEL,HANDLE-LEVELS

new_currnode: NODE

END SHARED

BEGIN SHARED WITH MODULES: HANDLE-LEVELS,MAKE-SONS

list_of_cand_clauses: CLAUSE*

temp_node: NODE

father: NODE --> NODE

cands: NODE --> NODE*

END SHARED

All functions shared between modules are also shared between instances of
the modules listed.

Module TOP-LEVEL

BEGIN PRIVATE FUNCTIONS

root_node: NODE + {Empty}

% Initialize

root_node==Empty

END PRIVATE

if root_node=Empty

EXTEND NODE by temp(NODE)

new_currnode:=temp(NODE)

root_node:=temp(NODE)

ENDEXTEND

MAKE INSTANCES of HANDLE-LEVELS by instance(HANDLE-LEVELS)

Invoke(instance(HANDLE-LEVELS,Itself)

END INSTANCES

fi

if root_node=/=Empty

then

Stop:=Failure

fi

End Module

The module TOP-LEVEL describes the start of the Prolog computation. If
the systems ever bactracks the whole way back to the top level node, there
is no more possible computations to the initial Prolog question.

Module HANDLE-LEVELS

BEGIN PRIVATE FUNCTIONS
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currnode: NODE

mode: {Call,Select}

END PRIVATE

% Initialize local variables

mode==Call

currnode==new_currnode

END PRIVATE

if is_user_defined(act)

& mode=Call

then

list-of-cand-clauses:=procdef(act,db)

temp_node:=currnode

MAKE INSTANCES of MAKE-SON by instance(MAKE-SONS)

Invoke(instance(MAKE-SON),Itself)

END INSTANCES

mode:=Select

fi

if deqglseq(currnode)=Empty-seq

then

stop:=Success

fi

if more_solution_wanted

& stop:=Success

then

stop:=0

Invoke-return(Inherited-module)

fi

if goal=Empty-seq

then

decglseq(currnode):=rest_decgls(decglseq(currnode)

fi

if user_defined(act)

& mode=Select

& given_mgu=/=Nil

then

currnode:=fst_node(cands(currnode))

mode:=Call

cands(currnode):=rest_nodes(cands(currnode))

decglseq(fst_node(cands(currnode))):=new_deqglseq;

s(fst_node(cands(currnode))):=compsubst(s(currnode),given_mgu)

vi:=addind(vi,1)
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new_currnode:=fst_node(cands(currnode)

MAKE INSTANCES of HANDLE-LEVELS by instance(HANDLE-LEVELS)

Invoke(instance(HANDLE-LEVELS,Itself)

END INSTANCES

fi

if user_defined(act)

& mode=Select

& given_mgu=Nil

then

cands(currnode)=rest_nodes(cands(currnode))

fi

if user_defined(act)

& mode=Select

& cands(currnode)=Empty

then

Invoke-return(Inherited-module)

fi

End Module

The module HANDLE-LEVELS describes the Prolog computation at one level.
In fact the most of the core Prolog computation is described within this
module.

4.3.3 Making a New Nodes in the Execution Tree

Here we will optimize the tail recursive invocation of modules to model
iterative treatments making all sons of the current node in the execution
tree.

Module MAKE-SONS

if list-of-cand-clause=Empty

then

Invoke-return(Inherited-module)

fi

if list-of-cand-clause=/=Empty-List

then

list-of-cand-clause:=tail_clauses(list-of-cand-clauses)

EXTEND NODE by temp(NODE)

WITH

father(NODE):=temp_node

cands(temp_node):=append-cands(temp(NODE,cands(temp_node)))

cll(NODE):=first_clause(list-of-cand-clauses)

ENDEXTEND

MAKE INSTANCES of MAKE-SONS by instance(MAKE-SONS)

Invoke(instance(MAKE-SONS),Inherited-module)

END INSTANCES
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...

End Module

Each of the candidate clause is associated to the sequence of sons in the
pre-determined order.

At �rst glance it may be di�cult to see what we obtain by optimize this
tail recursion compared with the mechanism used in [BR94](p 11). But the
mechanism used in [BR94] is not a general mechanism to express iterations.
The tail recursive call of modules, provides a systematic way of expressing
iterations.

It is easy to imagine a much more complicated situation, where we need
to express many iterations, and in addition some may be nested within each
other. The tail recursive calls of module instances can be used in such a
situation. So the example above can be regarded as the most simple example
of how an iteration may be speci�ed.

However, if we really want to perform n operations simultaneously as is
done in [BR94] we may need to make some further extensions to the module
mechanisms.

4.4 The Importance of Dividing Speci�cation into

Modules

When making the speci�cation of the lambda calculus interpreter and com-
piler, the speci�cation in Core Evolving Algebra tends to be big and clumsy.
A speci�cation at a very detailed abstraction level, will need to be divided in
some ways in order to manage the complexity caused by the huge amount of
details in the speci�cation. So when the author was writing the speci�cation,
the need to divide the speci�cation into modules became clear.

We are able to write more detailed speci�cation, using speci�cation lan-
guage which takes into account not only what an algorithm is supposed to
do, but also how we will perform the algorithm and the amount of resources
needed to perform the speci�cation. Then, there is good reason to take ideas
developed in the area of computer science with regards to de�ning abstrac-
tion levels and dividing the program into modules and try to apply the idea
when writing a speci�cation.

The problem of dividing the speci�cation in di�erent abstraction levels
and the problem of dividing a speci�cation at one abstraction levels into
modules may be more coupled together than i appears at the �rst sight.
When dividing a speci�cation into modules, we may be able to re�ne each
of the modules into a less abstract speci�cation which is of manageable size.
We may also be able to easier see the possibilities of making abstractions
when we have divided the speci�cations into manageable tasks.

However, only further research can give answer about the relationship
between the division of a speci�cation into modules, and the use of abstrac-
tion levels.

In the the rest of this chapter and in the subsequent chapter the author
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will point out some of his experience 5.

4.5 Implementation of a Functional Language

4.5.1 A supercombinator

We take the following de�nition of a supercombinator from [Jon87]

De�nition 11 A supercombinator, S, of arity n is a lambda expression of

the form

�x1:�x2 : : : �xn:E

where E is not a lambda abstraction such that

1. S has no free variables,

2. Any lambda abstraction in E is a supercombinator,

3. n � 0; there not needs to be lambda at alls.

A supercombinator redex consists of the application of a supercombinator

to n arguments, where n is the arity of the supercombinator.

A supercombinator reduction replaces a supercombinator redex by an

instance of the supercombinator body with the argument substituted for free

occurrence of the corresponding formal parameters.

We will want to use supercombinator instead of ordinary lambda expres-
sion in order to avoid the complicated substitution rules which will apply
when reducing ordinary lambda expressions.

4.5.2 Translate a Lambda Expression into a Supercombina-

tor

Consider the lambda expression:

(�x:(�:y � y x x) x)(+ 3 3)

How should we translate the lambda abstractions in the expression into
a to supercombinators? First we use the �-abstraction to make the free
variable x in the innermost lambda abstraction into an extra parameter
(See Chapter 13 in [Jon87] for a more comprehensive description of the
translation process):

(�x:(�:x:�:y � y x x) x x)

In order to distinguish the to two di�erent variables with the name x, we
rename the x to w in the innermost lambda abstraction:

(�x:(�:w:�:y � y w w) x x)

5Where it was di�cult to make the speci�cation due to problems with �nding more

abstraction levels and dividing the speci�cation into modules
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In fact both the innermost and the outermost lambda abstraction is trans-
formed into supercombinators, and we give the two lambda abstractions
names as the following supercombinator de�nitions:

A w y = � y w w

B x = Ax x

The expression to be evaluated now becomes:

B (+ 3 3)

The translation make use of the �-abstraction and variable renaming. To
optimize this translation more complicated rules apply (See Chapter 13
in [Jon87] and Chapter 6 in [JL91]).

No Evolving Speci�cation is given for this translation process in this re-
port. In the subsequent chapters we will assume that all lambda expressions
is given as supercombinators, and make the Evolving Algebra Speci�cation
according to this assumption.

4.5.3 Lazy Evaluation

If we are going to implement lazy evaluation, we want to postpone the eval-
uation of the argument given to a supercombinator as long as possible. In
the example above we �rst reduce the expression as far as possible, before
we compute the arithmetic primitives � for multiplying and + adding oper-
ations:

B (+ 3 3)
! A (+ 3 3)(+ 3 3)
! � (+ 3 3)(+ 3 3)(+ 3 3)
! � 6 6 6
! 216

4.5.4 Eager Evaluation

When using eager evaluation, the arguments given to the supercombinator
is evaluated as soon as possible. So the example is reduced as follows:

B (+ 3 3)
! B 6
! A 6 6
! � 6 6 6
! 216

If we know for certain that all occurrence of the arguments have to be
evaluated, eager evaluation is the optimal evaluation strategy.

4.5.5 Eager and Lazy evaluation

Consider the supercombinator de�nition:

K x y = x
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and the expression
K 5 (= 3 0)

where = is the division operator. If we were using eager evaluation the eval-
uation fails because we try to compute 3 divided by zero, before evaluating
the de�nition of the supercombinator K. If we instead use lazy evaluation,
the following reduction will do:

K 5 (= 3 0)
! 5

giving the �rst argument as the result.
So in such case we will want to use lazy evaluation in order to avoid

evaluating parts of the expression which do not need to be evaluated and
which fail.

It may also be the case that it is possible to evaluate the part of the
expression which in fact does not need to be evaluated 6. If this argument
is large we can avoid a lot of computation, if we use lazy evaluation.

So the best way to optimize the evaluation is to �nd out, when it is
best to use eager evaluation and when it is necessary or best to use lazy
evaluation. The analysis required to do evaluation in an optimal manner is
quite di�cult and not feasible to do in many cases.

4.5.6 Eager Evaluation and Weak Head Normal Form

The Weak Head Normal Form is de�ned in [Jon87] as follows:

De�nition 12 A lambda expression is inWeakHeadNormal Form (WHNF),
if and only if it is on the form:

F E1 E2 : : : En

where n � 0 and

1. either F is a variable or data object

2. or F is a lambda abstraction or built-in function and (F E1 E2 : : : Em
is not a redex for any m � n.

An expression has no top level redex if and only if it is in weak head

normal form.

The Weak Head Normal Form di�er from Normal Form, since an expression
in Weak Head Normal form can contain inner redexes. An expression in
normal form can not contain inner redexes.

The lazy evaluation process speci�ed in chapter 6 will evaluate an expres-
sion into Weak Head Normal Form. When we introduce eager evaluation of
supercombinator expressions, we can force the modi�ed algorithm to evalu-
ate all or some of the inner arguments by marking the arguments as strict
and evaluate the arguments.

6In the example above we consider an expression given as the second argument to the

K supercombinator.
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4.5.7 Using Environment or Graph Structure

Functional languages interpreter or compiler will often use either environ-
ment structure or a graph structure.

An environment structure is a hierarchical structure, where variables and
expressions is given a scoper where the are valid de�nitions. Most of the
Lisp Interpreters are implemented using an environment structure.

A graph structure is a representation of expressions using a graph rep-
resentation. The graph can be a tree or it can be an acyclic graph, or it can
contain cycles, if desired.

A representation of the lambda expressions as an acyclic graph is used
in the Evolving Algebra speci�cation of the compilation and evaluation of
the supercombinators below.

4.5.8 Interpreting and Compiling an Expression

We have a choice of the degree of compilation or interpretation of an su-
percombinator expression. If we choose to interpret the expression we can
execute the reduction almost immediate and can save the compilation time.
On the other hand it may not be possible to optimize the reduction process,
so the interpretation of the expression may become a slowly process.

When interpreting a de�ned language, we are also able to make programs
which generates new code in the same language, and then evaluate the code
which was automaticly generated. We are not able to do so, if the program
is compiled into some other target language.

If we use a compiler to make instructions in a target language which
can be easily executed on a computer, we may be able to �nd many ways
to optimize the compiled code. In this way we can speed up the process of
evaluation. The price to pay is the cost of executing the compilation step,
and the loss of �exibility since we can not make and evaluate expressions in
the source language.

In this report we specify two ways to perform the reduction of super-
combinator expressions:

� The �rst approach is to make a graph structure of the supercombinator
de�nitions, and then make reduction on the graph structure beginning
with the main supercombinator expression.

� The second approach is to compile each supercombinator de�nition
into a sequence of instructions. When the compilation process is done,
the instructions will make and perform the reduction process on a
graph structure.

4.6 The Project

The main project reported in this thesis consisted of:

1. Writing an evolving algebra interpreter.
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2. Making the speci�cation of compiling and interpretation of a functional
language.

3. Implementing, testing and running this speci�cation of the interpreter.

The author does not know of any work, where a large Evolving Algebra
speci�cation is made together with the Evolving Algebra interpreter, and
where both the large speci�cation and the interpreter is implemented and
tested within one project.

4.6.1 Speci�cation of an Algorithm and the Use of Resources

The speci�cation of the compilation and interpretation make substantial
use of the ability of specifying use of resources in the Evolving Algebra
speci�cation language. Hence it is possible to measure in an abstract way
the use of resources, when the speci�cation is implemented and executed on
an interpreter.

It should also be possible to compute (or reason) about the use of re-
sources, even if a speci�cation is made which is not implemented on any
Evolving Algebra interpreter.

4.7 The Main Steps of the Lambda Compiler and

Lambda Evaluator

Here we will explain the main steps in compiling lambda expressions into a
graph or G-machine code and the evaluation of the lambda expressions. We
will give some Evolving Algebra de�nitions at a very abstract level. In the
subsequents chapters we will give a less abstract speci�cation.

Note: When specifying the compilation and evaluation of lambda expres-

sions, we will use the Evolving Algebra as presented in section 2.2. The

extension of the Evolving Algebra discussed in chapter 3 will be treated to

some extent. Alternative ways of making the speci�cation using the extension

will be discussed and examples will be given. We call the Evolving Algebra

de�ned in section 2.2 the Core Evolving Algebra and the extension intro-

duced in chapter 3 Extended Evolving Algebra, when we distinguish between

the two versions of the speci�cation language

4.7.1 Compilation of Lambda Expression

The compilation of the Lambda Expressions are performed in two main step.

� Translate the Lambda expressions into supercombinator de�nitions.

� Compile the supercombinator de�nitions.

Only the last step will be treated in subsequent chapters. The �rst step is
a syntactically transformation. Therefore we will only give an very abstract
de�nition of this translation process.
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4.7.2 Translating Lambda-expressions to Supercombinators

if status=Lambda-lifting

then

all_sc_defs := transform_to_supercomb_defs(lambda_src)

status := Lambda-Compile

The way of translating lambda expressions to supercombinator expressions
to translate lambda subexpressions with free variables into supercombinator
de�nitions, where the free variables are added to the parameter-list of the
supercombinator.

4.7.3 Compiling the Supercombinator De�nitions

if status=Lambda-Compile

then

target_representation := compile_sc_defs(all_sc_defs)

status:=Evaluate

The next step is to compile the supercombinator de�nition to some tar-
get representation. The target representation may be a graph or may be
sequences of instructions.

4.7.4 Evaluation of the Supercombinators

if status=Evaluate

then

result := evaluate_supercombinators(target_representation)

status := Done

The last step is evaluating the supercombinators. The supercombinators are
reduced to weak head normal form.

4.8 Dividing the Speci�cation into Modules

At this early stage in the speci�cation it is possible to see some of the
problems using the Core Evolving Algebra.

Since the Core Evolving Algebra use one name space and one execution
sequence, we are forced to rewrite the speci�cation when we move to a less
abstract level.

What we really want to do, is to retain the speci�cation made at this
very abstract levels, and let it be the part of the total speci�cation.

So let us see how this could be done using Extended Evolving Algebra.
We may take the compilation of a supercombinator as an example:

SHARE WITH MODULES: MAIN-MODULE, TRANSLATE-MODULE

initial_representation: SDEFS-EXPR

END SHARED MODULES
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SHARE WITH MODULES: MAIN-MODULE, TRANSLATE-MODULE, COMPILE-MODULE

sc_representation: SDEFS-EXPR

END SHARED MODULES

SHARE WITH MODULES: MAIN-MODULE, COMPILE-MODULE, EVAL-MODULE

compiled_representation: GRAPH-STRUCTURE

END SHARED MODULES

SHARE WITH MODULES: MAIN-MODULE, EVAL-MODULE

result_representation: DATA

END SHARED MODULES

...

initial-representation:== ....

...

MAIN MODULE is START MODULE

Module: START-MODULE

BEGIN PRIVATE FUNCTIONS

status: STATUS

...

status:==Lambda-lifting

...

END PRIVATE FUNCTIONS

...

if status=Lambda-Compile

then

INVOKE(COMPILE-SC-DEFS)

status:=Evaluate

fi

...

End Module

The example above demonstrate how the speci�cation can be divided into
modules, like the division of a large program into subroutines.

..

Module: COMPILE-SC-DEFS

...

if finished

then

compiled_representation:=result(...)

INVOKE-RETURN(START-MODULE)

fi

End Module

Above we show how a module can return to the main module.

In the example above all shared constants expect initial-representation
are set in the modules invoked from the main module.
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The constant initial-representation gets its initial value when the
Evolving Algebra starts the run.
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Chapter 5

Compilation of

Supercombinators

5.1 Introduction

We will in this chapter describe and specify the compiling of supercombina-
tor de�nitions using evolving algebra. In subsequent chapters the description
will be extended to cover handling of primitives operators and lazy argu-
ments compared with strict arguments. For a more general description of
compilation and reduction of supercombinators, see [JL91].

The Evolving Algebra speci�cation in this chapter is based on Core Evolv-

ing Algebra. If we use Extended Evolving Algebra it is possible to write a

speci�cation using modules and to specify recursive calls directly. In chap-

ter 8 the use of Extended Evolving Algebra will be discussed.

5.2 The Chosen Abstraction Level

Here we jump quite directly on a quite detailed abstraction level. Since we
try to describe how to compute a supercombinator expression into a graph,
we have to get into many details in order to give a speci�cation of how to
build the graph.

We have jumped from a very abstract level in 4.7 to a quite concrete
abstraction level used the speci�cations below. It would be nice if we could
�nd an intermediate level of abstraction, and thus re�ne this intermediate
level to the detailed level as below.

However, the author was not able to �nd such an intermediate level of
abstraction. Hence, the resulting speci�cation becomes quite detailed, and it
was not easy to manage all the details in the speci�cations in the subsequent
chapters.

The speci�cation was written in Core Evolving Algebra. When bound
to the Core Evolving Algebra it is not easy to divide the speci�cation into
modules, since the algebra presuppose that all operations is performed in
one logical sequence, and all functions belong to one name space.
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5.3 Compile the Supercombinator De�nitions

First we will describe the compilation of supercombinator de�nitions.
The assumption can be made, that all supercombinator de�nitions may

be needed in the subsequent evaluation phase. Therefore we choose to com-
pile all such de�nitions into some target representation.

The outcome of the compilation process are to be some target represen-
tation of all supercombinator de�nitions and in addition the initial state will
be set.

The target representation of the supercombinator de�nition, which is to
be used in this report is an acyclic graph or G-machine instructions.

Most of the details about how to compile a supercombinator representa-
tion will be postponed to subsequent sections in the report.

5.3.1 Compile All the Supercombinator De�nitions

We are given a collection of supercombinator de�nitions. All of those def-
initions must be be compiled into a suitable target representation. The
representation may for instance be a graph or a sequence of target instruc-
tions. In the �rst abstract approach we do not need to make any decision
about the target representation.

Two main steps are needed before the evaluation can start:

� Compile all supercombinator de�nitions given.

� Set the initial state.

The signature

% The source:

sc_defs: SCDEFS

empty_sc_defs: SCDEFS --> BOOL

remove_next_sc_def: SCDEFS --> SCDEFS

compile_next_sc_def: SCDEFS --> TCODE

% The target:

all_pointers: TADDRS

add_pointer: TADDR x TADDRS --> TADDRS

sc_def_pointer: TADDR --> TCODE

% Initial state:

current_state,initialize_state: STATE

The Transitions

The compilation of all supercombinator de�nitions to some target represen-
tation are speci�ed below:

if not(empty_sc_defs(sc_defs))

then
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EXTEND TADDR by temp(TADDR)

WITH

all_pointers:=

add_pointer(temp(TADDR),all_pointers)

sc_def_pointer(temp(TADDR)):=

compile_next_sc_def(sc_defs)

ENDEXTEND

src_sc_defs:=remove_next_sc_def(sc_defs)

We compile every supercombinator de�nition from the source program
until all supercombinator de�nitions are compiled.

All compiled supercombinator de�nitions are compiled to some target
representation. Every compiled supercombinator de�nition are given an
unique pointer. The collection of target address are the value of constant
all_pointers. We may at present think of the collection of address as a
list of pointers to the target representation of supercombinator de�nitions.

if empty_sc_defs(src_sc_defs)

then

current_state:=Reduce-begin

The transition below starts the reduction of the compiled de�nitions.

The speci�cation above ends the top level description of the compiling
process.

Note: This top level speci�cation for compilation could be made in Ex-

tended EA as the main module for compilation. The rest of the speci�cation

could in turn be divided into modules, each invoked from the main module

for compilation.

5.4 Compile a Supercombinator De�nition

Here the main steps regarding the compilation of a supercombinator de�ni-
tion is described:

Three main steps will be needed:

� Find the next supercombinator de�nition to compile.

� Make a global association list which links the name of the SC-de�nition
to a pointer (address) to the compiled de�nition.

� Compile the the de�nition into some suitable representation.

The three steps will be speci�ed in the subsequent subsections.

5.4.1 The Signature and Abbrevations

Before we specify the transition, we will specify the signature and the ab-
breviations.
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The signature

We will use the following signature

% Supercombinator expressions

main_sc_def_name: NAME

all_sc_defs: SCEXPR*

is_empty_sc_defs: SCEXPR* --> BOOL

get_main_name: SCEXPR* --> NAME

get_next_sc_def: SCEXPR* --> SCEXPR

tail_sc_defs: SCEXPR* --> SCEXPR*

empty_expr: SCEXPR

expr_type: SCEXPR --> SCTYPE

get_sc_def_name: SCEXPR --> NAME

make_params: SCDEF --> VNAME*

src_body: SCDEF --> SCEXPR

first_app_expr: SCEXPR --> SCEXPR

second_app_expr: SCEXPR --> SCEXPR

make_num: SCEXPR --> NUMBER

make_sc_name: SCEXPR --> NAME

make_var_name: SCEXPR --> VNAME

% Pointers

curr_sc_def_addr: TADDR

get_name_from_globals: TADDR --> NAME

value_of_addr: TADDR --> SCEXPR

% nodes

node_type: NODE --> TYPE

node_child: NUMBER x NODE --> TADDR + {Empty}

node_params: NODE --> NAME*

node_num: NODE --> NUMBER

node_sc_name: NODE --> NAME

node_var_name: NODE --> VNAME

graph: TADDR --> NODE

% Stack operations

temp_stack: TADDR*

empty_stack: TADDR*

is_empty_stack: TADDR* --> BOOL

pop_stack: TADDR* --> TADDR*

top_addr: TADDR* --> TADDR

push_stack: TADDR x TADDR* --> TADDR*

push2_stack: TADDR x TADDR x TADDR* --> TADDR*

% status

status: STATUS
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Abbreviations

We use the following abbreviations:

current_value==value_of_addr(top_addr(temp_c_stack))

current_node==graph(top_addr(temp_c_stack))

5.4.2 Start of the Compilation

if status=Initial

& not(is_empty_sc_defs(all_sc_defs))

then

main_sc_def_name:=get_main_name(all_sc_defs)

status:=Get-curr-sc-def

We de�ne a transition which starts the compilation process. This transition
gets the name of the main supercombinator de�nition and sets the status to
�Get-curr-sc-def�

5.4.3 Find a Supercombinator De�nition

if status=Get-curr-sc-def

& not(is_empty_sc_defs(all_sc_defs))

then

EXTEND TADDR by temp(TADDR,1)

WITH

curr_sc_def_addr:=temp(TADDR,1)

get_name_from_globals(temp(TADDR,1)):=

get_sc_def_name(get_next_sc_def(all_sc_defs))

get_addr_from_globals(

get_sc_def_name(get_next_sc_def(all_sc_defs))):=

temp(TADDR,1)

value_of_addr(temp(TADDR,1)):=get_next_sc_def(all_sc_defs)

ENDEXTEND

all_sc_defs:=tail_sc_defs(all_sc_defs)

status:=Compile-sc-def

Here we de�ne the transition which gets the next supercombinator de�nition
to be compiled. In addition a link from the supercombinator name to the
pointer of the graph of the compiled supercombinator de�nition is made.

if src_empty_sc_defs(src_sc_defs)

& status=Find-sc-def

then

status:=Perform-graph-reds

This transition �nish the compilation, when all supercombinator de�nitions
are compiled. The evaluation mode is set to perform graph reductions.
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5.4.4 Compile the SC-de�nition Abstract Speci�cation

get_target_sc_def: TADDR --> TCODE

compile_sc_def: SCDEF --> TCODE

The transition

if status=Compile-sc-def

then

get_target_sc_def(curr_sc_def_addr):=compile_sc_def(src_curr_sc_def)

status:=Get-curr-sc-def

This transition is an abstract speci�cation of the compilation process. We
compile the de�nition to some target code. The pointer to the supercombi-
nator de�nition will now also points to the target code.

5.5 The Supercombinator Graph

The abstract representation of a supercombinator de�nition will be an an-
notated graph (a tree). The root node in this graph will be the Supercom-
binator Node which will be annotated with the list of parameters. The son
of the supercombinator node will be the root node of the subgraph which
represent the body of the supercombinator de�nition. The supercombinator
body consists of application nodes as interior node, and leaf nodes which
represent a number, a local variables or a name of a supercombinator.

5.5.1 Interior Nodes

Two types of interior nodes are needed.

The supercombinator de�nition node is the root node in the graph which
represent the supercombinator de�nition. The node has one son, the root
node of the subgraph describing the body of the supercombinator de�nition.

The only type of interior node which usually occur in the graph rep-
resenting the body of the supercombinator is the application node. An
application node has two sons. Each son represent an expression. The �rst
son represents the expression to be applied. The second son represents the
expression which the �rst expression is to be applied upon.

A Supercombinator Node

The name of the supercombinator is already stored in the global list which
links supercombinator names to its de�nitions. In addition we need to store
the parameters used in the supercombinator de�nitions. This parameters
are stored as a list of parameter de�nitions (may be parameter names) along
with the supercombinator node.

Application Nodes

Only pointers to the two children is stored with the application node.
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5.5.2 Leaf Nodes

Here we describe the leaf nodes in the graph.

Numbers

A number is stored along with the number node.

Local Variable Names

The variable name is stored along with the variable node.

Supercombinator Names

The supercombinator name is stored along with supercombinator name
node.

5.6 Making the Graph

This section contains the speci�cation of how the supercombinator de�ni-
tions are compiled to a pieces of graph.

5.6.1 The Supercombinator De�nition Node

The transition which makes the supercombinator de�nition node is given
below. This node will be the root node in the supercombinator de�nition
graph.

if status=Compile-sc-def

& expr_type(value_of_addr(curr_sc_def_addr))

then

EXTEND TADDR by temp(TADDR)

NODE by temp(NODE)

WITH

% Makes node

graph(curr_sc_def_addr):=temp(NODE)

node_type(temp(NODE)):=Supercomb

node_params(temp(NODE)):=

make_params(curr_sc_def_addr))

node_child(1,temp(NODE)):=temp(TADDR)

% Initialize the compile stack.

value_of_addr(temp(TADDR)):=src_body(value_of_addr(curr_sc_def_addr)

temp_stack:=push_stack(temp(TADDR),empty_stack)

ENDEXTEND

status:=Compile-the-expression

This transition specify how we compile the list of parameters from the left
hand side of the supercombinator de�nition.

A supercombinator de�nition node is made.
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5.7 How to Compile of the Supercombinator Def-

inition

5.7.1 The Recursive De�nition Approach

The process of building the graph of the body of a supercombinator could
be speci�ed as a recursive process:

Procedure make_graph(expression)

if not(application(expression))

then

<make a leaf node of appropriate type>

else if application(expression)

then

<make an application node>

son1:-make_graph(firstapp(expression))

son2:-make_graph(secondapp(expression))

fi

Note: This recursive de�nition can naturally be written using Extended

Evolving Algebra (See chapter 8). Hence, the clumsy speci�cation in sec-

tion 5.7.3 can be avoided.

5.7.2 Using the Core Evolving Algebra to Specify the Com-

pilation

If we are forced to use Core Evolving Algebra, this recursive de�nition has
to be translated to an iterations, and explicit use of stack. Such translation
breaks the structure of the speci�cation, making it di�cult to read and
understand.

In this section we will explain how a graph which represents the super-
combinator can be build using Core Evolving Algebra. This graph can in
some sense be seen as an abstract speci�cation of the target code.

At this stage we are not concerned about making e�cient target code.
The task of making e�cient representation (with regard to space and time
consumption) will be addressed in the subsequent sections.

The compile stack

The speci�cation given below describes the compilation process as iterations.
It is necessary to use a compilation stack to keep track of the parts of graph
not yet builded.

The invariant is that a pointer to a node on the top of the compile
stack represents a subgraph which is build. This pointer can therefore be
discarded from the compile stack. The way the graph is build ensure that
the invariant holds.

When an application node is made, pointers to its (un�nished) children
are put above the pointers the application node made. As the result the
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subgraphs of the (two) children of the application node are build and dis-
carded before the pointer to the application node will appear on the top of
the compile stack.

When an leaf node is made its pointer is on the top of the stack. This
node represent a �nished subgraph and can immediately be discarded.

5.7.3 Speci�cation of the Compilation of the SC-body

Here we give the speci�cation for the process of compiling the body of a
supercombinator de�nition.

Compilation of an Application Expression

if status=Compile-the-expression

& (not(is_empty_stack(temp-c_stack)))

& expr_type(current_value)=APexpr

then

EXTEND POINTER by temp(POINTER,1),temp(POINTER,2)

NODE by temp(NODE)

% Makes the node.

current_node:=temp(NODE)

current_value:=empty_expr

node_child(1,temp(NODE)):=temp(POINTER,1)

node_child(2,temp(NODE)):=temp(POINTER,2)

node_type(temp(NODE)):=APnode

% Makes elements to the compile stack.

value_of_addr(temp(POINTER,1)):=

first_app_expr(current_value)

value_of_addr(temp(POINTER,2)):=

second_app_expr(current_value)

temp_stack:=push2_stack

(temp(POINTER,2),temp(POINTER,1),temp_stack)

ENDEXTEND

The transition below specify how to make the application node. Pointers to
the two subexpressions are kept on the compile stack above the pointer to
the application node.

Compilation of a Number Expression

if status=Compile-the-expression

not(is_empty_stack(temp-c_stack))

& expr_type(current_value)=Numexpr

then

EXTEND NODE by temp(NODE)

current_node:=temp(NODE)

current_value:=empty_expr

node_type(temp(NODE)):=Num

node_num(temp(NODE)):=
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make_num(current_value)

ENDEXTEND

This transition specify how to make a number node.

Compilation of a Supercombinator Name Expression

if status=Compile-the-expression

not(is_empty_stack(temp-c_stack))

& expr_type(current_value)=SCname

then

EXTEND NODE by temp(NODE)

current_node:=temp(NODE)

current_value:=empty_expr

node_type(temp(NODE)):=SCName

node_sc_name(temp(NODE)):=

make_sc_name(current_value)

ENDEXTEND

This transition specify how to make a supercombinator name node.

Compilation of a Local Variable Name Expression

if status=Compile-the-expression

not(is_empty_stack(temp_stack))

& expr_type(current_value)=VARname

then

EXTEND NODE by temp(NODE)

current_value:=empty_expr

current_node:=temp(NODE)

node_type(temp(NODE)):=LVar

node_var_name(temp(NODE)):=

make_var_name(current_value)

ENDEXTEND

This transition specify how to make a local variable name node.

Traverse Up One Step in the Graph

if status=Compile-the-expression

& not(is_empty_stack(temp_stack))

& expr_type(current_value)=EMPty

then

temp-stack=pop_stack(temp_stack)

Here we specify to traverse up on step in the graph by popping of an element
from the compile stack. We assume that all nodes which is popped of the
compile stack represents part of the graph which is build.
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Compiling: A x = (K x) x

A x = ( K x ) x

Figure 5.1: The supercombinator de�nition

Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

(K x) x

Figure 5.2: Step 1: Create a supercombinator de�nition node

Empty Adress Stack

if status=Compile-the-expression

& is_empty_stack(temp_stack)

then

status:=Get-curr-sc-def

Here we are �nished with compilation of a supercombinator de�nition.

5.7.4 An Example

Here we will show an example of how a supercombinator expression are
compiled.

The supercombinator expression to compile are the expression:

A x = (K x) x

We will show the process of compilation step by step.
Before the compilation of a supercombinator de�nition starts, we have

the following situation shown in �gure 5.1.
The �rst step is to make the node for the supercombinator de�nition.

See the �gure 5.2.
In the second step an application node is created 5.3. Pointers to its two

sons are made. The application expression is divided into two subexpres-
sions, where the subexpressions are associated to the two pointers at top of
the address stack.

The third step makes an local variable name node. The pointers at top
of the address stack is set to point to the new node. See �gure 5.4.

The fourth step pops the top pointer of the address stack, prepearing for
the next application expression to be compiled. See �gure 5.5.
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K x

x

Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

Type: APnode

Figure 5.3: Step 2: Create the �rst application node

K x

Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

Type: APnode

Type: LVar

Name: x

Figure 5.4: Step 3: Create a local variable node

K x

Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

Type: APnode

Type: LVar

Name: x

Figure 5.5: Step 4: Pop an element of the address stack

80



Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

Type: APnode

Type: LVar

Name: x

K

x

Figure 5.6: Step 5: Create the second application node

Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

Type: APnode

Type: LVar

Name: x

K

Type: LVar

Name: x

Figure 5.7: Step 6: Create a local variable node

Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

Type: APnode

Type: LVar

Name: x

K

Type: LVar

Name: x

Figure 5.8: Step 7: Pop an element of the address stack
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Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

Type: APnode

Type: LVar

Name: x

Type: LVar

Name: x

Name: K

Type: SCname

Figure 5.9: Step 8: Create a supercombinator name node

Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

Type: APnode

Type: LVar

Name: x

Type: LVar

Name: x

Name: K

Type: SCname

Figure 5.10: Step 10: Two elements popped of the stack

Parameters: x
SC-name:  A

Compiling: A x = (K x) x

Type: Supercomb

Type: APnode

Type: LVar

Name: x

Type: LVar

Name: x

Name: K

Type: SCname

Figure 5.11: Step 12: The last element popped of the address stack
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The �fth and the sixth step makes a new application node and a new
local variable node. See �gure 5.6 and 5.7.

In the seventh step the top pointer is popped of the address stack. Then
a supercombinator name node is made. See �gure 5.8 and 5.9.

The graph representing the supercombinator de�nition is made.
The only steps to be done is top pop o� all pointers from the address

stack until the stack is empty. See �gure 5.10 and 5.11.

5.7.5 A Brief Note About E�ciency

At this stage in the speci�cation process we could choose to �nish our spec-
i�cation.

We could leave to the programmers to discover where to optimize in the
system and that way let the performance depends on the actual implemen-
tation of the system. In this way we would follow the traditional way of
excluding any requirements concerning e�ciency from the speci�cation.

This approach may not be what we want. To understand why, we can use
the Scheme language as an example. In the Scheme which is a dialect of Lisp,
the speci�cation of Scheme require the implementation to use constant space
when executing tail recursive procedures. An implementation of Scheme
which did not optimize the tail recursive call to use constant space, would
force the programmer to use special constructs to do iterations instead of
simply use tail recursive procedure de�nition.

5.8 Select the Target Structure

In the abstract speci�cation of compilation into the target structure of the
supercombinator de�nition, the target structure is described as a tree.

This target structure capture the information needed to perform the
reductions of the supercombinators, and therefore this abstract speci�cation
of the compilation process is su�cient if we do not care about making an
e�cient representation of the target structure.

Examples of issues a�ecting the e�ciency of the reduction process are:

� Wemay want to specify sharing of identical local variables when build-
ing the supercombinator body. Sharing such variables will prevent
making unnecessary copies of expressions which is instantiated for the
variables during the reduction process.

� There is no need to actually build a graph when the supercombinator
de�nitions are compiled. We can instead generate instructions to make
the graph at evaluation time.

We will consider the following choice of the target representation:

1. Making a tree.

2. Making an acyclic graph.

3. Making instructions to be executed later.
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None of the improvements in the target representation to be discussed
require major change of the abstract evolving algebra speci�cation.

5.8.1 Making a Tree

The abstract speci�cation of the target representation specify a tree as the
target structure of the compilation (See Section 5.5).

5.8.2 Making an Acyclic Graph

A graph is not always considered to be the most e�cient representation
of the target structure with regards to use of time. Traversing a graph at
evaluation time may take more time than executing an instruction sequence
which makes the graph.

Despite of that, we may want to implement a system which evaluates a
graph structure. If we want to let a functional program make some code
which in turn is invoked by the evaluator, it may be desirable to evaluate
The reason is that the internal data structure used by the evaluator is some
sort of acyclic graph. We may also implement an evaluator able to evaluate
both target instruction sequences and target graph structure.

In this subsection we show how we easily can make the change in the
speci�cation needed to build an acyclic graph instead of a tree.

Sharing Distinct Variables

The improvement we will discuss is the sharing of distinct local variable
nodes.

If the same variable appears more than once in the body of the super-
combinator de�nition, unnecessary duplication of the argument will occur
when all occurrence of the same variable are instantiated with the same
argument expression. This duplication can be avoided by sharing the local
variable node.

The only transition which needs change is the transition which makes
the local variable leaf node. In addition we assume that the parameter
list in the current supercombinator de�nition node are initialized such that
the predicate is_made_var_node gives the value �False� for every distinct
variable found in the parameter list.

The Signature

The following additional signature is used:

existing_var_node: NAME --> NODE

is_made_var_node: NAME x NAME* --> BOOL

Abbreviations

We will use the following abbreviations for value found on the top of the
compile stack and the node for the de�nition of the supercombinator.
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current_value==value_of_addr(top_addr(temp_stack))

current_node==graph(top_addr(temp_stack))

current_var_name==make_var_name(value_of_addr(top_addr(temp_stack)))

current_param_list==node_params(graph(curr_sc_def_addr))

The Transitions

if status=Compile-the-expression

& not(is_empty_stack(temp_stack))

& expr_type(current_value)=VARname

% Change: tests if the variable node is made.

& is_made_var_node(current_var_name,current_param_list)

then

% Change: Let the pointer points to the node already made.

current_node:=existing_var_node(current_var_name)

Here an association list of variables and nodes are used. This list is associ-
ated with the current supercombinator de�nition node, This list is used to
keep track of which node is already made.

The �rst transition apply if the local variable node is made. This tran-
sition sets the pointer to the node associated with the variable.

if status=Compile-the-expression

& not(is_empty_stack(temp_stack))

& expr_type(current_value)=VARname

% Change: Tests if not the variable node is made.

& not(is_made_var_node(curr_param_list)

then

EXTEND NODE by temp(NODE)

current_node:=temp(NODE)

current_value:=empty_expr

node_type:=LVar

node_loc_var_name(temp(NODE)):=

make_loc_var_name(current_value)

% Change: Assocate the variable node to the variable name.

existing_var_node(current_var_name):=temp(NODE)

is_made_var_node(current_var_name,curr_param_list):=True

ENDEXTEND

The second transition apply if the local variable is not made. The new node
is made and a list the local variable is associated with the new node.

5.9 Promise to Make a Graph

The basic step in the evaluation process of supercombinators is to reduce an
supercombinator expression. We call the expression to be reduced a redex.
The redex is replaced by an instance of the body of an supercombinator de�-
nition. The local variables which occurs in the body of the supercombinator
de�nitions are substituted by the argument found in the redex.
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Since we may create more than one instance of the same supercombinator
de�nition we have to make a new instance for every reduction.

Instead of making the graph of the supercombinator de�nition at com-
pile time, we make instructions which can be used to make the graph at
evaluation time. In this way we do not need to traverse the body of super-
combinator de�nition graph at evaluation time when making a new instance
to replace the redex.

The instruction set we use is called G-machine code. This instruction
set and a set of recursive equations which specify the compilation scheme
can be found in [Jon87].

The evolving algebra speci�cation of compilation into G-machine code
follows the same pattern as the (abstract) speci�cation of compilation into
the graph representation. Hence we can make a new evolving algebra speci-
�cation which is quite similar to the (abstract) evolving algebra speci�cation
which makes the graph (See 5.5).

5.9.1 Compilation into G-machine Code, the EA-speci�cation

In the subsections below we give the speci�cation of the compilation process
into G-machine code.

The signature of the functions used in the transitions below:

The signature

% Expression

expr_type: SCEXPR --> SCTYPE

src_body: SCEXPR --> SCEXPR

number_of_params: SCEXPR* --> NUMBER

make_params: SCEXPR --> SCEXPR*

first_app_expr: SCEXPR --> SCEXPR

second_app_expr: SCEXPR --> SCEXPR

num_expr: SCEXPR --> NUMBER

sc_name_expr: SCEXPR --> NAME

make_var_name: SCEXPR --> NAME

get_position: PARAMPOS* x NAME --> NUMBER

% Stack operations.

temp_stack TADDR*

initial_stack: TADDR*

pop_stack: TADDR* --> TADDR*

top_addr: TADDR* --> TADDR

push_stack: TADDR x TADDR* --> TADDR*

push2_stack: TADDR x TADDR x TADDR* --> TADDR*

is_empty_stack: TADDR* --> BOOL

% Functions which acts on pointers.

finished_code: TADDR --> INSTR*

curr_sc_def_addr: TADDR
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has_code: TADDR --> BOOL

value_of_addr: TADDR --> SCEXPR

instructions: TADDR --> INSTR*

hascode: TADDR --> BOOL

get_param_list: TADDR --> PARAMPOS*

increment_pos_list: NUMBER x PARAMPOS* --> PARAMPOS*

% Functions which acts on instructions.

get_operator: INSTR --> OPERATOR

get_operand: NUMBER x INSTR --> OPERAND

make_g_code: INSTR --> INSTR*

make_g_code2: INSTR x INSTR --> INSTR*

% Making a sequence of instructions.

code_list,empty_code: INSTR*

concatenate_code: INSTR* x INSTR* --> INSTR*

% Operations on the nodes

graph: TADDR --> NODE

node_type: NODE --> TYPE

def_arity: NODE --> NUMBER

% Add numbers

add: NUMBER x NUMBER --> NUMBER

Abbreviation

We will use the following abbreviation for value found on the top of the
compile stack. This value may be an expression to compile or a node in the
part of the graph which is already build. assigned to the address at top of
the compile stack:

current_address==top_addr(temp_stack)

current_value==value_of_addr(top_addr(temp_stack))

5.9.2 Make the Initial Instructions

if status=Get-curr-sc-def

& is_empty_scdefs(all_sc_defs)

then

EXTEND INSTR by temp(INSTR,1),temp(INSTR,2)

WITH

get_operator(temp(INSTR,1)):=Pushglobal

get_operand(1,temp(INSTR,1)):=main_sc_def_name

get_operator(temp(INSTR,2)):=Unwind

instr_stack:=make_g_code_two(temp(INSTR,1),temp(INSTR,2));

ENDEXTEND

status:=Exec-code

leftbranch:=1
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rightbranch:=2

The initial sequence of instructions:

Pushglobal <main-sc-name>

Unwind

is made and stored on the instruction stack.

5.9.3 Promise to Make the SC-de�nition

if status=Compile-sc-def

& expr_type(current_value)=SDEFexpr

then

EXTEND TADDR by temp(TADDR,1),temp(TADDR,2)

INSTR by temp(INSTR,1),temp(INSTR,2)

NODE by temp(NODE)

WITH

graph(curr_sc_def_addr):=temp(NODE)

node_type(temp(NODE)):=Global

def_arity(temp(NODE)):=number_of_params(make_params

(value_of_addr(curr_sc_def_addr)

% Pass the body of the sc-definition.

value_of_addr(temp(TADDR,2)):=

src_body(value_of_addr(curr_sc_def_addr))

% Pass the position-list of parameters.

get_param_list(temp(TADDR,2)):=

make_param_pos_list(value_of_addr(curr_sc_def_addr))

has_code(temp(TADDR,2)):=False

% Make the instruction: Slide d+1

get_operator(temp(INSTR,1)):=Slide

get_operand(1,temp(INSTR,1)):=

add(1,number_of_params(make_params

(value_of_addr(curr_sc_def_addr))))

% Make the instruction: Unwind

get_operator(temp(INSTR,2)):=Unwind

instructions(temp(TADDR,1)):=

make_g_code_two(temp(INSTR,1),temp(INSTR,2))

has_code(temp(TADDR,1)):=True

value_of_addr(temp(TADDR,1)):=valueofaddr(currscdefaddr)

temp_stack:=push_stack(temp(TADDR,2),

pushstack(temp(TADDR,1),initial_stack))

ENDEXTEND

status:=Compile-the-body

Here we give the speci�cation for how to make the G-machine code which
prepare for the next reduction step.

The G-machine code sequence which is made are:

Slide d+1, Unwind
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The variable d is the number of parameters given to the supercombinator
de�nition which is used as to build the new instance to replace the redex.

The parameter list which is used throughout the compilation process is
pairs of positions and local variable names. The positions are initially the
position in the parameter list in the supercombinator de�nition.

The positions may later change during the compilation phase in order
to give the right relative position of the local variables on the address stack
used in the evaluation of the G-machine code.

5.9.4 Promise to Make an Application Node

if status=Compile-the-body

& not(is_empty_stack(temp-c_stack))

& expr_type(current_value)=APexpr

& has_code(current_address)=False

then

% Make the list of finished code empty

code_list:=empty_code_list

EXTEND TADDR by temp(TADDR,1),temp(TADDR,2)

INSTR by temp(INSTR)

% Makes elements to the compile stack.

value_of_addr(temp(TADDR,1)):=

first_app_expr(current_value)

has_code(temp(TADDR,1)):=False

get_param_list(temp(TADDR,1)):=

increment_pos_list(1,get_param_list(current_address))

value_of_addr(temp(TADDR,2)):=

second_app_expr(current_value)

has_code(temp(TADDR,2)):=False

get_param_list(temp(TADDR,2)):=

get_param_list(current_address)

% Make the instruction: MKap

get_operator(temp(INSTR)):=MKap

% Attach code to the current address

instructions(current_address):=make_g_code(temp(INSTR))

has_code(current_address):=True

temp_stack:=push_stack(temp(TADDR,2),

push_stack(temp(TADDR,1),temp__stack))

ENDEXTEND

Here we give the speci�cation of the compilation of the G-machine code
which makes the application node.

The G-machine code sequence which is made is:

Mkap

The parameter list is passed to the subexpressions. For the �rst appli-
cation expression the positions in the parameter list is increased by 1.

On the temporary compilation stack the second subexpression to be
applied upon are stored on the top. The �rst subexpression to apply is
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stored immediately below and the Mkap instruction is store immediately
below the two subexpressions.

5.9.5 Promise to Make a Number Node

if status=Compile-the-expression

not(is_empty_stack(temp_stack))

& expr_type(current_value)=Numexpr

& has_code(current_address)=False

then

EXTEND INSTR by temp(INSTR)

WITH

% Make the instruction: Pushint i

get_operator(temp(INSTR):=Pushint

get_operand(1,temp(INSTR):=make_num(current_value)

% Attach code to the current address

instructions(current_address):=

make_g_code(temp(INSTR))

has_code(current_address):=True

ENDEXTEND

Here we give the speci�cation of the compilation of the G-machine code
which makes the number node.

The G-machine code sequence which is made is:

Pushint i

The integer i is the number taken from the supercombinator expression,

5.9.6 Promise to Make a Supercombinator Name Node

if status=Compile-the-expression

not(is_empty_stack(temp-c_stack))

& expr_type(current_value)=SCname

& has_code(current_address)=False

then

EXTEND INSTR by temp(INSTR)

WITH

% Make the instruction: Pusglobal f

get_operator(temp(INSTR):=Pushglobal

get_operand(1,temp(INSTR):=make_sc_name(current_value)

% Attach code to the current address

instructions(current_address):=make_g_code(temp(INSTR))

has_code(current_address):=True

ENDEXTEND

Here we give the speci�cation of the compilation of the G-machine code
which makes the supercombinator name node.

The G-machine code sequence which is made is:

90



Pushglobal f

The name f is the supercombinator name taken from the supercombi-
nator expression,

5.9.7 Promise to Make a Local Variable Name Node

if status=Compile-the-expression

not(is_empty_stack(temp-c_stack))

& expr_type(current_value)=VARname

& has_code(current_address)=False

then

EXTEND INSTR by temp(INSTR)

WITH

% Make the instruction: Push parampos(x)

get_operator(temp(INSTR):=Push

get_operand(1,temp(INSTR):=

get_position(get_param_list(current_address),

make_var_name(current_value))

% Attach code to the current address

instructions(current_address):=make_g_code(temp(INSTR))

has_code(current_address):=True

ENDEXTEND

Here we give the speci�cation of the compilation of the G-machine code
which makes the local variable name node.

The G-machine code sequence which is made is:

Push pos

The integer pos is the position taken from pair (pos x) in the parameter
list where x is the local variable found in the supercombinator expression.

The parameter list is passed down and updated during the compilation
process. At evaluation time the integer pos will index the corresponding
argument for the local variable on the address stack.

5.9.8 Add Finished Code to the Sequence of Instructions

if status=Compile-the-expression

& not(is_empty_stack(temp_stack))

& has_code(current_address)=True

then

% Move instruction on top of the stack to

% the end of the permanent instruction sequence

code_list:=concatenate_code(code_list,

instructions(current_address))

temp-stack=pop_stack(temp-stack)

Here we move �nished code from the top of compile stack to the sequence of
instructions for the supercombinator de�nition. The element at top of the
compile stack is popped of. This step can bee seen as traversing a step up
in the abstract graph of nodes.

91



5.9.9 Assign the Finished Code to the current SC-de�nition

if status=Compile-the-expression

& is_empty_stack(temp_stack))

then

% Attach the finished code to the address of sc_def.

finished_code(graph(curr_sc_def_address)):=code_list

code_list:=empty_code_list

status:=Get-curr-sc-def

Here we make a binding to the address of the current supercombinator
de�nition and the �nished sequence of instructions.

5.9.10 Update of the Root of the Redex

The instructions generated as described above fails to update the root of
the redex at the end of the reduction step, Hence shared subgraphs may be
evaluated many times.

The problem is the Slide d + 1 instruction. This instruction simply
removes all pointers to the redex and lets the remaining pointer point to the
instance of the supercombinator body which replaces the redex. Instead we
need an instruction sequence which overwrites the root of the redex in the
graph.

So we need to change the speci�cation which generates the code �nishing
the current reduction and prepearing for the next reduction.

if status=Compile-sc-def

& expr_type(current_value)=SDEFexpr

then

EXTEND TADDR by temp(TADDR,1),temp(TADDR,2)

INSTR by temp(INSTR,1),temp(INSTR,2),temp(INSTR,3)

NODE by temp(NODE)

WITH

graph(curr_sc_def_addr):=temp(NODE)

node_type(temp(NODE)):=Global

def_arity(temp(NODE)):=number_of_params(make_params

(value_of_addr(curr_sc_def_addr)

% Pass the body of the sc-definition.

value_of_addr(temp(TADDR,2)):=

src_body(value_of_addr(curr_sc_def_addr))

% Pass the position-list of parameters.

get_param_list(temp(TADDR,2)):=

make_param_pos_list(value_of_addr(curr_sc_def_addr))

has_code(temp(TADDR,2)):=False

% Make the instruction: Update d

get_operator(temp(INSTR,1)):=Update

get_operand(1,temp(INSTR,1):=

number_of_params(make_params

(value_of_addr(curr_sc_def_addr)
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% Make the instruction Pop d

get_operator(temp(INSTR,2)):=Pop

get_operand(1,temp(INSTR,2):=

number_of_params(make_params

(value_of_addr(curr_sc_def_addr)

% Make the instruction: Unwind

get_operator(temp(INSTR,3):=Unwind

instructions(temp(TADDR,1)):=

make_g_code_three(temp(INSTR,1),temp(INSTR,2),temp(INSTR,3))

has_code(temp(TADDR,1)):=True

value_of_addr(temp(TADDR,1)):=valueofaddr(curr_scdef_addr)

temp_stack:=push_stack(temp(TADDR,2),

pushstack(temp(TADDR,1),initial_stack))

ENDEXTEND

status:=Compile-the-body

The improved G-machine instruction sequence to perform the update is
shown below (See p 97 in [Jon87]):

Update d, Pop d, Unwind

This small changes should give a signi�cant improvement with regards
to e�ciency to the G-machine evaluation.
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Chapter 6

Evaluation of the Graph

6.1 Introduction

This chapter describe and specify the reductions of pure supercombinator
expressions using Evolving Algebra (See also [JL91]). Primitives, strict and
lazy arguments are treated in chapter 7.

This chapter cover the reduction process for:

� The template instantiation machine

� The G-machine

6.2 The Reduction Process

Below we give a very abstract speci�cation of the reduction process.

6.2.1 The Signature

some_redex_left: SCGRAPH --> BOOL

current_graph: SCGRAPH

reduce: SCGRAPH --> SCGRAPH

6.2.2 Speci�cation of the Reduction

The transition is given below. This transition may loop forever.

if some_redex_left(current_graph)

then

curr_graph:=reduce(current_graph)

The reduction process can be seen as repeating reduction steps until no
redex are can be found.

No details about how to perform a reduction step is given at this abstract
level.
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6.3 A Less Abstract Speci�cation of a Reduction

The reduction step can be divided into three main tasks.

1. Find the next redex.

2. Reduce the redex.

3. Prepare for the next reduction step.

The Signature

curr_graph,def_graph: GRAPH

scdef: SCOBJ

redex: SCOBJ

status: STATUS

some_redex_left: GRAPH --> BOOL

find_next_scdef: GRAPH x GRAPH --> SCOBJ

find_next_redex: GRAPH --> SCOBJ

status: STATUS

result: SCOBJ

substlist: SUBSTS

redex: SCOBJ

args: SCOBJ*

params: NAME*

instantiate: SCOBJ x SUBSTS --> SCOBJ

get_scbody: SCOBJ --> SCOBJ

make_substlist: SCOBJ* x NAME* --> SUBSTS

get_params: SCOBJ --> NAME*

make_args: SCOBJ --> SCOBJ*

update_graph: SCOBJ --> GRAPH

6.3.1 Find the outermost left redex

if some_redex_left(curr_graph)

then

redex:=find_next_redex(curr_graph)

scdef:=find_next_scdef(def_graph,curr_graph)

status:=Instantiate

This evolving algebra transition simply �nds the supercombinator de�nitions
to be used later and the redex. A copy of the body of the scdef will be
instantiated by the arguments made from the redex.

Here we search the graph for the outermost left redex. We also need the
supercombinator de�nition named by the root symbol in the redex. However,
we do not use the evolving algebra to specify that we want the outermost
left redex as the next redex and how to �nd the root symbol of the redex at
this level of speci�cation.
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6.3.2 Reduce the redex expression

if status=Instantiate

then

result:=instantiate(get_scbody(scdef),substlist)

WHERE substlist=make_substlist(args,params)

WHERE params=get_params(scdef)

args=make_args(redex)

status:=Update

A copy of the body of the supercombinator de�nition is instantiated by the
arguments made from the redex expression. We need make a list of substi-
tution where the parameters are taken from the supercombinator de�nition
and the arguments are made from the redex.

The instance created is called the result of the reduction.

6.3.3 Prepare for the next reduction step

if status=Update

then

curr_graph:=update_graph(result)

The last step updates the graph with the result of reduction. We do not
say how the update is performed. The result of the reduction may either be
copied into the graph without replacing the redex or the result may replaces
the redex in the graph.

6.4 The States of the Evaluator

In the following sections we will specify an interpreter able to evaluate both
a graph and sequences of G-machine instructions.

In this section we will describe the structure of the machine which eval-
uates the supercombinators. In addition we will specify those part of the
initial state which is not made in the compilation process.

We will also brie�y mention the initial values of the components of the
state.

6.4.1 The Structure of the Reduction Machine

The evaluator can bee seen as a state transitions system. The state consists
of the following components:

A stack of instructions.

An address stack.

A dump stack.

A Graph.

The globals.
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6.4.2 The Components of the State

In this subsection we will describe the components of the state and the initial
state. The setting of initial value which is not performed at compile time
will be described in section 6.6.

The Graph

The graph is represented by the function graph, which given an address
returns a node.

An interior node have pointer to its childs. A pointer to a child is given
as an address to the child. Attributes such as types and values of a node is
associated with each node through functions.

The initial graph is made by the compiler.
In addition a simple piece of graph consisting of a supercombinator name

node to the main supercombinator has to be set.

The Globals

The globals consists of all supercombinator names, each name associated to
the address of the supercombinator in the graph. The globals are given by
two functions get_addr_from_globals and get_name_from_globals. The
function get_addr_from_globals returns an address to a node in the graph,
if a name of a supercombinator is given. The function get_name_from_globals
returns the name of the supercombinator if an address to a supercombinator
is given.

The globals are made by the compiler.

The Dump

The dump is a stack of address stacks. The initial value of the dump is set
to the empty stack.

The Instruction Stack

The instruction stack is set to the the instruction �Egraph� as its initial
value. This instructions sets the evaluator to perform the reduction on a
graph.

The Address Stack

The address stack is set to the address of initial supercombinator name node
on the graph.

6.4.3 The Modes of the Evaluator

Since our evaluator are able to evaluate both compiled instructions and the
graph on the heap, the evaluator operates in two modes.

1. Evaluate the graph.

97



2. Evaluate a sequence of instructions which builds the graph.

If the instruction at the top of the instruction stack is �Egraph� the
evaluator is in the graph mode. If some other instruction appear on the
top of the instruction stack, the evaluator turns to the mode of executing
instructions.

We do use the special instructions �Egraph� to mark the graph mode
instead of using the empty code stack for the following reasons:

1. If we use the empty code stack as a condition for changing from in-
struction mode evaluation mode, then we have to make the require-
ment that the �Unwind� instruction always is the last instruction at
the bottom of the stack.

2. We do not want to exclude the use the empty instruction stack as one
of the termination condition of the evaluation process.

6.5 The Detailed Speci�cation of a Reduction Ma-

chine

We will in the subsequent sections give a detailed speci�cation of the reduc-
tion machine. The speci�cation will describe an graph reduction machine.

6.5.1 The Pieces of the Graph

All pieces of the graph which represent compiled de�nition of supercombina-
tors are part of the graph state. None of those pieces are allowed to change
during the evaluation. Copies of those pieces is made when needed.

But we may permit new de�nition to be added to the graph state, if we
want to implement an extensions to the evaluator such that new de�nition
may be constructed and run at evaluation time.

The root of each piece of the graph which represents a supercombinator
de�nition is a supercombinator de�nition node. This node will have an
application node as its only son. This application node is the root of the
subgraph which represents the body of the supercombinator de�nition.

The piece of graph which the evaluator is allowed to change, is the in-
stance constructed in a previous reduction step. The redex to reduce may
be part of this graph or may be the entire old instance. The redex will be
replaced by a new instance of the supercombinator de�nition named by the
root symbol of the redex. The main task of the evaluator is to create such
new instances to replace a redex.

This piece of graph representing an instance will consists of application
nodes as interior node and number nodes, local variable nodes and super-
combinator name nodes as leaf nodes.

An application node will have pointers to exactly two sons. The �rst son
points to a subgraph representing the �function� expression to be applied.
The second son represent the �argument� expression to be applied upon.

The leaf nodes has the property as described below:
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� A number node has a number.

� A supercombinator name node has a name of a supercombinator de�-
nition.

In the supercombinator de�nition pieces of graph we will �nd a third
type of leaf node, a local variable name node. This node contains a name
of a local variable given as one of the parameter in the supercombinator
de�nition. When building an instance all local variables nodes are replaced
by its correspondent arguments found in the redex.

6.5.2 Description of the Reduction Machine

The speci�cation which follows can be seen as a detailed abstract speci�ca-
tion. We do not try to optimize the this �abstract� machine.

Set the Initial Values

The initial values of the address stack, the dumpstack and the instruction
stack is set.

Find the Symbol of the Root of the Redex

The �rst step is to �nd the root symbol of the redex. The root symbol of
the redex is the name of the supercombinator de�nition which will be used
in creating a instance to replace the redex. The root symbol of the redex
will also be used to describe a primitive, when we describe how to deal with
primitives in a subsequent chapter.

In order to �nd the root symbol we traverse down the leftmost chain of
the graph until we �nd a node which is not an application node.

Find the Root of the Redex

I the leaf node found has a name of a supercombinator we look up the
numbers of parameters, n, in the supercombinator de�nition node. Then we
traverse up to application number n from the leaf node. This application
node holds the subgraph which represents the redex.

On the way up we use the opportunity to make an substitution array,
where we store the parameter variables in the supercombinator de�nition
and the correspondent arguments found in the subgraph representing the
redex.

Creating a New Instance

Next a new instance is made by copying the piece of the graph representing
the supercombinator de�nition and substitute every occurrence of a local
variable node by the subgraph representing the correspondent arguments
from the redex.
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The Update

After a new instance is build we arrange the address stack such that the
address on the top of the stack points to the newly created instance replacing
the redex.

This update may also change the address of the redex to point to the
new instance, but needs not do so.

6.5.3 The Signature

% Address stack

root_of_the_redex: TADDR

root_of_the_instance: TADDR

curr_sc_def_addr: TADDR

main_sc_def_name: NAME

curr_params: NAME*

curr_arity: NUMBER

addr_stack: TADDR*

empty_addr_stack: TADDR*

length_addr_stack: TADDR* --> NUMBER

top_addr: TADDR* --> TADDR

push_addr: TADDR x TADDR* --> TADDR*

push2_addrs: TADDR x TADDR x TADDR* --> TADDR*

pop_addr: TADDR* --> TADDR*

pointer_to_def: TADDR --> TADDR

finished: TADDR --> BOOL

% The graph

graph: TADDR --> NODE + SCOBJ

node_child: NUMBER x NODE --> TADDR

node_type: NODE --> TYPE

node_sc_name: NODE --> NAME

node_num: NODE --> NUM

node_loc_var_name: NODE --> NAME

node_params: NODE --> NAME*

number_of_params: NODE --> NUMBER

left_branch: NUMBER

right_branch: NUMBER

% Making the substitution list

counter: NUMBER

get_subst_arg_addr: NAME --> ADDR

get_param_var: NUMBER x NAME* --> NAME

% The globals

get_addr_from_globals: NAME --> TADDR

% Get the substitution value

get_subst_value: ADDR --> SCOBJ

copy_subst_value: ADDR --> SCOBJ

% Perform the Update

set_update: TADDR x TADDR* --> TADDR*
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% Instructions

egraph_instr: INSTR

instruction_stack: INSTR*

make_g_code: INSTR --> INSTR*

get_operator: INSTR --> OPERATOR

% The dump stack

dump_stack,

empty_dump_stack: DUMP*

% The status

status: STATUS

The Abbreviations

sc_def_addr==

get_addr_from_globals(node_sc_name(graph(top_addr(addr_stack))))

current_left_child_addr==

node_child(left_branch,graph(top_addr(addr_stack)))

current_argument==

node_child(right_branch,graph(top_addr(pop_addr(addr_stack)))

current_node==graph(top_addr(addr_stack))

curr_def_node==graph(pointer_to_def(top_addr(addr_stack))

subst_val_address==get_subst_value_addr(node_loc_var_name(curr_def_node))

6.6 Set the Initial value of the State

6.6.1 The Evolving Algebra Speci�cation

if status=Initial

then

% Set the initial value of the dump stack.

dump_stack:=empty_dump_stack

% Sets the value of some zero-arity functions.

left_branch=1

right_branch=2

status=Unwind

EXTEND INSTR by temp(INSTR)

TADDR by temp(TADDR)

NODE by temp(NODE)

% Make the special Egraph instruction

get_operator(temp(INSTR)):=Egraph

egraph_instr:=temp(INSTR)

% Set the initial value of the instruction stack

instruction_stack:=make_g_code(temp(INSTR))

% Make the initial redex.

graph(temp(TADDR):=temp(NODE)

node_type(temp(NODE):=SCName

node_sc_name(temp(NODE):=main_sc_def_name
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% Make the initial addr_stack

addr_stack:=push_addr(temp(TADDR),empty_addr_stack)

ENDEXTEND

status=Unwind

Here we specify in details how to set the initial values of the components
of the state which is not set during the compilation process.

The initial values of the address stack, the dumpstack and the instruction
stack is set in the speci�cation above.

We provide initial values for the following components of the stack:

The instruction stack The initial instruction is set to single instruction
�Egraph�, which sets the initial mode to evaluate the graph. The
supercombinator de�nition is supposed to be in form of a graph.

the address stack The initial address stack is set to the address of the to
the node containing the main supercombinator de�nition.

The dump stack The dump stack is set to be empty.

The name of the main supercombinator de�nition are set at compile
time. The address of the supercombinator de�nition node can be found
using the name of the supercombinator de�nition.

6.7 The Evolving Algebra Speci�cation of the Un-

winding and Making a Substitution List

6.7.1 Find the Redex of the Graph

if node_type(graph(top_addr(addr_stack)))=APnode

& status=Unwind

then

addr_stack:=push_addr(current_left_child_addr,addr_stack)

if status=Unwind

& node_type(graph(top_addr(addr_stack)=Num

then

result:=nodenum(graph(topaddr(addrstack)))

status:=Normal-form

Here we specify the traversal down the left branch on the graph. When
we hit a node which is not an application node, the end of the left branch
is reached.

If the leaf node is a supercombinator name node we have hit the name
of a supercombinator de�nition. We look up the supercombinator de�nition
node.

The supercombinator de�nition node may be of the type Supercomb or of
the type Global. If the supercombinator de�nition node is of type Supercomb
the node is the root of a supercombinator de�nition graph. If the type of the
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supercombinator de�nition node is of type Global the node has an compiled
instruction sequence used to build a supercombinator de�nition graph.

Here we give the speci�cation for dealing with a compiled supercombi-
nator de�nition graph. The speci�cations for using compiled instructions
sequences is given below (See 6.12).

if node_type(graph(top_addr(addr_stack)=SCName

& node_type(graph(sc_def_addr))=Supercomb

& gt(length_addr_stack(addr_stack),node_num_params(graph(sc_def_addr)))

& status=Unwind

then

% Find the address to the node sc-def

curr_sc_def_addr:=sc_def_addr

% Find the parameter list

curr_params:=node_params(graph(sc_def_addr))

% Find the arity of the sc-def

curr_arity:=number_of_params(graph(sc_def_addr))

status:=Make-substs-init

If the supercombinator de�nition node is the root of a supercombinator
de�nition graph, we get the address, parameter list and the arity of the
supercombinator de�nition.

6.7.2 Make the List of Substitutions

if status=Make-subst-init

then

counter:=0

status:=Make-subst

if status=Make-subst

& lt(counter,curr_arity)

then

get_subst_value_addr(get_param_var(add(counter,1),curr_params)):=

current_argument

addr_stack:=pop_addr(addr_stack)

counter:=add(counter,1)

Here we specify the traversal up the left branch of the graph the number
of times given by the arity of the supercombinator. The application node
we get at the end of the traversal is the root of the redex.

When traversing up the graph, the substitution list is made. The sub-
stitution list constists of pairs of local variable and address to each of the
arguments found in the redex.

if status:=Make-subst

& counter=curr_arity

then

root_of_redex_addr:=top_addr(addr_stack)

status:=Init-instance
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When the traversal up the graph is �nished, we know the application
node which is the root of the redex. The pointer to the root of the redex is
saved.

6.8 Speci�cation of How to Build a New Instance

In this section we specify how to build an instance of the supercombinator
de�nition. Since the de�nition may be used to build more than one instance
we always make a new copy of the body of the de�nition.

All occurrence of the local variables in the copy of the body of the super-
combinator de�nition are substituted by the correspondent arguments from
the redex.

The build process starts with the root node of the body of the super-
combinator and proceeds in a top down style until the graph representing
the body of representation is build.

6.8.1 A Recursive De�nition of the Building Process

Below we give a recursive de�nition of the build process.

build-instance(node)

if application(node)

then

new-left-child:=build-instance(left-branch(node)

new-right-child:=build-instance(right-branch(node))

new-node:=mkap-node(new-left-address,new-right-address)

else

if local-variable(node)

new-node:=substitute(argument,local-variable,node)

else

new-node:=build-leaf-node

fi

Note: Here it is also possible to use Extended Evolving Algebra to express

the recursive build process (See Chapter 8).

6.8.2 The Build Process Described as Iterations

The process of building is described as an iterations using evolving alge-
bra. We are building an graph which represents the new instance. The
body in the current supercombinator de�nition are copied. All local vari-
ables correspondent to the parameters in the supercombinator de�nition are
substituted for the correspondent arguments in the redex.

So the basic operation we have to perform is as following:

� If an application node is found, build an copy of this node with pointers
to its two sons.

� If a number node is hit, build a copy of this node.
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� If a supercombinator name node is found, build a copy of this node.

� If a local variable node is found, then substitute the correspondent
redex argument expression for the local variable.

In addition it is necessary to use a stack of pointers to keep track of the
build process. If the graph is copied from the super de�nition graph the
build process will be �top down�.

We will use compiled instructions in 6.12 and 6.13 to build instances. In
this case it the build is performed �bottom up�.

The speci�cations below gives quite many details. It would have been
possible to add some less detailed evolving algebra speci�cations. The author
consider writing such speci�cation in this particular case, more or less as a
duplication of the recursive description given above.

6.8.3 Common Abbreviations

The current_node is the current node in the instance we are building. The
curr_def_node is the correspondent node in the supercombinator de�nition
graph.

6.8.4 Starts the Build of the New Instance

Set the Start Values

if status=Init-instance

then

EXTEND TADDR by temp(TADDR)

WITH

pointer_to_def(temp(TADDR)):=

node_child(1,graph(curr_sc_def_addr))

addr_stack:=push_addr(temp(TADDR),addr_stack)

root_of_instance:=temp(TADDR)

finished(temp(ADDR)):=False

ENDEXTEND

status=Build-instance

This evolving algebra speci�cation sets the start values for the build of
the new piece of graph. We do the following steps:

1. Make an address which is going to point to the root of the instance we
are creating.

2. Find the root of the body of the supercombinator de�nition. The root
of the body is the only son of the supercombinator de�nition node.

3. Make an link from the pointer of the instance to the root of the body
of the supercombinator de�nition.

4. Push the address of the new instance on the top of the address stack.

5. Make a global pointer to the address of the new instance.

6. Update the status.
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Creating an Application Node

if status=Build-instance

& not(finished(top_addr(addr_stack))

& node_type(curr_def_node)=APnode

then

finished(top_addr(addr_stack)):=True

EXTEND TADDR by temp(TADDR,1),temp(TADDR,2)

NODE by temp(NODE)

WITH

% Make the application node.

current_node:=temp(NODE)

node_type(temp(NODE)):=node_type(curr_def_node)

% Make pointers to the two sons of the application node.

node_child(left_branch,temp(NODE)):=temp(TADDR,1)

node_child(right_branch,temp(NODE)):=temp(TADDR,2)

% Mark the pointers.

finished(temp(ADDR,1):=False

finished(temp(ADDR,2):=False

% Create links to the correspondent supercombinator definition

% pointers.

pointer_to_def(temp(TADDR,1)):=

node_child(left_branch,curr_def_node)

pointer_to_def(temp(TADDR,2)):=

node_child(right_branch,curr_def_node)

% Push the pointers on the address stack.

addr_stack:=

push2_addrs(temp(TADDR,2),temp(TADDR,1),addr_stack)

ENDEXTEND

Here we specify how a copy of an application node is made:

� Creates an application node.

� Creates two pointers to the two sons of the application node.

� Mark the pointers as not �nished.

� Create links from the pointers of the application node to the correspon-
dent pointers in the supercombinator de�nition piece of the graph.

� Push the pointers to the two sons of the application node on the ad-
dress stack.

� Mark the pointers to the application node as �nished.

A Number Node

if status=Build-instance

& not(finished(top_addr(addr_stack))

& node_type(curr_def_node)=Num
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then

finished(top_addr(addr_stack)):=True

EXTEND NODE by temp(NODE)

current_node:=temp(NODE)

node_type(temp(NODE)):=node_type(curr_def_node)

node_num(temp(NODE)):=node_num(curr_def_node)

ENDEXTEND

Here we specify how a number node is created:

� The number node is made.

� The number on the correspondent number node in the supercombina-
tor de�nition piece of graph is set on the number node.

� The pointer to the number node is marked as �nished.

A Supercombinator Name Node

if status=Build-instance

& not(finished(top_addr(addr_stack))

& node_type(curr_def_node)=SCname

then

finished(top_addr(addr_stack)):=True

EXTEND NODE by temp(NODE)

current_node:=temp(NODE)

node_type(temp(NODE)):=node_type(curr_def_node)

node_sc_name(temp(NODE)):=node_sc_name(curr_def_node)

ENDEXTEND

Here we specify how a supercombinator name node is made:

� The supercombinator name node is made.

� The name on the correspondent supercombinator name node in the su-
percombinator de�nition piece of graph is set on the supercombinator
name node.

� The pointer to the number node is marked as �nished.

6.8.5 Replacing the Local Variable by the Substitution Value

The Transition

if status=Build-instance

& not(finished(top_addr(addr_stack))

& node_type(curr_def_node)=LVar

then

% Substituting.

finished(top_addr(addr_stack)):=True

graph(top_addr(addr_stack)):=

get_subst_value(subst_val_addr)
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The following steps are performed when replacing a local variable name
node by the piece of graph representing the correspondent arguments found
in the redex:

� The correspondent local variable node on the supercombinator de�ni-
tion piece of the graph is found.

� The argument from the redex correspondent to the local variable is
taken from the list of substitutions.

� The pointer from the application node is set to the substitution value
found.

� The pointer to the substitution is marked as �nished.

In the abstract speci�cation above we do not specify the details of how
to make the substitution value in the graph. It is possible to make a copy
of the argument to substitute for the local variable, or we can for every
distinct variable simply set a pointer to the subgraph representing graph to
be substituted for the variable.

The abbreviation subst_val_addr is specify the address to the subgraph
to be substituted for the variable. This address is found in the substitution
list.

The function get_subst_value is the abstraction for getting the peace
of graph to be substituted for the variable.

6.8.6 Pop Finished Pointers of the Address Stack

if status=Build-instance

& finished(top_addr(addr_stack))

& ne(top_addr(addr_stack),root_of_instance)

then

addr_stack:=pop_addr(addr_stack)

When a pointer on the address stack is on the top of the address stack
and marked as �nished, it is popped of the address stack. The process of
making an instance is �nished when the root of instance appear at top of
the stack.

6.8.7 Finish the Reduction Step

if status=Build-instance

& finished(top_addr(addr_stack))

& top_addr(addr_stack)=root_of_instance

then

status:=Update

When the instance is made the status is changed to Update.
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6.9 The Update

The update may be performed by updating the root of the redex or simply
by setting the address on top of the stack to points to the new instance.

6.9.1 Specify the Update

if status=Update

then

addr_stack:=set_update(root_of_instance,addr_stack)

status:=Unwind

We do not want to specify how we treat the pointer to the redex. There-
fore all details aboutmaking the top elements of the address stack are hidden
by use of the function set_update in this abstract speci�cation.

6.10 Representation of the Supercombinator Def-

inition

Here we discuss some type of graph which represents the instance.

6.10.1 A Tree

We can not share occurrence of local variables or substitution values in a tree
structure. So use of a tree structure implies that we copy a lot of arguments
to be substituted for the local variables when an instance is created.

if status=Build-instance

& not(finished(top_addr(addr_stack)))

& node_type(curr_def_node)=LVar

then

finished(top_addr(addr_stack)):=True

graph(top_addr(addr_stack)):=

copy_subst_value(subst_val_addr)

Here we describe the substitution as making a copy of the argument
to substitute for the local variable. We do not want to specify details
of how to build this part of the subgraph. Hence we use the function
copy_subst_value to make the copy of the graph.

An Acyclic Graph

When we use an acyclic graph we can share occurrences of a distinct variable
and the correspondent substitution value.
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The Transition

if status=Build-instance

& not(finished(top_addr(addr_stack))

& node_type(curr_def_node)=LVar

then

% Set the pointe to the substitution value.

finished(top_addr(addr_stack)):=True

graph(top_addr(addr_stack)):=graph(subst_val_addr)

The task of substituting the correspondent argument for the local vari-
able is simply to set the pointer to point to the subgraph which represents
the argument.

6.11 Perform the Update

We can perform the update in to ways. We can leave the result of the
reduction as a piece of graph without updating the pointer of the redex.

The other way is updating the pointer of the redex, and so discarding
the redex. Updating the pointer of the redex prevents the same reduction
to be performed more than one time.

6.11.1 Make a Copy of the Result of the Reduction

if status=Update

then

addr_stack:=

push_addr(root_of_instance,pop_addr(pop_addr(addr_stack)))

status:=Unwind

Here we set the top of the address stack to the newly created instance.
The pointer to the redex is pushed of the address stack, but the root of the
redex may be pointed to by another pointer.

6.11.2 Update the Root of the Redex

if status=Update

then

EXTEND NODE by temp(NODE)

WITH

% Update the root of redex by the new instance.

node_type(temp(NODE)):=Ind

node_child(1,temp(NODE)):=root_of_instance

graph(root_of_redex_addr):=temp(NODE)

addr_stack:=

push_addr(root_of_redex,pop_addr(pop_addr(addr_stack)))

status=Unwind
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An indirection node which points to the new instance is created. The
pointer to the root of redex is set to this new indirection node. In this way
we overwrite the root of the redex and prevents this reduction to take place
anymore.

Find the Root Symbol of the Redex

When we traverse the leftmost branch of the graph in order to �nd the root
symbol of the redex, we have to deal with the indirection node introduced
above.

The Transitions

if node_type(graph(top_addr(addr_stack)))=Ind

then

addr_stack:=push_addr(1,pop_addr(addr_stack))

The transition speci�ed below permits the traversal through the indirec-
tion node.

6.12 A Compiled sequence of instructions

A sequence of instructions are executed and the new instance of the super-
combinator de�nition to replace the redex is build.

The instruction sequences are compiled such that the build of the graph
representing the new instance is performed in a bottom up style, starting
with the leaf node to the left in the graph. The root node of the body of
supercombinator de�nition is the last node made.

The transitions below show how each of the G-code instructions is eval-
uated.

The following G-code instructions are treated below:

� The Pushglobal instruction, which makes a name node.

� The Pushint instruction, which makes a number node.

� The Push instruction, which push a new address on top of the stack.

� The Mkap instruction, which makes an application node.

� The Slide instruction, pops addresses (below the top address) of from
the stack.

� The Unwind instruction, which makes an address stack to the graph,
which is to be evaluated.

� The Update instruction, which performs update of the redex.

� The Pop instruction, which pops addresses from the address stack.
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6.12.1 Common Functions and Signature

Here we list common functions, signature and abbreviations.

The Signature

% Address stack

addr_stack: TADDR*

top_addr: TADDR* --> TADDR

get_nth_addr: NUMBER x TADDR* --> TADDR

push_addr: TADDR x TADDR* --> TADDR*

curr_glob_def_addr: TADDR

curr_sc_def_addr: TADDR

pop_addr: TADDR* -->TADDR*

pop_n_addrs: NUMBER x TADDR* --> TADDR*

length_addr_stack: TADDR x NUMBER

% The graph

graph: TADDR --> NODE + SCOBJ

node_child: NUMBER x NODE --> TADDR

node_type: NODE --> TYPE

node_sc_name: NODE --> NAME

node_num: NODE --> NUMBER

def_arity: NODE --> NUMBER

curr_params: NAME*

curr_arity: NUMBER

left_branch: NUMBER

right_branch: NUMBER

% The code stack

instr_stack,

finished_code: INSTR*

top_instr: INSTR* --> INSTR

pop_instr: INSTR* --> INSTR*

concat_code: INSTR* x INSTR* --> INSTR*

get_operator: INSTR --> OPERATOR

get_operand: INSTR --> NAME + TADDR

% The globals

get_addr_from_globals: NAME --> TADDR

% The status

status: STATUS

% Add two numbers

add: NUMBER x NUMBER --> NUMBER

Abbreviation

sc_def_addr==

get_addr_from_globals(node_sc_name(graph(top_addr(addr_stack))))

arg_addr==

node_child(right_branch,graph(get_nth_addr

(nth_arg_app_node,addr_stack)))
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nth_arg_app_node==add(get_operand(1,top_instr(instr_stack)),2)

slide-number==add(get_operand(1,top_instr(instr_stack)),1)

current_node=graph(top_addr(addr_stack))

update-number==add(get_operand(1,top_instr(instr_stack)),1)

pop-number==get_operand(1,top_instr(instr_stack))

ind_addr==node_child(1,graph(top_addr(addr_stack)))

6.12.2 Initialize the Mode to Evaluate Compiled Instruc-

tions

If the mode initially is set to execute compiled instructions, the instruction
stack has to be set to the instruction sequence:

Pushglobal <main-supercombinator-name>

Unwind

and the constant status has to be set to Exec-code. This mode may be
set at the end of compilation of the supercombinator de�nitions.

6.12.3 Change the Mode of Evaluation to Evaluate Compiled

Instruction

if node_type(graph(top_addr(addr_stack)))=SCName

& node_type(graph(curr_sc_def_addr))=Global

& gt(length_addr_stack(addr_stack),def_arity(graph(curr_sc_def_addr)))

& status=Unwind

then

% Get the instruction list

instr_stack:=concat_code(finished_code(graph(curr_sc_def_addr)),

instr_stack)

status:=Exec-code

Assume we are in a mode of evaluating supercombinator de�nitions
which is stored as graphs. If the supercombinator de�nition to be evalu-
ated next consists of compiled instructions, the supercombinator de�nition
node will be of type Global. Then we change the mode of evaluation to
execute the sequence of compiled instructions. This instruction sequence
attacked to the node makes a new instance of the supercombinator body
when executed.

6.12.4 The Pushglobal Instruction

if status=Exec-code

& get_operator(top_instr(instr_stack))=Pushglobal

then

EXTEND TADDR by temp(TADDR)

NODE by temp(NODE)

WITH

% Make the supercombinator name node.

graph(temp(ADDR)):=temp(NODE)
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node_type(temp(NODE)):=SCname

node_sc_name(temp(NODE)):=get_operand(1,top_instr(instr_stack))

addr_stack:=push_addr(temp(TADDR),addr_stack)

ENDEXTEND

instr_stack:=pop_instr(instr_stack)

The execution of the pushglobal instruction makes a name node in the
graph. This name may be the name of a supercombinator de�nition node
or the name of a global node to be used later in the next reduction step.

A supercombinator de�nition node is the root of a piece of graph which
contains a supercombinator de�nition. A global node contains an instruction
sequence which can be used to build an instance of the supercombinator
de�nition body. The global nodes and the supercombinator de�nition nodes
are stored in a table where the name of the node is the key to the pointer
of the node.

6.12.5 The Pushint Instruction

if status=Exec-code

& get_operator(top_instr(instr_stack))=Pushint

then

EXTEND TADDR by temp(TADDR)

NODE by temp(NODE)

WITH

% Make the number node.

graph(temp(ADDR)):=temp(NODE)

node_type(temp(NODE)):=Num

node_num(temp(NODE)):=get_operand(1,top_instr(instr_stack))

addr_stack:=push_addr(temp(TADDR),addr_stack)

ENDEXTEND

instr_stack:=pop_instr(instr_stack)

This evolving algebra transition makes a number node.

6.12.6 The Push Instruction

if status=Exec-code

& get_operator(top_instr(instr_stack))=Push

then

addr_stack:=push_addr(arg_addr,addr_stack)

instr_stack:=pop_instr(instr_stack)

The address to the argument n of the redex is pushed on top of the
address stack.

6.12.7 The Mkap Instruction

if status=Exec-code

& get_operator(top_instr(instr_stack))=Mkap
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then

EXTEND TADDR by temp(TADDR)

NODE by temp(NODE)

WITH

% Make the application node.

graph(temp(ADDR)):=temp(NODE)

node_type(temp(NODE)):=APnode

% Make pointers to the two sons of the application node.

node_child(left_branch,temp(NODE)):=get_nth_addr(1,addr_stack)

node_child(right_branch,temp(NODE)):=get_nth_addr(2,addr_stack)

% Update the address_stack

addr_stack:=push_addr(temp(TADDR),pop_n_addrs(2,addr_stack))

instr_stack:=pop_instr(instr_stack)

ENDEXTEND

Here an application node is made.

6.12.8 The Slide Instruction

if status=Exec-code

& get_operator(top_instr(instr_stack))=Slide

then

addr_stack:=push_addr(top_addr(addr_stack),

pop_n_addrs(pop-number,addr_stack))

instr_stack:=pop_instr(instr_stack)

This transition pops n elements below the top address from the address
stack. The top address is retained.

6.12.9 The Unwind Instruction

The transitions below unwinds the stack until a supercombinator name or
a number node is hit. If a number node is hit, then the normal form is
reached, and the evaluation halts.

if status=Exec-code

& get_operator(top_instr(instr_stack))=Unwind

& node_type(current_node)=APnode

then

addr_stack:=

push_addr(node_child(left_branch,current_node),addr_stack)

This evolving algebra transition unwinds an application node.

if status=Exec-code

& get_operator(top_instr(instr_stack))=Unwind

& node_type(current_node)=Num

then

status:=Normal-form

instr_stack:=pop_instr(instr_stack)

result:=node_num(current_node)
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If we hit a number node when executing the Unwind instruction, then we
have reached the normal form. We get the value attacked to the number
node.

if status=Exec-code

& get_operator(top_instr(instr_stack))=Unwind

& node_type(graph(current_node)=SCname

then

curr_glob_def_addr:=get_addr_from_globals(node_sc_name(current_node))

instr_stack:=pop_instr(instr_stack)

status=Exec-SCdef

A supercombinator name node is found. The next part of the instruction
may be to retrieve to instruction sequence for the next compiled supercombi-
nator de�nition stored in the global node, or to change the mode to evaluate
a supercombinator de�nition stored as a piece of graph.

6.12.10 Push New Instruction Sequence on Instruction Stack

if status-Exec-SCdef

& node_type(graph(curr_glob_def_addr))=Global

& gt(length_addr_stack(addr_stack),def_arity(graph

(curr_glob_def_addr)))

then

instr_stack:=

concat_code(finished_code(graph(curr_glob_def_addr)),instr_stack)

Here a new instruction sequence from the global node is put on the
address stack. This instruction sequence make a new instance of the super-
combinator body, when executed.

6.12.11 Change to graph mode

if status-Exec-SCdef

& node_type(graph(curr_glob_def_addr))=Supercomb

& gt(length_addr_stack(addr_stack),def_arity(graph

(curr_glob_def_addr)))

then

curr_sc_def-addr:=curr_glob_def_addr

curr_params:=node_params(graph(curr_glob_def_addr))

curr_arity:=def_arity(graph(curr_glob_def_addr))

status:=Make-subst-init

Here a supercombinator de�nition node is found and the graph mode is
changed to perform reduction on the graph.

6.13 Update the Redex

6.13.1 The Update Instruction

if status=Exec-code
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& get_operator(top_instr(instr_stack))=Update

then

EXTEND NODE by temp(NODE)

WITH

graph(get_nth_addr(update-number,addr_stack)):=temp(NODE)

node_type(temp(NODE)):=Ind

node_child(1,temp(NODE):=top_addr(addr_stack))

ENDEXTEND

addr_stack:=pop_addr(addr_stack)

instr_stack:=pop_instr(instr_stack)

This transition performs the update of the redex. An indirection node to
the result of the reduction replaces the redex in the graph.

6.13.2 The Pop Instruction

if status=Exec-code

& get_operator(top_instr(instr_stack))=Pop

then

addr_stack:=pop_n_addrs(pop-number,addr_stack)

instr_stack:=pop_instr(instr_stack)

Here we pop o� n address from the address stack.

6.13.3 The Unwind Instruction

if status:=Exec-code

& get_operator(top_instr(instr_stack))=Unwind

& node_type(graph(top_addr(addr_stack)))=Ind

then

addr_stack:=push_addr(ind_addr,pop_addr(addr_stack))))

The Unwind instruction pass through the indirection node.
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Chapter 7

Strict and Lazy Arguments

In this chapter we will extend the evaluator to handle primitive expressions.
That means that we introduce the notation of strict arguments and param-
eters. Some arguments given to the supercombinator or primitive may be
required to be evaluated before the primitive or supercombinator is applied.

The strategy when evaluating expressions consisting only of supercom-
binators turned out to be quiet simple. We were able to treat all arguments
as lazy and thus postpone the evaluation of the argument expression. That
means the supercombinator expression was always instantiated before any
of its arguments was evaluated. So the normal order reduction to weak head
normal form could be used. This way of evaluation is described in chapter 6
above.

A primitive expressions consists of a operator which may have some
parameters. To be able to apply certain primitives some of its arguments
which corresponds to the parameters may be required to be in weak head
normal form. For instance the �add� primitive require all its arguments to
be numbers.

Some other of the arguments given to a primitive may be required to be
lazy.

As an example of arguments required to be lazy consider the �if� (or
�cond�) primitive. We do not want all arguments given to �if� primitive
to be evaluated before the primitive is applied. If the second and third
arguments given to the �if� primitive were treated as strict arguments, then
it would be impossible use the �if� primitive to control the evaluation of an
expression. We would not be able to use the �if� primitive to stop a recursive
call because all arguments would be evaluated before the �if� primitive could
be applied.

Another example where lazy evaluation may be required is the expression
below given as a non-strict argument to a supercombinator or a primitive:

((a+ b)=c)

This expression computes to a number provided that the variable c does
not get zero as its value.

Since the division will fail in case the c becomes zero it may be necessary
to postpone the evaluation of the expression as long as possible. Hence a
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primitive or supercombinator expression which do not evaluate the expres-
sion above if c is zero, will work if the lazy evaluation strategy is employed.

Some of the arguments given to the primitive may be strict. If such
arguments are given to a supercombinator and is passed as strict arguments
to a primitive in the supercombinators body, it makes no sense to postpone
the evaluation. Then we can optimize the evaluation and evaluate such
arguments to weak head normal form before evaluating the supercombinator
which takes the the arguments.

Thus the notation of strict and lazy arguments apply both to the super-
combinators and primitives.

So introducing primitives changes the evaluation strategy. We have to
evaluate some arguments before applying the primitive and postpone the
evaluation of the non-strict arguments.

7.1 Evaluate the Primitive Expression

A primitive expressions consists of a built-in operator and arbitrary numbers
of arguments. Some or all arguments given to the primitive needs to be
evaluated before the built-in operators are applied. For instance the multiply
operator needs both of its arguments evaluated to numbers.

Thus the following steps are required to evaluate a primitive:

� Build the (graph) representation for the primitive expression.

� Evaluate all strict arguments.

� Apply the primitive operator.

7.1.1 The Recursive Process of evaluating the arguments

The process of evaluating the primitive operator can be expressed as the
following recursive procedure:

Evaluate(expression)

if whnf(expression)

then

return expression

else-if primitive(expression)

n:=0

for n < arity_of_primitive

do

if strict(argument(n))

Evaluate(argument(n))

n:=n+1

od

compute_primitive(expression)

else-if supercombinator(expression)

n:=0

for n < arity_of_primitive
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do

if strict(argument(n))

Evaluate(argument(n)

n:=n+1

substitute(argument(n),parameter(n))

od

reduce-sc(expression)

fi

Note: If we use Extended Evolving Algebra we could express the recursive

process of evaluating strict arguments directly (See chapter 8 for a discus-

sion).

7.2 Postpone the Evaluation of Strict Arguments

Before applying a primitive some or all arguments given to the primitive has
to be evaluated before the primitive can be applied.

We may choose to evaluate strict arguments only when required, and
postpone the evaluation of the strict argument as long as possible. We do not
perform any analysis to decide which subexpressions is going to be evaluated
later.

So we only require information about the arguments needed to be eval-
uated. Hence the only �analysis� performed is to �nd strict parameters of
the primitive and evaluate the strict arguments which corresponds to its
parameters.

7.2.1 The process of evaluation

The process of evaluation consists of the following steps:

� Unvind the Spine

� If a primitive symbol is found, then look up the required data about
the primitive.

� Get the arguments given to the primitive.

� Evaluate all arguments which corresponds to the primitives strict pa-
rameters.

� Apply the primitive by computing the function associated with the
primitive.

� Make the node holding the result of the computation.

The Spine

The unwinding of the spine (the leftmost branch in the graph) is performed
in the same way as for supercombinators. When we reach the leaf node
of the spine, we check if the leaf node contains a primitive symbol or a
supercombinator symbol. If a primitive symbol is found, we prepare for
applying the primitive.
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Evaluating Primitive Graph

Primitive symbol

Strict argument

Non strict argument

Non strict argument

Figure 7.1: After unwinding the primitive graph.

Evaluating Primitive Graph

Primitive symbol

Non strict argument

Non strict argument

Evaluated argument

(Ready to apply the primitive)

Figure 7.2: Just before computing the primitive expression.
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The Primitive Symbol at End of the Spine

From now on, we assume that a primitive symbol is attached to the leaf
node at end of the spine. That means that the top address on the address
stack points to the primitive node. The address stack will have pointers to
the root node of the primitive expression and all application nodes on the
spine. See �gure 7.1.

The Data About the Primitive

All arguments given to the primitive is associated with the spine. We have
associated the following data about the each primitive:

� The arity of the primitive operator.

� Which of the primitives arguments is strict.

� The function associated with the primitive.

Get the Lazy and Strict Arguments

Now, we need to look up all strict arguments and evaluate each of the
arguments before the primitive operator can be applied. The resulting graph
is shown in �gure 7.2.

Since the arguments may be complicated expressions, evaluation of the
arguments is a recursive process.

Apply the Primitive

After the evaluation of all arguments which corresponds to strict parameters
is performed, we apply the primitive. That means to compute the function
associated with the primitive, giving the arguments of the primitive to this
function.

The Result

The result of applying the primitive is stored in the node of right type. We
may also want to update the root of the redex with the result.

7.2.2 The Core Evolving Algebra Signature

The Evolving Algebra Code consists of the transitions needed to handle
primitives and evaluation of strict arguments.

The Signature

Defining the RESULT set.

RESULT=NUMBER+(CHAR*)+BOOL

% Functions on primitives.

primobj: PRIMOBJ
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prim_name: PRIMOBJ --> NAME

prim_operator: PRIMOBJ --> FUNCTION

prim_arity: PRIMOBJ --> NUMBER

prim_counter: PRIMOBJ --> NUMBER

prim_arg: PRIMOBJ x NUMBER --> NODE

prim_arg_list: PRIMOBJ --> NODE*

strict_params: PRIMOBJ --> BOOL*

required_types: PRIMOBJ --> TYPE*

% Apply the primitive.

apply-primitive: FUNCTION x NUMBER x NODE* --> RESULT

result_type: FUNCTION --> TYPE

% Get information about the parameters of the primitive.

is_strict_param: BOOL* x NUMBER --> BOOL

has_required_type: TYPE x TYPE* x NUMBER --> BOOL

% Functions on nodes.

is_strict_app_node: NODE --> BOOL

node_primitive_name: NODE --> NAME

node_primitive_function: NODE --> FUNCTION

node_type: NODE --> TYPE

node_result: NODE --> RESULT

node_child: NUMBER x NODE --> TADDR

node_arity: NODE --> NUMBER

is_in_whnf: NODE --> BOOL

strict_params_info: NODE --> BOOL*

required_types_info: NODE --> TYPE*

% Functions on the address stack.

addr_stack: TADDR*

graph: TADDR --> NODE

top_addr: TADDR* --> TADDR

pop_addr: TADDR* --> TADDR*

make_addr_stack: TADDR --> TADDR*

length_as: TADDR* --> NUMBER

% Functions on dumps

dump_stack: DUMP*

empty_dump_stack: DUMP* --> BOOL

addr_stack_dump: DUMP --> TADDR*

primobj_dump: DUMP --> PRIMOBJ

push_dump: DUMP x DUMP* --> DUMP*

pop_dump: DUMP* --> DUMP*

top_dump: DUMP* --> DUMP

% Computing numbers

decr1: NUMBER --> NUMBER
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7.2.3 Abbreviations

current_node:=graph(top_addr(addr_stack))

current_arg_node=

graph(node_child(right_branch,graph(top_addr(addr_stack))))

current_prim_arg_node=

graph(node_child(right_branch,graph(top_addr(pop_addr(addr_stack)))))

current_arg_pointer=

node_child(right_branch,graph(top_addr(addr_stack)))

primitive_definition_node=

graph(get_addr_from_globals(node_primitive_name(current_node)))

7.2.4 The Core Evolving Algebra Transitions

Reach weak head normal form

if status=Unwind &

in__in_whnf(current_node)

& dump_stack = empty_dump_stack

then

final_result:=node_value(curren_node)

status:=Weak-head-normal-form

fi

Here we reach the �nal weak head normal form since the dumpstack is
empty.

7.2.5 Restore the Dump

if status=Unwind &

is_in_whnf(current_node) &

dump_stack =/= empty_dump_stack &

type_of_dump_el(top_dump(dump_stack)) = Primobj

then

addr_stack:=addr_stack_dump(top_dump(dump_stack))

prim_obj:=prim_obj_dump(top_dump(dump_stack))

node_child(right_branch,graph(top_addr(pop_stack

addr_stack_dump(top_dump(dump_stack))))):=

top_stack(addr_stack)

dump_stack:=pop_dump(dump_stack)

fi

If we reach weak head normal form and �nd dump stack non-empty we re-
store the top element of dump stack and resume the process of the arguments
which was suspended.

We insert the node evaluated to weak head normal form, into the graph
after restoring the dump, so we can get it right, in the case where we do not
apply the update of the graph.
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Get the Primitive Operator

if

status=Unwind &

node_type(current_node)=PrimName &

length_as(addr_stack) > node_arity(current_node)

then

EXTEND PRIMOBJ by temp(PRIMOBJ)

WITH

obj_prim_name(temp(PRIMOBJ)):=node_primitive_name(current_node)

obj_prim_def_node(temp(PRIMOBJ)):=primdefnode;

% Initialize the counter

obj_prim_counter(temp(PRIMOBJ)):=1

obj_prim_arg_list(temp(PRIMOBJ)):=empty_prim_arg_list;

prim_obj:=temp(PRIMOBJ)

status:=Get-prim-args

ENDEXTEND

fi

After unwinding of the graph we may �nd a supercombinator name or a
primitive name in the leaf node of the spine. If the leaf node is a primitive
we prepare for evaluating the primitive.

A primitive object is made which consists of the primitive name, a prim-
itive node, a counter and (a placeholder for) the arguments.

Get the Ready Primitive Argument

if status=Get-prim-args &

obj_prim_counter(prim_obj) <=

node_arity(obj_prim_def_node(prim_obj)) &

is_strict_param(param_type(

obj_prim_counter(prim_obj),

node_param_info(obj_prim_def_node

(prim_obj)))) &

is_in_whnf(current_prim_arg_node) &

has_required_type(node_type(current_prim_arg_node),

(param_type(obj_prim_counter(prim_obj),

node_param_info(obj_prim_def_node

(priobj)))));

then

obj_prim_arg_list(prim_obj):=

pusharg(obj_prim_arg_list(prim_obj),

current_prim_arg_node)

obj_prim_counter(prim_obj):=incr1(obj_prim_counter(prim_obj))

addr_stack:=pop_addr(addr_stack)

fi

If the argument is in weak head normal form and has a type required by
the primitive, the node is given as one of the arguments to the primitive.
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Get the Non Strict Primitive Argument

if status=Get-prim-args &

obj_prim_counter(prim_obj) <= node_arity(obj_prim_def_node(prim_obj)) &

not(is_strict_param(param_type(obj_prim_counter(prim_obj))),

node_param_info(obj_prim_def_node(prim_obj)))

then

obj_prim_arg_list(prim_obj,prim_counter(prim_obj)):=

pusharg(obj_prim_arg_list(prim_arg_list),

current_prim_arg_node)

obj_prim_counter(prim_obj):=incr1(obj_prim_counter(prim_obj))

addr_stack:=pop_addr(addr_stack)

fi

If the argument is not required to be strict the node representing the
argument is placed in the primitive object.

Force the Evaluation of the Primitive Strict Argument

if status=Get-prim-args &

obj_prim_counter(prim_obj) <= node_arity(obj_prim_def_node(prim_obj)) &

& is_strict_param(param_type(obj_prim_counter(prim_obj))),

node_param_info(obj_prim_def_node(prim_obj))

is_in_in_whnf(current_prim_arg_node))

then

EXTEND DUMP by temp(DUMP)

addr_stack_dump(temp(DUMP)):=addr_stack

prim_obj_dump(temp(DUMP)):=prim_obj

type_of_dump_el(temp(DUMP)):=PrimObj

dump_stack:=push_dump(dump_stack,temp(DUMP))

addr_stack:=make_addr_stack(current_prim_arg_pointer)

ENDEXTEND

fi

If the argument is in a non strict form and a strict form is required by the
primitive, then the argument is evaluated. The address stack and primitive
object is placed on the top of the dump stack before the evaluation take
place.

7.2.6 Apply the Primitive Operator

if status=Get-prim-args &

obj_prim_counter(prim_obj) > node_arity(obj_prim_def_node(prim_obj))

then

prim_result:=

apply_primitive(obj_prim_name(prim_obj),

(reverse(obj_prim_arg_list(prim_obj)))

status:=Prim-result

fi
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After traversing up the spine to the root node of the primitive, the
primitive is applied.

if status=Prim-result &

type_of_result(node_result)=Pass-node

then

current_node:=result_value(prim_result)

status:=Unwind

fi

The result may be some part of the graph. If this is the case, we just let
the rootnode of the subgraph be the current node.

if status=Prim-result &

type_of_result(node_result)=Make-node

then

EXTEND NODE by temp(NODE)

WITH

node_value(temp(NODE)):=result_value(prim_result)

node_type(temp(NODE)):=type_of_node(prim_result)

current_node:=temp(NODE)

ENDEXTEND

status:=Unwind

fi

The result may be a computed number or data in some other form. Then
we make the node, and we set the current node to this node.

7.3 Handling Indirection Nodes

if prim_counter(prim_obj) > 0

& is_in_whnf(current_arg_node)

& is_ind_node(current_arg_node)

then

current_arg_pointer:=

node_child(1,current_arg_node)

fi

If an indirection node occurs it is discarded.

7.4 Too Lazy

7.4.1 Which part of an expression should be treated as strict?

We have seen that all strict arguments given to a primitive have to be
evaluated before the primitive can be applied.

What about non strict arguments? For instance we may look at the
�cond� primitive. It takes three arguments. The �rst arguments tests if the
second or third arguments are to be applied.
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In order to apply the �cond� primitive the �rst argument has to be
evaluated to a boolean value and is certainly a strict argument. Depending
on the value of the �rst argument either the second or the third argument
is going to be evaluated.

Since neither the second argument nor the third arguments needs to be
evaluated in order to apply the �cond� primitive both the second and third
arguments can be considered as lazy arguments.

That means that we may postpone the evaluation of the argument se-
lected when applying the �cond� operator.

On the other hand, after applying �cond� we know if the second or the
third argument is going to be evaluated. Hence we may choose for e�cience
reason not to postpone the evaluation of the selected argument given to the
�cond� operator. The second or third arguments may be huge expressions
which can be reduced to a simple expression (e.g. numbers).

The analysis to decide which part of an expression should be evaluated
as strict can be very complicated. Hence we do not specify how to perform
such analysis. We simply assume that the those parts of the expression
which should be evaluated is is annotated as strict.

So we simply add an evolving algebra transition to force annotated strict
arguments to be evaluated.

The evolving algebra transition for strict arguments given to the primi-
tive is shown above.

7.5 Strict Evaluation of Arguments Given to the

Supercombinator Expression

When we introduce primitives we also get the possibility that some parame-
ters of a supercombinator or some arguments given to the supercombinators
may be strict.

In case of strict parameters, the body of the supercombinator may use
primitives in such ways that some some of the expression substituted for
parameters will always be evaluated.

Wemay also annotate some of the application argument as strict. In such
case the de�nition of the supercombinator body does not imply strictness of
the parameters. Instead an particular application of the supercombinator
may cause some of the application arguments to be treated as strict.

In both case we assume that an strictness analysis is performed. Here we
will refrain from describing the strictness analysis and simply assume that
such analysis is done.

We choose to evaluate strict arguments just before substituting the the
formal parameter variable by the argument expression. So in addition to
keep the address stack on the dump we need to keep the state of the sub-
stitution on the dump. We will use the scobj as a placeholder to store the
state of the substitution process when strict argument is evaluated.
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7.5.1 Abbreviations

In addition to the abbreviations in 7.2.3 we de�ne the following abbreviation:

sc_definition_node=

graph(get_addr_from_globals(node_sc_name(current_node)))

current_sc_arg_node=

graph(node_child(right_branch,graph(top_addr(popstack(addr_stack)))))

current_sc_arg_pointer=

node_child(right_branch,graph(top_addr(popstack(addr_stack))))

7.5.2 The Signature

In addition to the signature de�ned in 7.2.2 we de�ne the following addition
to the signature:

% Node

node_sc_name: NODE --> NAME

% Primitive

scobj: SCOBJ

sc_name: SCOBJ --> NAME

strict_params_sc: SCOBJ --> BOOL*

sc_counter: SCOBJ --> INTEGER

sc_param_names: SCOBJ --> NAME

% Parameters and arguments:

get_subst_arg_addr: SCOBJ x NAME --> TADDR

get_param_name: NAME* x NUMBER --> NAME

% The dump element

sc_obj_dump: DUMP --> SCOBJ

7.5.3 Make the Supercombinator Object

if status=Unwind &

node_type(current_node)=SCName &

length_as(addr_stack) > node_arity(sc_definition_node))

then

EXTEND SCOBJ by temp(SCOBJ)

WITH

obj_scdef_node(temp(SCOBJ)):=sc_definition_node

curr_arity(temp(SCOBJ)):=node_arity(sc_definition_node)

curr_counter(temp(SCOBJ)):=0

curr_parmams(temp(SCOBJ)):=node_params(sc_definition_node)

sc_obj:=temp(SCOBJ)

ENDEXTEND

status:=Make-substs

fi
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We prepare for evaluating of the supercombinator. A supercombinator ob-
ject is created.

7.5.4 Substitute Non Strict Argument

if status=Make-substs &

curr_counter(sc_obj) < curr_arity(sc_obj) &

get_sc_param_info(incr1(curr_counter(sc_obj)),

curr_params) = Nonstrict

then

get_subst_value_addr

(get_param_var(incr1(curr_counter(sc_obj)),

curr_params(sc_obj))):=current_sc_arg_pointer

curr_counter(sc_obj):=incr1(curr_counter(sc_obj)

addr_stack:=pop_addr(addr_stack)

fi

A non-strict argument is added to the list of substitutions. We do not
need to evaluate the argument (represented as a subgraph) to weak head
normal form.

7.5.5 Substitute Argument in WHNF form

if status=Make-substs &

curr_counter(sc_obj) < curr_arity(sc_obj) &

get_sc_param_info(incr1(curr_counter(sc_obj)),

curr_params) = Strict &

is_in_whnf(node_type(current_arg_node)

then

get_subst_value_addr

(get_param_var(incr1(curr_counter(sc_obj)),

curr_params(sc_obj))):=current_sc_arg_pointer

curr_counter(sc_obj):=incr1(curr_counter(sc_obj)

addr_stack:=pop_addr(addr_stack)

fi

A strict argument which is in weak head normal form is added to the
list of substitutions.

7.5.6 Supercombinator Parameters Annotated as Strict

if status=Make-substs &

curr_counter(sc_obj) < curr_arity(sc_obj) &

get_sc_param_info(incr1(curr_counter(sc_obj)),

curr_params) = Strict &

not(is_in_whnf(node_type(current_arg_node))

then

EXTEND DUMP by temp(DUMP)

WITH
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addr_stack_dump(temp(DUMP)):=addr_stack

scobj_dump(temp(DUMP)):=sc_obj

type_of_dump_el(temp(DUMP)):=Sc-obj

dump_stack:=push_dump(dump_stack,temp(DUMP))

addr_stack:=make_addr_stack(current_sc_arg_pointer)

ENDEXTEND

status=Unwind

fi

If a parameter of a supercombinator is annotated as strict, then the
argument which replace the variable is evaluated before the substitutions is
performed.

7.5.7 Restore the Dump

if status=Unwind &

is_in_whnf(current_node) &

dump_stack =/= empty_dump_stack &

type_of_dump_el(top_dump(dump_stack)) = Scobj

then

addr_stack:=addr_stack_dump(top_dump(dump_stack))

sc_obj:=sc_obj_dump(top_dump(dump_stack))

node_child(right_branch,graph(top_addr(pop_stack

addr_stack_dump(top_dump(dump_stack))))):=

top_stack(addr_stack)

dump_stack:=pop_dump(dump_stack)

status=Make-substs

fi

The top element of the dump is restored if the expression is in weak head
normal form and the dump stack is non-empty.

7.5.8 Application node annotated as strict

if status=Make-instance &

not(is_in_whnf(node_type(current_sc_arg_node)) &

is_strict_app_node(current_node)

then

EXTEND DUMP by temp(DUMP)

WITH

addr_stack_dump(temp(DUMP)):=addr_stack

scobj_dump(temp(DUMP)):=sc_obj

type_of_dump_el(temp(DUMP)):=Sc-obj

dump_stack:=push_dump(dump_stack,temp(DUMP))

addr_stack:=make_addr_stack(current_sc_arg_pointer)

ENDEXTEND

status=Unwind

fi
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If the argument given to the application node which is annotated as strict,
this subgraph is evaluated before the evaluation of the application contin-
ues. When the subgraph is evaluated, a redex on weak head normal form
will cause the dump to be restored. Note also the possibility of recursive
evaluation of strict arguments.

7.6 The G-machine Evaluator

A compiled instruction sequence needs to have instructions for saving a the
address stack before evaluating the strict argument and restore the address
stack after the evaluating is �nished.

The �eval� instruction cause the G-machine to save the address stack
on the dump stack. In addition we need to extend the Unwind instruction
to restore the address stack when an argument is evaluated to weak head
normal form.

7.6.1 The Signature

% Instructions

instr_stack: INSTR*

top_instr: INSTR* --> INSTR

pop_instr: INSTR* --> INSTR*

make_g_code: INSTR --> INSTR*

% Instruction stack

instr_stack_dump: DUMP --> INSTR*

get_operator: INSTR --> OPERAND

We will use the following abbreviations:

current_node:=graph(top_addr(addr_stack))

primitive_definition_node=

graph(get_addr_from_globals(node_primitive_name(current_node)))

primitive_definition_addr=

get_addr_from_globals(node_primitive_name(current_node)))

7.6.2 Push Boolean Data

if status=Exec-code &

get_operator(top_instr(instr_stack))=Pushprimglobal

then

EXTEND NODE by temp(NODE)

EXTEND TADDR by temp(TADDR)

WITH

graph(temp(TADDR):=temp(NODE)

node_type(temp(NODE):=PRIMName

node_value(temp(NODE):=get_operand(1,top_instr(instr_stack))

addr_stack:=push_stack(addr_stack,temp(TADDR))
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fi

The speci�cation above tells how a node holding a name of a primitive is
made.

7.6.3 Push Boolean Data

if status=Exec-code &

get_operator(top_instr(instr_stack))=Pushbool

then

EXTEND NODE by temp(NODE)

EXTEND TADDR by temp(TADDR)

WITH

graph(temp(TADDR):=temp(NODE)

node_type(temp(NODE):=Bool

node_value(temp(NODE):=get_operand(1,top_instr(instr_stack))

addr_stack:=push_stack(addr_stack,temp(TADDR))

fi

How to make a node holding a boolean value is speci�ed above.

The node holding unspeci�ed data is made in a similar way.

7.6.4 The Primitive Operators

if status=Exec-code &

get_operator(top_instr(instr_stack))=Add

then

resul_tvalue:=get_result_value

apply_primitive(``plus'',

make_num_arg_list(

node_value(graph(top_addr(addr_stack)))

node_value(graph(top_addr(pop_stack(addr_stack)))) ))

status:=Make-num-node

fi

Above is the speci�cation for the Add instruction.

if status=Make-num-node

then

EXTEND NODE by temp(NODE)

EXTEND TADDR by temp(TADDR)

WITH

graph(temp(TADDR):=temp(NODE)

node_type(temp(NODE):=Num

node_value(temp(NODE):=result_value

addr_stack:=push_stack(pop_stack(pop_stack(addr_stack)),

temp(TADDR))

fi
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We need also to make a new node in the graph holding the result of the
addition.

if status=Exec-code &

get_operator(top_instr(instr_stack))=Cond

then

instr_stack:=concat_cond_code(

get_result_value(apply_primitive(``if'',

make_cond_arg_list(

node_value(graph(top_addr(addr_stack)))

get_operand(1,top_instr(instr_stack)),

get_operand(2,top_instr(instr_stack)) ))),

pop_instr(addr_stack))

addr_stack:=pop_stack(addr_stack)

fi

Above is the speci�cation for the Cond instruction.

7.6.5 Executing the Eval Instruction

if status=Exec-code &

get_operator(top_instr(instr_stack))=Eval &

not(is_in_whnf(graph(top_addr(addr_stack))))

then

EXTEND DUMP by temp(DUMP)

INSTR by temp(INSTR)

addr_stack_dump(temp(DUMP)):=pop_stack(addr_stack)

instr_stack_dump(temp(DUMP)):=pop_instr(instr_stack)

dump_stack:=push_dump(temp(DUMP),dump_stack)

% Set new initial values

addr_stack:=push_stack(empty_stack,top_addr(addr_stack))

get_operator(temp(INSTR)):=Unwind

instr_stack:=make_g_code(temp(INSTR))

ENDEXTEND

fi

In the speci�cation above the Eval instruction causes a dump to be made
and the strict argument is evaluated into Weak Head Normal Form.

if status=Exec-code &

get_operator(top_instr(instr_stack))=Eval &

is_in_whnf(graph(top_addr(addr_stack)))

then

instr_stack:=pop_instr(instr_stack)

fi

The argument is already in Weak Head Normal Form, so the �Eval�
instruction is simply popped of the stack.
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7.6.6 Restore the Stack on the Dump

if status=Exec-code &

get_operator(top_instr(instr_stack))=Unwind &

is_in_whnf(current_node) &

dump_stack =/= empty_dump_stack

then

addr_stack:=push_stack(addr_stack_dump(top_dump(dump_stack)),

top_addr(addr_stack))

instr_stack:=instr_stack_dump(top_dump(dump_stack))

dump_stack:=pop_dump(dump_stack)

fi

When the graph is evaluated to weak head normal form, we tests if there
are elements on the dump stack. If so the top element on the dump stack
restores the address stack and the instruction stack.

if status=Exec-code &

get_operator(top_instr(instr_stack))=Unwind &

nodetype(graph(top_addr(addr_stack)))=PrimName

then

curr_glob_def_addr:=primitive_definition_addr

instr_stack:=pop_instr_stack(instr_stack)

status:=Exec-sc-def

if status=Exec-code &

node_type(graph(curr_glob_def_addr)=Global &

length_as(addr_stack) > def_arity(graph(curr_glob_def_addr)

then

instr_stack:=concat_code(finished_code(graph(curr_glob_def_addr)),

instr_stack)

status:=Exec-code

7.7 Extensions Needed to Compile Primitives and

Supercombinators

7.7.1 Primitive Name Node

We need a new type of node holding the primitive name. The primitive
name refers to the primitive de�nition node and is used in the process of
evaluating supercombinator de�nitions where the body de�ne a primitive
expression.

7.7.2 Annotate Strict and Lazy arguments and Parameters

Since we can have both strict and lazy arguments we want to mark which
arguments are strict and which arguments are lazy in the compilation pro-
cess.
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We may assume that some strictness analysis is performed. Here we do
not specify how we perform such analysis.

We may annotate the strict expressions in two ways:

� If we know that the some of arguments given to a supercombinator
de�nition or a primitive de�nition always will be evaluated, the argu-
ments which corresponds to the strict parameters may be annotated
as strict.

� If an expression which is argument to an application is known to be
strict in this particular case, then we mark the application argument
as strict, meaning that the argument is to be evaluated before the
supercombinator or primitive expression.

7.8 Extending the compiler to handle primitives

7.8.1 The Signatures

% Definition of primitive definitions source.

status: STATUS

src_prim_defs,

empty_prim_defs: PRIMDEF*

current_primitive: PRIMDEF

get_next_primitive: PRIMDEF* --> PRIMDEF

tail_prim_defs: PRIMDEF* --> PRIMDEF*

% Adding primitive to linked list.

curr_prim_addr: TADDR

curr_prim_name: NAME

prim_name: PRIMDEF --> NAME

get_addr_from_globals: NAME --> TADDR

get_name_from_globals: TADDR --> NAME

% Adding properties to the primitive nodes

get_prim_func: PRIMDEF --> FUNCTION

get_prim_arity: PRIMDEF --> NUMBER

get_prim_strict_params: PRIMDEF --> BOOL*

get_prim_required_types: PRIMDEF --> TYPE*

7.8.2 Abbreviation

To get the value from the top of the compile stack we use the abbreviation
as listed below.

current_value==value_of_addr(top_addr(temp_c_stack))

current_node==graph(top_addr(temp_c_stack))
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7.8.3 Changes needed in order to handle primitives

We need to extend the target graph to hold information about the primitives.
The primitive can be considered as built-in functions or external de�ned
functions.

At least we need to introduce a new type of leaf node holding the prim-
itive names in the body of a supercombinator de�nition.

In addition we extend the global association list to hold the name of the
primitives in addition to the name of the supercombinators. The graph is
extended to keep single nodes for every primitive de�ned. The primitive
de�nition nodes will hold information necessary to evaluate the arguments
of the primitives and to apply the primitives. This way we can deal with
primitives in much the same way as supercombinator de�nitions.

7.8.4 Compiling Primitive De�nitions

if status:=Find-sc-def &

empty_sc_defs(all_prim_defs)

then

status:=Find-prim-def

fi

if status:=Find-prim-def &

not(empty_prim_defs(all_prim_defs)

then

current_primitive:=get_next_primitive(src_prim_defs)

src_prim_defs:=tail_prim_defs(src_prim_defs)

status:=Make-glob-primitive

fi

if status=Get=curr-prim-def &

empty_prim_defs(all_prim_defs)

then

status:=Perform-graph-reds

If we assume that we can obtain some informations about the primi-
tive functions, we let the speci�cation above iterate through all primitive
de�nitions to get information about the primitives.

All primitive de�nitions are processed after processing of the supercom-
binator de�nitions.

7.8.5 Adding primitives to the globals

if status=Make-glob-primitive

then

EXTEND TADDR by temp(TADDR)

WITH

curr_prim_addr:=temp(TADDR)

curr_prim_name:=prim_name(current_primitive)
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get_addr_from_globals(prim_name(current_primitive)):=temp(TADDR)

get_name_from_globals(temp(TADDR)):=prim_name(current_primitive)

ENDEXTEND

status:=Make-prim-node

We handle primitives as much as possible in the same ways as super-
combinator de�nitions. So we add primitive names to the global association
list. The addresses on the association list will points to a node holding the
primitive de�nition. All properties about the primitive will be associated
with the primitive de�nition node.

7.8.6 Adding the primitive de�nition node to the graph

if status:=Make-prim-node

then

EXTEND NODE by temp(NODE)

WITH

% Makes node

graph(curr_prim_addr):=temp(NODE)

node_type(temp(NODE)):=Primitive

% --- Add the annotation of strict parameters to the node

strict_params_info(temp(NODE)):=

get_prim_strict_params(current_primitive)

% --- Add the information about the arity node.

node_arity(temp(NODE)):=

get_prim_arity(current_primitive)

% --- Add information of the expected type of the arguments

% --- which corresponds to the parameters.

required_types_info(temp(NODE)):=

get_prim_required_types(current_primitive)

ENDEXTEND

status:=Compile-the-expression

The de�nitions in the graph is extended with all de�ned primitives. A
primitive node will always be a single leaf node in the de�nition part of the
graph. The primitive nodes is used to hold the information about the prim-
itive. The information associated with the node are arity of the primitive,
which arguments are strict, required types of strict arguments and some
representation of the operator of the primitive.

7.9 Extend Supercombinator De�nitions to Han-

dle Primitives

Wemodify the speci�cation to add information about strict supercombinator
parameters.

In addition we de�ne the transitions needed to compile the de�nition of
primitive name nodes.
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7.9.1 The Signature

% Address stack

initial_stack,

temp_c_stack: TADDR*

is_empty_stack: TADDR --> BOOL

push2_stack: TADDR x TADDR x TADDR* --> TADDR*

value_of_addr: TADDR --> SCEXPR

% Supercombinator definition

src_curr_sc_def: SCDEF

make_params: SCDEF --> NAME*

src_body: SCDEF --> SCEXPR

get_sc_arity: SCDEF --> NUMBER

% Supercombinator expressions

first_app_expr: SCEXPR --> SCEXPR

second_app_expr: SCEXPR --> SCEXPR

expr_type: SCEXPR --> SCTYPE

% Node properties

node_params: NODE --> NAME*

node_child: NUMBER x NODE --> TADDR

% Oracles

get_strict_params: BOOL*

get_strict_app_arg: BOOL

7.9.2 Abbreviation

current_value==value_of_addr(top_addr(temp_c_stack))

current_node==graph(top_addr(temp_c_stack))

7.9.3 Making the a node holding the name of the primitive

if status=Compile-the-expression

& not(is_empty_stack(temp_c_stack))

& expr_type(current_value)=PrimName

then

EXTEND NODE by temp(NODE)

current_node:=temp(NODE)

current_value:=empty_expr

node_type(temp(NODE)):=PrimName

node_primitive_name(temp(NODE)):=

make_prim_name(current_value)

ENDEXTEND

The primitive name node is analog to the supercombinator name node.
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This node will occur in the graph of the supercombinator body.
We use the primitive name to look up the primitive de�nition node.

7.9.4 Mark the Strict Parameter of a Supercombinator

if status=Compile-sc-def

then

EXTEND TADDR by temp(TADDR)

NODE by temp(NODE)

WITH

% Makes node

graph(curr_sc_def_addr):=temp(NODE)

node_type(temp(NODE)):=Supercomb

node_params(temp(NODE)):=

make_params(value_of_addr(curr_sc_def_addr))

% --- Add the annotation of strict or lazy parameters

% --- to the node.

strict_params_info(temp(NODE))

:=make_strict_info(value_of_addr(curr_sc_def_addr))

% --- Add the information about the arity

node_arity(temp(NODE)):=

get_sc_arity(value_of_addr(curr_sc_def_addr))

node_child(1,temp(NODE)):=temp(TADDR)

% Initialize the compile stack.

value_of_addr(temp(TADDR)):=src_body(src_curr_sc_def)

temp_c_stack:=push_stack(temp(TADDR),initial_stack)

ENDEXTEND

status:=Compile-the-expression

Here specify how to make a supercombinator node. This node will be
the root node of the supercombinator de�nition graph.

Parameters of the supercombinator may be annotated as strict or non-
strict.

The null-ary function get_strict_params is not a used as a constant.
Instead this function can be considered as an oracle because we do not want
to specify how we perform the strictness analysis.

7.10 Add the Boolean Node

if status=Compile-the-expression

not(is_empty_stack(temp-c_stack))

& expr_type(current_value)=Numexpr

then

EXTEND NODE by temp(NODE)

current_node:=temp(NODE)

current_value:=empty_expr

node_type(temp(NODE)):=Num

node_value(temp(NODE)):=
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make_boolean(current_value)

ENDEXTEND

This transition specify how to make a node containing boolean data.
We make similar Evolving Algebra transition, to specify how to make

a node containing numeric or some other unspeci�ed data. The function
node_value is used to store the numeric, boolean or unspeci�ed data.

7.11 Add strict annotation to the application node

if status=Compile-the-expression

not(is_empty_stack(temp-c_stack))

& expr_type(current_value)=APexpr

then

EXTEND TADDR by temp(TADDR,1),temp(TADDR,2)

NODE by temp(NODE)

% Makes the node.

current_node:=temp(NODE)

current_value:=empty_expr

node_child(1,temp(NODE)):=temp(TADDR,1)

node_child(2,temp(NODE)):=temp(TADDR,2)

node_type(temp(NODE)):=APnode

% --- State if the argument to the application

% --- node is strict or non-strict.

is_strict_app_node(temp(NODE)):=get_strict_app_arg

% Makes elements to the compile stack.

value_of_addr(temp(TADDR,1)):=

first_app_expr(current_value)

value_of_addr(temp(TADDR,2)):=

second_app_expr(current_value)

temp_c_stack:=push2_stack

(temp(TADDR,2),temp(TADDR,1),temp_c_stack)

ENDEXTEND

The transition below specify how to make an application node. We
annotate the application node as strict or non-strict. If the application
is annotated as strict, the argument expression of the application will be
evaluated before the function expression.

As for supercombinators we do not specify how we obtain the strict
annotation. So the function get_strict_app_arg is to be used as an oracle.

7.12 Generating Compiled Instruction from the

Primitive De�nitions

When we introduce primitives we know that some arguments are strict. At
least we know the strict arguments given to the primitives. For instance
all arguments given to the addition primitives are strict. So we can make

141



a compile scheme, where we add the �eval� instruction after pushing every
strict argument.

7.12.1 The Signature

% Signatures

signature status : STATUS

signature add: ((NUMBER x NUMBER) --> NUMBER)

signature tempstack: (TADDR *)

signature emptystack: (TADDR *)

signature initialstack: (TADDR *)

signature isemptystack: ((TADDR *) --> BOOL)

signature topaddr: ((TADDR *) --> TADDR)

signature pushstack: (((TADDR *) x TADDR) --> (TADDR *))

signature popstack: ((TADDR *) --> (TADDR *))

signature currscdefaddr: TADDR

signature valueofaddr: (TADDR --> [SCEXPR + INSTR])

signature graph: (TADDR --> NODE)

signature mainscdefname: SCNAME

signature getmainname: ((SCEXPR *) --> SCNAME)

signature allscdefs: (SCEXPR *)

signature isemptyscdefs: ((SCEXPR *) --> BOOL)

signature getnextscdef: ((SCEXPR*) --> SCEXPR)

signature tailscdefs: ((SCEXPR*) --> (SCEXPR*))

signature currprimdefaddr: TADDR

signature allprimdefs: (PRIMEXPR *)

signature isemptyprimdefs: (PRIMEXPR --> BOOL)

signature getnextprimdef: ((PRIMEXPR *) --> PRIMEXPR)

signature tailprimdefs: ((PRIMEXPR *) --> (PRIMEXPR*))

% Primitive expressions

signature getprimdefname: (PRIMEXPR --> PRIMNAME)

signature makeprimparamposinfolist: (PRIMEXPR --> (PPOSINFO *))

signature makeprimarity: (PRIMEXPR --> NUMBER)

% Primitive informations

signature primexprtype: (TADDR --> PRIMEXPRTYPE)

signature nameofprimitive: (TADDR --> PRIMNAME)

signature getprimposparaminfolist: (TADDR --> (PPOSINFO *))

signature getprimposition: (((PPOSINFO *) x NUMBER) --> NUMBER)

signature primposition: (TADDR --> NUMBER)

signature getpriminfoparam: (((PPOSINFO *) x NUMBER) --> PPINFO)

signature priminfoparam: (TADDR --> PPINFO)

signature secondprimpos: (TADDR --> NUMBER)
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signature thirdprimpos: (TADDR --> NUMBER)

signature defprimarity: (TADDR --> NUMBER)

signature makeprimname: (SCEXPR --> PRIMNAME)

signature getnamefromglobals: (TADDR --> SCNAME)

signature getaddrfromglobals: (SCNAME --> TADDR)

signature emptyexpr: SCEXPR

signature currscdef: SCEXPR

signature exprtype: (SCEXPR --> SCTYPE)

signature makeparams: (SCEXPR --> (SCEXPR *))

signature getscdefname: (SCEXPR --> SCNAME)

signature srcbody: (SCEXPR --> SCEXPR)

signature firstappexpr: (SCEXPR --> SCEXPR)

signature secondappexpr: (SCEXPR --> SCEXPR)

signature makenum: (SCEXPR --> NUMBER)

signature makebool: (SCEXPR --> BOOLDATA)

signature makedata: (SCEXPR --> DATA)

signature makescname: (SCEXPR --> SCNAME)

signature makevarname: (SCEXPR --> VARNAME)

signature numberofparams: ((SCEXPR *) --> NUMBER)

signature getparamlist: (TADDR --> (PARAMPOS *))

signature makeparamposlist: (SCEXPR --> (PARAMPOS *))

signature incrementposlist: ((NUMBER x (PARAMPOS *)) --> (PARAMPOS *))

signature getposition: (((PARAMPOS *) x VARNAME) --> NUMBER)

% Info about which sc parameters is strict

signature getparaminfo: (((PARAMPOS *) x VARNAME) --> SCPINFO)

signature getoperator: (INSTR --> OPERATOR)

signature getoperand: ((NUMBER x INSTR) --> OPERAND)

signature codelist: (INSTR *)

signature instrstack: (INSTR *)

signature emptycodelist: (INSTR *)

signature makegcode: (INSTR --> (INSTR *))

signature makegcodetwo: ((INSTR x INSTR) --> (INSTR *))

signature concatcode: (((INSTR *) x (INSTR *)) --> (INSTR *))

signature instructions: (TADDR --> (INSTR *))

signature hascode: (TADDR --> BOOL)

signature nodetype: (NODE --> NTYPE)

signature defarity: (NODE --> NUMBER)

signature finishedcode: (NODE --> (INSTR *))

signature leftbranch: NUMBER
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signature rightbranch: NUMBER

7.12.2 Start Compilation of the Primitive De�nitions

if status=Get-curr-sc-def &

isemptyscdefs(allscdefs)

then

status:=Get-curr-prim-def;

endupdates

This transitions initiate the compilation of primitive de�nitions.

7.12.3 Prepare for Compilation of the a Primitive De�nition

if status=Get-curr-prim-def &

not(isemptyprimdefs(allprimdefs));

then

EXTEND TADDR by temp(TADDR)

currprimdefaddr:=temp(TADDR,1);

getnamefromglobals(temp(TADDR,1)):=

getprimdefname(getnextprimdef(allprimdefs));

getaddrfromglobals(getprimdefname

(getnextprimdef(allprimdefs))):=temp(TADDR,1);

valueofaddr(temp(TADDR,1)):=getnextprimdef(allprimdefs);

ENDEXTEND

allprimdefs:=tailprimdefs(allprimdefs);

status:=Compile-prim-def;

endupdates

The next primitive de�nition is taken from the list of primitive de�ni-
tions. A new address is given to the primitive de�nition.

7.12.4 The Primitive De�nition

if = (status, Compile-prim-def);

then

EXTEND TADDR by temp(TADDR,1),temp(TADDR,2)

NODE by temp(NODE)

INSTR by temp(INSTR,1),temp(INSTR,2)

defarity(temp(NODE)):=

makeprimarity(valueofaddr(currprimdefaddr))

graph(currprimdefaddr):=temp(NODE);

nodetype(temp(NODE)):=Global;

primexprtype(temp(TADDR,2)):=NameParams;

nameofprimitive(temp(TADDR,2)):=

getnamefromglobals(currprimdefaddr));

getprimposparaminfolist(temp(TADDR,2)):=

makeprimparamposinfolist(valueofaddr(currprimdefaddr));

defprimarity(temp(TADDR,2)):=
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makeprimarity(valueofaddr(currprimdefaddr));

hascode(temp(TADDR,2)):=False;

% Slide n + 1, Unwind

getoperator(temp(INSTR,1)):=Slide;

getoperand(1,temp(INSTR,1)):=

add(1,makeprimarity(valueofaddr(currprimdefaddr))));

getoperator(temp(INSTR,2)):=Unwind;

instructions(temp(TADDR,1)):=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

hascode(temp(TADDR,1)):=True;

tempstack:=pushstack(

pushstack(emptystack,temp(TADDR,1)),

temp(TADDR,2));

ENDEXTEND

status:=Compile-part-of-primdef;

The �rst step in compiling a primitive de�nition is performed. A temporary
stack of addresses is set up. This stack will hold the state of the compilation
process.

The two last G-machine instructions in the sequence of instructions for
the primitive is made:

Slide <n + 1>

Unwind

The number n is the arity of the primitive.
Instead of generating the slide instruction , we could have generated

instructions to update the root of the redex. In this way it is possible to
avoid repeatedly generation of the same pieces of graph representing the
supercombinator body.

7.12.5 Make the List of Parameters for Primitives of Arity

One

if status=Compile-part-of-primdef &

not(isemptystack(tempstack)) &

hascode(topaddr(tempstack))=False &

primexprtype(topaddr(tempstack))=NameParams &

defprimarity(topaddr(tempstack))=1

then

EXTEND TADDR by temp(TADDR,1),temp(TADDR,2)

% First parameter

primexprtype(temp(TADDR,2)):=Param;

primposition(temp(TADDR,2)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),1)

priminfoparam(temp(TADDR,2)):=

getpriminfoparam(getprimposparaminfolist

(topaddr(tempstack)),1)
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hascode(temp(TADDR,2)):=False;

% The built-in function

primexprtype(temp(TADDR,1)):=Priminstr;

nameofprimitive(temp(TADDR,1)):=

nameofprimitive(topaddr(tempstack));

hascode(temp(TADDR,1)):=False;

% Put addresses on the address stack

tempstack:=pushstack(pushstack

(popstack(tempstack),temp(TADDR,1)),

temp(TADDR,2));

ENDEXTEND

The transition above prepare for compilation of parameters for one-ary prim-
itives.

7.12.6 Make the List of Parameters for Primitives of Arity

Two

if status=Compile-part-of-primdef &

(not(isemptystack(tempstack)) &

hascode(topaddr(tempstack))=False &

primexprtype(topaddr(tempstack))=NameParams &

defprimarity(topaddr(tempstack))=2

then

EXTEND TADDR by temp(TADDR,2),temp(TADDR,2),temp(TADDR,3);

% Second parameter

primexprtype(temp(TADDR,3)):=Param;

primposition(temp(TADDR,3)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),2)

priminfoparam(temp(TADDR,3)):=

getpriminfoparam(getprimposparaminfolist

(topaddr(tempstack)),2)

hascode(temp(TADDR,3)):=False;

% First parameter

primexprtype(temp(TADDR,2)):=Param;

primposition(temp(TADDR,2)):=

add(getprimposition(getprimposparaminfolist

(topaddr(tempstack)),1),1);

priminfoparam(temp(TADDR,2)):=

getpriminfoparam(getprimposparaminfolist

(topaddr(tempstack)),1)

hascode(temp(TADDR,2)):=False;

% The built-in function

primexprtype(temp(TADDR,1)):=Priminstr

nameofprimitive(temp(TADDR,1)):=

nameofprimitive(topaddr(tempstack));

hascode(temp(TADDR,1)):=False;
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% Put addresses on the address stack

tempstack:=pushstack(pushstack(

pushstack(popstack(tempstack),temp(TADDR,1)),

temp(TADDR,2)),temp(TADDR,3));

ENDEXTEND

The transition above prepare for compilation of parameters for two-ary prim-
itives.

7.12.7 Make the Parameter List for the If Primitive

if status=Compile-part-of-primdef &

not(isemptystack(tempstack)) &

hascode(topaddr(tempstack))=False &

primexprtype(topaddr(tempstack))=NameParams &

defprimarity(topaddr(tempstack))=3 &

nameofprimitive(topaddr(tempstack))=If

then

EXTEND TADDR by temp(TADDR,2),temp(TADDR,2);

% First parameter

primexprtype(temp(TADDR,2)):=Param;

primposition(temp(TADDR,2)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),1)

priminfoparam(temp(TADDR,2)):=

getpriminfoparam(getprimposparaminfolist

(topaddr(tempstack)),1)

hascode(temp(TADDR,2)):=False;

% The built-in function

primexprtype(temp(TADDR,1)):=Priminstr

nameofprimitive(temp(TADDR,1)):=

nameofprimitive(topaddr(tempstack))

secondprimpos(temp(TADDR,1)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),2)

thirdprimpos(temp(TADDR,1)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),3)

hascode(temp(TADDR,1)):=False;

% Put addresses on the address stack

tempstack:=pushstack(pushstack

(popstack(tempstack),temp(TADDR,1)),

temp(TADDR,2));

ENDEXTEND

The transition above prepare for compilation of parameters for the three-ary
if primitive.
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7.12.8 Make the G-machine Code for a Strict Argument

Given to the Primitive

if status=Compile-part-of-primdef &

not(isemptystack(tempstack)) &

hascode(topaddr(tempstack))=False &

primexprtype(topaddr(tempstack))=Param &

priminfoparam(topaddr(tempstack))=Strict

then

EXTEND INSTR by temp(INSTR,1),temp(INSTR,2);

getoperator(temp(INSTR,1)):=Push;

getoperand(1,temp(INSTR,1)):=

primposition(topaddr(tempstack));

getoperator(temp(INSTR,2)):=Eval;

instructions(topaddr(tempstack)):=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

This transition makes the G-machine code for handling strict arguments
given to the primitive.

7.12.9 Make the G-machine Code for a Non Strict Argument

Given to the Primitive

if status=Compile-part-of-primdef) &

not(isemptystack(tempstack)) &

hascode(topaddr(tempstack))=False &

primexprtype(topaddr(tempstack))=Param &

priminfoparam(topaddr(tempstack))=Nonstrict

then

EXTEND INSTR by temp(INSTR);

getoperator(temp(INSTR)):=Push;

getoperand(1,temp(INSTR)):=

primposition(topaddr(tempstack));

instructions(topaddr(tempstack)):=

makegcode(temp(INSTR));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

This transition makes the G-machine code for handling non strict arguments
given to the primitive.

7.12.10 Make the G-machine Instruction for the Addition

if status=Compile-part-of-primdef &

not(isemptystack(tempstack)) &

hascode(topaddr(tempstack))=False &

primexprtype(topaddr(tempstack))=Priminstr &
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nameofprimitive(topaddr(tempstack))=Plus

then

EXTEND INSTR by temp(INSTR);

getoperator(temp(INSTR)):=Add;

instructions(topaddr(tempstack)):=

makegcode(temp(INSTR));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

This transition makes the G-machine code for the addition operation.

7.12.11 Make the G-machine Instruction for the Negation

if status=Compile-part-of-primdef &

not(isemptystack(tempstack)) &

hascode(topaddr(tempstack))=False &

primexprtype(topaddr(tempstack))=Priminstr &

nameofprimitive(topaddr(tempstack))=Negate

then

EXTEND INSTR by temp(INSTR);

getoperator(temp(INSTR)):=Neg;

instructions(topaddr(tempstack)):=

makegcode(temp(INSTR));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

This transition makes the G-machine code for the unary negation operation.

7.12.12 Make the G-machine Instruction for the If Primitive

if status=Compile-part-of-primdef &

not(isemptystack(tempstack)) &

hascode(topaddr(tempstack))=False &

primexprtype(topaddr(tempstack))=Priminstr &

nameofprimitive(topaddr(tempstack))=If

then

EXTEND INSTR by temp(INSTR,1),temp(INSTR,2),temp(INSTR,3)

getoperator(temp(INSTR,1)):=Push;

getoperand(1,temp(INSTR,1)):=

secondprimpos(topaddr(tempstack));

getoperator(temp(INSTR,2)):=Push;

getoperand(1,temp(INSTR,2)):=

thirdprimpos(topaddr(tempstack));

getoperator(temp(INSTR,3)):=Cond;

getoperand(1,temp(INSTR,3)):=

makegcode(temp(INSTR,1));

getoperand(2,temp(INSTR,3)):=

makegcode(temp(INSTR,2));

instructions(topaddr(tempstack)):=
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makegcode(temp(INSTR,3));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

This transition makes the G-machine code for the condition operation.

7.12.13 Traverse up

if status=Compile-part-of-primdef &

not(isemptystack(tempstack)) &

hascode(topaddr(tempstack))=True

then

% The instruction is always appendended at the end of

% the instruction list.

codelist:=concatcode(codelist,

instructions(topaddr(tempstack)));

tempstack:=popstack(tempstack);

This transition adds the readyG-machine code to the sequence of G-machine
instructions for the primitive.

7.12.14 End of the Primitive De�nition

if status=Compile-part-of-primdef &

isemptystack(tempstack)

then

status:=Get-curr-prim-def;

finishedcode(graph(currprimdefaddr)):=codelist;

codelist:=emptycodelist;

The �nished sequence of G-machine instructions is saved in the node for the
primitive de�nition.

7.12.15 Prepare for Executing the G-machine Code after

Compiling All the Primitives and Supercombinators

if status=Get-curr-prim-def

isemptyprimdefs(allprimdefs)

then

EXTEND INSTR by temp(INSTR,1),temp(INSTR,2)

getoperator(temp(INSTR,1)):=Pushglobal;

getoperand(1,temp(INSTR,1)):=mainscdefname;

getoperator(temp(INSTR,2)):=Unwind;

instrstack:=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

ENDEXTEND

status:=Exec-code;

leftbranch:=1

rightbranch:=2
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After the compilation of all the primitives instruction stack is initialized
with the G-machine instructions sequence which starts the execution of G-
machine instructions.

The initial sequence of G-machine instructions is:

Pusglobal <main-sc-definition-name>

Unwind

7.13 Extending the Supercombinator De�nition

7.13.1 Compiling the Boolean Expression

if status=Compile-the-body &

not(isemptystack(tempstack)) &

exprtype(valueofaddr(topaddr(tempstack)))=BOOLexpr &

hascode(topaddr(tempstack))=False

then

EXTEND INSTR by temp(INSTR)

getoperator(temp(INSTR)):=Pushbool;

getoperand(1,temp(INSTR)):=

makebool(valueofaddr(topaddr(tempstack)));

instructions(topaddr(tempstack)):=

makegcode(temp(INSTR));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

Instruction for making a boolean node is made.

7.13.2 Compiling the Data Expression

if status=Compile-the-body &

not(isemptystack(tempstack)) &

exprtype(valueofaddr(topaddr(tempstack)))=DATAexpr &

hascode(topaddr(tempstack))=False

then

EXTEND INSTR by temp(INSTR)

getoperator(temp(INSTR)):=Pushdata;

getoperand(1,temp(INSTR)):=

makedata(valueofaddr(topaddr(tempstack)));

instructions(topaddr(tempstack)):=

makegcode(temp(INSTR));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

Instruction for making a data node is made.

7.13.3 Compiling the Primitive Name Expression

if status=Compile-the-body &
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not(isemptystack(tempstack)) &

exprtype(valueofaddr(topaddr(tempstack)))=PrimName &

hascode(topaddr(tempstack))=False

then

EXTEND INSTR by temp(INSTR);

withupdates

getoperator(temp(INSTR)):=Pushprimglobal;

getoperand(1,temp(INSTR)):=

makeprimname(valueofaddr(topaddr(tempstack)));

instructions(topaddr(tempstack)):=

makegcode(temp(INSTR));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

Instruction for making a primitive node is made.

7.13.4 Compiling the Variable Expression when the Corre-

sponding Supercombinator Parameter is Marked as

Strict

if status=Compile-the-body &

not(isemptystack(tempstack)) &

exprtype(valueofaddr(topaddr(tempstack)))=VARname &

getparaminfo(getparamlist(topaddr(tempstack)),

makevarname(valueofaddr(topaddr(tempstack))))=Strict &

hascode(topaddr(tempstack))=False

then

EXTEND INSTR by temp(INSTR,1),temp(INSTR,2);

getoperator(temp(INSTR,1)):=Push;

getoperand(1,temp(INSTR,1)):=

getposition(getparamlist(topaddr(tempstack)),

makevarname(valueofaddr(topaddr(tempstack))));

getoperator(temp(INSTR,2)):=Eval;

instructions(topaddr(tempstack)):=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

Here the code for handling strict supercombinator parameters is made.
The fact that the supercombinator parameter is strict is discovered when

an occurrence of the supercombinator variable which corresponds to the
strict supercombinator parameters is compiled in the body of the supercom-
binator de�nition.

The compiled Eval G-machine instruction is de�ned to make a dump
stack, only when the graph representing the argument is not in weak head
normal form. This way the overhead in case of many occurrences of the
same supercombinator variable is reduced.

It would be possible to generate a G-machine instruction sequence which
would evaluate arguments given to strict supercombinator parameters be-
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fore making the body. This G-machine sequence could be prepended the
sequence for making the body of the supercombinator de�nition graph, and
would be similar to the sequence used to handle arguments given to the
primitives. This way of reducing strict parts of the graph eliminates any
overhead if the same variable occur more than once in the body of the def-
inition, since all the Eval instruction is made only one time for every strict
parameter in the supercombinator de�nition.

7.13.5 Compiling the Variable Expression when the Corre-

sponding Supercombinator Parameter is Marked as

Non Strict

if status=Compile-the-body &

not(isemptystack(tempstack)) &

exprtype(valueofaddr(topaddr(tempstack)))=VARname &

= (getparaminfo(getparamlist(topaddr(tempstack)),

makevarname(valueofaddr(topaddr(tempstack))))=Nonstrict &

= (hascode(topaddr(tempstack)),False

then

EXTEND INSTR by temp(INSTR);

getoperator(temp(INSTR)):=Push;

getoperand(1,temp(INSTR)):=

getposition(getparamlist(topaddr(tempstack)),

makevarname(valueofaddr(topaddr(tempstack))));

instructions(topaddr(tempstack)):=

makegcode(temp(INSTR));

hascode(topaddr(tempstack)):=True;

ENDEXTEND

Here the code for handling non strict supercombinator parameters is made.

7.14 Making the Primitive as Part of the Super-

combinator Language Syntax

We can do it more e�cient. In [JL91] the strict context is introduced.
That permits some code to be performed as inline computation without
�rst making a graph.

If some some graph has to be made within the strict context, an Eval
instruction is appended to the code that makes the graph.

That means that this part of the graph is evaluated before result is used
in the computing of the expression. The strict context can be seen as a
result of some sort of strictness analysis.

In order to compile the expression using strict context, we have to make
the primitives as part of the supercombinator syntax. The expressions given
to the primitives are compiled as part of the primitives.

It is not di�cult to specify the generation of the more e�cient G-machine
code in Evolving Algebra. This speci�cation will a little more complicated
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than the speci�cation above. However, since the Evolving Algebra speci�ca-
tion will use much of the same mechanism as the speci�cation for compiling
primitives to G-machine code, we refrain from giving the speci�cation here.

Although the code produced when using strict context would be more
e�cient, there are also some drawbacks. Since the compilation of primi-
tives and supercombinators are mixed, the G-machine compilator may be
more di�cult to modify if new primitives are to be introduced, or if some
modi�cation has to be made to the speci�cation of what the primitives are
supposed to do.

7.15 Strictness Annotation of the Application Node

Here we may want to abstract from a complicated strictness analysis and
simple assume that the compilers know some ways to annotate application
expressions as strict. As an example we may assume that we know when an
argument given to the application node can be treated as a strict.

If an application expression are strict, we append an �Eval� instruction
to the G-machine instruction. The evaluator of the G-machine instructions
will evaluate the expression as strict, such that the argument given to the
application is evaluated �rst.

The Evolving Algebra Speci�cation for this abstraction is given below.

7.15.1 Promise to Make an Application Node

The Transition

if status=Compile-the-expression

& not(is_empty_stack(temp-c_stack))

& expr_type(current_value)=APexpr

& strict_application(current_value)

then

% Make the list of finished code empty

code_list:=empty_code_list

EXTEND TADDR by temp(TADDR,1),temp(TADDR,2),temp(TADDR,3)

INSTR by temp(INSTR,1),temp(INSTR,2)

% Makes elements to the compile stack.

value_of_addr(temp(TADDR,1)):=

first_app_expr(current_value)

has_code(temp(TADDR,1)):=False

get_param_list(temp(TADDR,1)):=

get_param_list(current_value)

value_of_addr(temp(TADDR,2)):=

second_app_expr(current_value)

has_code(temp(TADDR,2)):=False

get_param_list(temp(TADDR,2)):=

incr_pos(1,get_param_list(current_value))

% Make the instruction: MKap

operator(temp(INSTR):=MKap
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% Attach code to the current address

value_of_addr(TADDR,3):=make_g_code(temp(INSTR,1))

has_code(TADDR,3):=True

% ---- Make the Eval Instruction

% Make the instruction: Eval

operator(temp(INSTR,2):=Eval

% Attach code to the current address

current_value:=make_g_code(temp(INSTR,2))

has_code(current_address):=True

temp_c_stack:=push3_stack(temp(TADDR,3),temp(TADDR,2),

temp(TADDR,1),temp_c_stack)

ENDEXTEND

This speci�cation will compile an instruction sequence for evaluation of
an application.

The G-machine code sequence which is made is:

Mkap, Eval

provided the application in some ways is determined to be strict.
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Chapter 8

Using Exended Evolving

Algebra in the Speci�cation

In the three previous chapters we have used the Core Evolving Algebra
to make speci�cations for compilation and evaluation of supercombinators.
The reader will notice that the Evolving Algebra speci�cation is not easy to
read. So we will discuss how it can be possible to improve the speci�cation
using Extended Evolving Algebra. We will also in short discuss possible use
of co-routines and concurrent speci�cation.

8.1 Recursive Calls

During compilation and evaluation of supercombinator expression we may
want to use recursive calls on modules. Besides the fact that it is easier
to understand recursive programming, we may be able to specify how to
optimize tail recursive calls in a clean way.

8.1.1 Specify the Compilation of of the Body of a Supercom-

binator as a Recursive Process

As an example we can take the compilation of the body of the supercom-
binator into an acyclic graph. The speci�cation written in Core Evolving
Algebra in section 5.7.3 make use of a stack to describe the recursive pro-
cess of compilation. This speci�cation is di�cult to read. In addition this
speci�cation do not say anything of how to optimize the last tail recursive
invocation. To extend the speci�cation to cover how to optimize the last
tail recursive call in Core Evolving algebra, would make the speci�cation
in 5.7.3 harder to understand.

So we want to write the speci�cation directly with recursive calls, since
this is the most natural way to express the this part of the compilation
algorithm. Hence we will use the Extended Evolving Algebra to make a new
speci�cation of the compilation process.

Below, we will show how we can use Extended Evolving Algebra to write
the recursive de�nition. We will only show the transitions describing the
recursive process.
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The Global and Local Functions

Below we will de�ne functions which is global in the compilation process,
and functions which is local to each instance made in the recursive process.

GLOBAL

current_pointer: POINTER

pointer_value: POINTER --> NODE

is_empty_pointer: POINTER --> BOOL

first_son: NODE --> POINTER

second_son: NODE --> POINTER

node_type: NODE --> NODETYPE

node_value: NODE --> NODEVALUE

current_expression: EXPR

first_app_expr: EXPR --> EXPR

second_app_expr: EXPR --> EXPR

is_leaf_expr: EXPR --> BOOL

is_app_expr: EXPR --> BOOL

get_expr_value: EXPR --> NODEVALUE

END GLOBAL

All global functions used to build the graph is de�ned above.

The Make Graph Module

Below we will specify the module which make the graph of supercombinator
instances. Instances of this module is made during the recursive process.

Module: MAKE-GRAPH

BEGIN PRIVATE FUNCTION

local_new_node: NODE

local_expression: EXPR

local_status: STATUS

% Set initial value for each instance.

local_status==Initial

END PRIVATE FUNCTION

Here we de�ne the constants local to each instance of the module.

The Bottom of the Recursion Process

if local_status:=Initial

& is_leaf_expr(current_expression)

then

EXTEND NODE by temp(NODE,1)

WITH

node_type(temp(NODE,1)):=Leaf-node

157



pointer_value(current_pointer):=temp(NODE,1);

node_value(temp(NODE,1)):=get_expr_value(current_expression);

ENDEXTEND

Invoke-return(Inherited-module)

fi

If the current expression is not an application, we make the leaf node of
the graph. This transition represents the bottom of one recursion branch in
recursion tree of the process.

Making the Application Node

if local_status:=Initial

& is_app_expr(current_expression)

then

EXTEND NODE by temp(NODE,1)

POINTER by temp(POINTER,1),

temp(POINTER,2)

WITH

first_son(temp(NODE,1)):=temp(POINTER,1);

second_son(temp(NODE,1)):=temp(POINTER,2);

node_type(temp(NODE,1)):=App-node;

pointer_value(current_pointer):=temp(NODE,1);

local_new_node:=temp(NODE,1);

ENDEXTEND

local_expression:=current_expression;

local_status:=Proceed;

fi

If the current expression is an application, a new application node is made.

Performing the First Recursive Call

if local_status:=Proceed

& node_type(local_new_node)=App-node

& is_empty_pointer(first_son(local_new_node))

& is_empty_pointer(second_son(local_new_node))

then

MAKE INSTANCES of MAKE-GRAPH by instance(MAKE-GRAPH,1),

WITH

current_pointer:=first_son(local_new_node);

current_expression:=first_app_expr(local_expression);

Invoke(instance(MAKE-GRAPH,1),Itself);

END INSTANCES

fi

Here the graph is extended by performing the �rst recursive call to the mod-
ule. This recursive call will construct the �rst of the two subtrees branching
from the application node.

158



Performing the Second Tail Recursive Call

if local_status:=Proceed

& node_type(local_new_node)=App-node

& not(is_empty_pointer(first_son(local_new_node)))

& is_empty_pointer(second_son(local_new_node))

then

MAKE INSTANCES of MAKE-GRAPH by instance(MAKE-GRAPH,1),

WITH

current_pointer:=second_son(local_new_node);

current_expression:=second_app_expr(local_expression);

Invoke(instance(MAKE-GRAPH,1),Itself);

END INSTANCES

fi

The transition above performs the last recursive call to the module. This
recursive call will construct the second of the two subtrees branching from
the application node.

Performing the Return to the Invoking Instance

if local_status:=Proceed

& node_type(local_new_node)=App-node

& not(is_empty_pointer(first_son(local_new_node)))

& not(is_empty_pointer(second_son(local_new_node)))

then

Invoke-return(Inherited-module);

fi

End Module

Her we specify the return to the the invoking instance. This transition will
be performed if we do not optimize the last tail recursive call as explained
below.

Optimize the last tail recursive call

Since the recursive call in 8.1.1 is to be performed as the last operation, the
call is tail recursive. We can optimize this tail-recursive call replacing the
Invoke statement above with the following statement:

Invoke(instance(MAKE-GRAPH,1),Inherited-module);

The prede�ned constant Itself is replaced by the prede�ned constant
Inherited-module. Since the recursive process will not return to this in-
stance after the recursive call, this calling instance can be deleted when the
recursive call is performed.

An implementation of the Extended Algebra interpret is supposed to
delete the calling instance, if the recursive process is not going to return to
the calling instance of the module. In this way we optimize the tail recursive
call.

Using only Core Evolving Algebra we are not able to express in a natural
way how to optimize this last tail recursive call.
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8.1.2 Use of Recursive Modules in the Speci�cation of Com-

pilation and Evaluation

In this section we will point out where Extended Algebra could be used to
specify recursive processes, and where it is possible to optimize tail recursive
calls of modules.

In section 6.8.1 we give the recursive de�nition of how to make a new
instance of a supercombinator to be used in the reduction process. The
recursive speci�cation can be written directly in Extended Evolving Algebra
in the same way as in 8.1, and the speci�cation of how to optimize the tail
recursive process can be done in the same way.

In section 7.1.1 we de�ne a recursive procedure which evaluate strict
arguments. We can again use Extended Evolving Algebra to specify this
recursive de�nition in a direct way. Such recursive de�nition will apply
to evaluation of strict arguments, whether they are given to a primitive
de�nition or supercombinator de�nition. We do not specify the recursive
de�nition in Extended Evolving Algebra.

8.2 Use of Co-routines and Parallel Programming

It can be naturally to make some comments about eventually use of co-
routines in the speci�cation made so far. We could consider to make in-
stances of co-routines for all strict argument to be evaluated.

However, since each strict argument can consists of expressions consisting
of de�nitions which again takes strict arguments, speci�cation of a recursive
process will be the more appropriate way of making the speci�cation.

8.2.1 Concurrent Speci�cation

If the graph representing supercombinators is made as a tree, it should
be possible to specify that each of the child can be evaluated in parallel.
However, if we choose to share some of the subgraphs between more than
one parent node, using an acyclic graph, only those part in the subgraph
which is not shared, can be performed in parallel. So in order to specify
parallel execution of modules, we have to extend the Evolving Algebra, such
that e. g. locks can be speci�ed when needed.

So, it can be of interest to extend Evolving Algebra to permit speci�ca-
tion of parallel or distributed processing. Such extension should use proper
mechanism to express parallel processing, such that the speci�cation can be
made as simple and accurate as possible.

In the thesis we limit the scope to cover sequential processing, only.

But we could wonder if co-routines could be used to specify some quasi-
parallel processing of strict arguments in an acyclic graph. If, only one
process was active at any time, the shared part of the graph could be evalu-
ated in the right way from whichever of its parent. At once the shared graph
had been evaluated into a normal form, it would not be evaluated any more.
That would be the case, either we specify directly a recursive process, or
we used the form of co-routines. So, we do not obtain any more using the
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approach of making co-routines compared to specify the recursive process
directly.
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Part III

The Evolving Algebra

Interpreter
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Introduction

This part consists of the following:

� Chapter 9 has a description of the Evolving Algebra interpreter im-
plemented by the author. This interpreter is compared with the in-
terpreter made by [Hug94]. We also discuss the possibility of imple-
menting an interpreter for the Extended Evolving Algebra (as de�ned
in chapter 3).

� Results from some runs of the interpret. We have in fact been able to
measure the use of resources of the runs (See chapter 10).

The Evolving Interpreter written by the author is written in the Scheme
language. The interpreter runs speci�cation written in the Core Evolv-
ing Algebra. The interpreter is written such that any function de�ned in
Evolving Algebra can be associated with a Scheme procedure. In this way
functions at any abstraction level can (in principle) be de�ned and run on
the interpreter.

The interpreter has the possibilities to count the use of resources when
a speci�cation is run on the interpreter. Reports which shows the use of
resources can be printed after a run.

In appendix B the Evolving Algebra interpreter is described in more
details than in chapter 9.

165



Chapter 9

The Evolving Algebra

Interpreter

9.1 Introduction

This section is divided into three main parts:

1. Description of the interpreter implemented in Scheme by the author.

2. Comparision with an Evolving interpreter written in the C language
implemented [Hug94].

3. Discussion of implementation of Extended Evolving Algebra (as intro-
duced in chapter 3).

9.2 Evolving Algebra De�nitions

9.2.1 The Fixed Part of the Evolving Algebra

The de�nition of a named algebra and signature can be considered as the
�xed part of an evolving algebra de�nition. The system checks the syntax
and make the internal data structure when the de�nition and signature is
parsed.

Algebra De�nition List

The statement which de�ne a named algebra is used to give a name of the
evolving algebra de�nition paired with a list which contains a list of sets and
lists of function used. At present time this type of statement is not used in
the system and may be omitted.

We give the following example:

algebra stack : (LOCATION, VALUE,{0,1};top,bottom;pop,push;empty)

The Signature

The signature part of the �xed evolving algebra de�nition associate a sig-
nature de�nition with each function symbols used in the evolving algebra
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de�nition. The system checks the syntax and make the internal data struc-
ture. The internal data structure generated will be used by the dynamic
part of the system, so this part of the de�nition may not be omitted.

We give the following example of a signature de�nition:

signature push : ((STACK x STACKEL) --> STACK)

9.2.2 The Transition

The dynamic part of evolving algebra consists of a one or more transitions.
A transition consists of two main parts, the predicate and the updates. The
updates can be of two types the function update and the universe update.

When running the evolving algebra system, the predicates in all transi-
tions are tested. If one of the predicates evaluates to �true� this transition
is selected to be performed. If more than one of the predicates evaluate to
�true�, one of the transitions which has its predicate evaluated to �true� is
chosen. This choice is made in a non determinate way.

The Predicate

A predicate is an expression which computes to �true� or �false�.
In addition to usual functions relational operators such as equal, lesser

than and not may be given.
An example of a predicate is:

if ( = (halt,0) &

(! emptycmds(cmds)) &

= (first(cmds) , "Store") &

isnumber(first(next(cmds))) );

The Updates

The updates are the part of transition which makes the algebra de�nitions
to change. The system can take two types of updates, function updates and
universe updates.

An function updates assigns a new value to a point in the value space.
a universe update adds new elements to one or more universe and use

this new elements as values in function updates which is part of the universe
update.

All updates within a transition are executed simultaneously.
A third form of change to the algebra, where elements is removed from

the universe, is not implemented.
Example of a function update is given below:

funcupdate array(current) := currval(now)

The transition ends when the

endupdates

statement is parsed.
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The Universe Updates

A universe update consists of two parts. The �rst part are one or more
universe extensions. Each universe extension tells which universe is get new
elements and how many elements to be added.

The second part has one or more function updates. The function updates
use the new elements when assigning new value to the function.

The universe extension

a universe extension expression specify how many elements to add to one of
the universes.

Examples of universe extension expressions:

extend

extenduniverse U

extenduniverse V # newelems

extenduniverse W # 5 counter

In the example extend tells that one or more universe extension expressions
follows. One elements is added to the universe U. In the third line in the ex-
ample above the number of elements which is the value of newelems is added
to the universe V. In the fourth line �ve elements is added to the universe
W and in addition the constant counter is used to generate �ve instances of
the function updates, where the value substituted for the constant counter
goes from 1 to 5.

The function updates within a universe update

The function updates within a universe update can be speci�ed in two ways,
telling if instances for all elements added to the universe(s) are to be gener-
ated or not.

If the the word �Every� occur in one of the sub-expression which specify
the number of the new element to be used, one instance for for every new
element added to the universe is generated. In this case we require the
name of an generic constant (we can also call the constant a counter) in
the universe extension expression for the universe. For all new elements
added to the universe the generic constants gets the number of one of the
new elements. This constant is used in one of the expressions computing
the number of one of the new elements to be used in the generated function
update instance.

If no �Every� occurs in the subexpression which computes the number of
the new element to be used, no more than one instance is made. In this case
we do not need any generic variable in the universe extension to compute
this the update.

Some examples follows below of function update within an universe ex-
tension follows below:

withupdates

funcupdate tree(temp(V,2)) := initvalue;
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funcupdate previous(temp(W,Every(add(counter,1)))) :=

stack(temp(W,Every(counter)))

endextend

The second function update in the example above, gives 5 instances where
the constant counter vary from 1 to 5. However, the �fth instance of the
function update is discarded, because the instance

previous(temp(W,6)) := stack(temp(W,5))

gives no meaning.

9.2.3 Setting the Initial Values

The transitions in evolving algebra makes the evolving algebra to a state
transition system. Hence we need to set the initial state of the evolving
algebra.

The evolving algebra interpreter gives the possibility to set initial values
of functions and to initialize the universes with a set of elements.

Example of initialize a function value:

initial f(3) :== 2;

Example of the command to initialize a universe:

initialset U :== {True,False}

At present it is possible to omit to initialize the universe(s) without
a�ecting the evaluation of the transitions.

9.2.4 The Evolving Algebra Environment

The Evolving Algebra interpreter does not de�ne a number of �xed Scheme
procedure to be used for the functions de�ned in the evolving algebra tran-
sitions. Instead, the user of the system has to provide the procedures to
be used. The Evolving Algebra Interpreter has commands to load the pro-
cedures to be used and assign the procedures to the function names and
universe names.

Some standard procedures are written and and can be considered as part
of the system. The procedures reside in a standard library of the evolving
algebra system.

Load Scheme Procedures into the Evolving Algebra Environment

The procedures provided by the user has to be loaded into the evolving
algebra system using a �loadproc� command. One or more �les containing
the procedures are loaded into the a special Scheme environment used in the
Evolving Algebra interpreter.
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Binding Function Names to Procedures

To bind scheme functions to procedure names we use the �assignfunc� com-
mand. This command binds the function symbol to the procedure names as
follows:

� The name of a lookup procedure used to lookup the value of the func-
tion expression is given.

� The name of an update procedure must be given. The procedure is
used to give a new value to a function in a function update.

� In addition a symbol which may be used in the scheme procedures as
user supplied parameter must be given.

Binding Universe Names to Procedures

In order to perform universe extension we need to bind Scheme procedures to
universe names. The task of such procedure is to generate the new elements
to be added to a universe when performing a universe extension. In addition
this procedure may initialize and update a data structure which represents
the set of elements in the universe.

To bind a universe name to a Scheme procedure we use �assignunverse�
command. The command binds the universe name to a Scheme procedure
as follows:

� The name of the extension procedure has to be given.

� A symbol which may be used in the scheme procedure as a user sup-
plied parameter has to be given.

9.2.5 Commands

In this subsection we describe other commands which may be given to the
Evolving Algebra interpreter. The user has the following options:

� Perform the transition as speci�ed in the evolving algebra given to the
interpreter.

� Print the de�nition and performing statistic.

� Read the evolving algebra speci�cation from �le.

� Execute a Scheme expression in the Evolving Algebra environment.

� Reset the interpreter so a new speci�cation can be loaded.

� Fetch values assigned to a universe name.

� Fetch values assigned to a function name.
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9.2.6 System Commands

The following commands is useful for those who whish to make changes to
the Evolving Algebra interpreter.

� Load a new version of a �le of procedures belonging to the system.

� Display Scheme bindings made in the Evolving Algebra environment.

9.3 How the Interpreter Works

In this section we will say some more about how the Evolving Algebra in-
terpreter works. From the user point of view the interpreter performs two
main step when given an Evolving Algebra speci�cation. The �rst step is
to parse the speci�cation. The second step is to execute the speci�cation
which has been parsed.

9.3.1 Parsing and Loading the Evolving Algebra Speci�ca-

tion

When starting, the interpreter initialize its internal data structure and enters
the main loop. The interpreter is now ready to accept input from the user.
We call the main loop the main level of the interpreter. If the interpreter
enters some other loop we say the interpreter enters a new level.

The Levels of the Interpreter

Here we will describe the levels the interpreter may enter.

The main level At the main level the algebra de�nition lists, the signa-
tures, the predicate part of the transition, the initial values of the
speci�cation and all the commands can be given. To exit the main
loop is the same as exit the interpreter.

The update level The update level is entered when the predicate part of
the transition is parsed with success. At the update level the function
update statement and the universe update statement can be given. If
a universe update statement is given the interpreter �rst enter the uni-
verse extension level and then the special function update level within
a universe extension. This level is �nished when an �endupdates�
statement is given.

The universe extension level The universe extension level is invoked giv-
ing the �extenduniverse� statement in the update level. Only universe
extension statements can be given in this loop. This level is �nished
when entering the special function update level.

The special function update level This level is entered when the �with-
updates� statement is entered at the universe extension level. Only
function update with an extended syntax can be given in this loop.
This level is �nished when an �endextend� statement is given. The
interpreter then returns to the update level.
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The loading of the speci�cation

The Evolving Algebra speci�cation is stored in an internal data structure
for executing. When the interpreter is in the main level this data structure
can be reset at any time.

Reading the Evolving Algebra Speci�cation from File

The de�nition of the Evolving Algebra speci�cation can be read from �le.
The interpreter will parse the speci�cation and return the result of the pars-
ing to the user. The command for reading from �le can only be invoked at
the main level.

The Output

The result of parsing the statements and expressions in the evolving algebra
speci�cation is returned to the user along with a prompt. If the Evolving
Algebra speci�cation is read from a �le it is possible to write the result of
parsing to a �le.

Errors

If some errors are found, an error message is given.

9.3.2 Executing the Evolving Algebra Speci�cation

Executing the Transitions

When the user gives the command run the speci�cation, a main loop which
test the predicate for all transitions is started. If one or more predicates
evaluates to �true� one of the transitions which has a �true� predicate value
is chosen. The loops continue until the predicates for all transitions evaluate
to �false�.

So we can write the following skeleton of a procedure:

loop

1. Evaluate every predicate in the list all defined transitions

in the specification.

2. If none of the predicates are evaluated to ``true''

then quit.

3. Choose one of the transitions which has its predicate

evaluated to true and perform all updates within

this transition.

endloop

Executing the Updates

All updates within a transition are to be executed simultaneously. This
implementation compute values for all updates in the �rst pass, and then
perform all the assignment for functions updates in a second pass.
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When a universe update is given a numbers of new elements are added
to one of the universe. Then some function updates using the new elements
are given as part of the universe update.

Making Instances of the Function Updates within the Universe

Update

A function update expression within a universe update can refer to all the
new elements added to the universes. So instances of the these function
updates are to be made for all new elements added to all universe.

The following algorithm could be used to generate the instances of the
function updates in the universe update:

Let U1 ... Um be all universe to be extended in this updates.

for i=1 ... #U1

do

....

for k=1 ... #Um

do

Make instance (i, ...,l) of all functions updates.

od

....

od

Here instances are made for every combination of new elements taken from
distinct universes. However, since this algorithm has exponential complexity
we need to optimize the algorithm above.

This optimization can be done in the following ways:

1. For each function update, check if new elements are referred in a
generic way in the expression or the functions update are to be com-
puted for just one new element from each universe. Do not make equal
instances if only one of the new elements added to each universe are
to be used.

2. If instances are to be made for an function update, make loops only
for the universes which are referred in a generic way in expressions in
the function update.

After the optimization the algorithm is still of exponential complexity,
but we do not make many equal instances of the function updates.

Output the Result of Executing the Speci�cation

The output which appear when executing the speci�cation contains records
of all dynamic transitions of the Evolving Algebra. All updates and ex-
tensions to the universe are recorded along with all predicates evaluated to
�true� for every execution of a transition.
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9.4 The Statistics

9.4.1 The Statistical Data

Here we describe the statistical data produced by the system.

The De�nitions Statistic

The de�nition statistic consists of totals for the Evolving Algebra speci�ca-
tion, the sums for each transition and numbers of universe extensions and
function updates for each universe extensions de�ned.

For the Evolving Algebra speci�cation we give the following totals:

� The number of de�ned function names.

� The number of de�ned universe names.

� The number of de�ned transitions.

� The number o function updates (which is not part of a universe update)
de�ned.

� The number of universe updates de�ned.

� The number of universe extensions de�ned.

� The number of functions updates de�ned which is part of a universe
update.

For each transition de�ned we print the following numbers:

� The number of de�ned function updates.

� The number of de�ned universe updates which is not part of a universe
update.

� The number of universe extensions de�ned.

� The number of functions update which is part of a universe update.

For each universe update de�ned we print the following numbers:

� The number of de�ned universe extensions.

� The number of de�ned functions updates as part of the universe up-
date.

The Runtime Statistics

The runtime statistics consists of the totals for the Evolving Algebra speci-
�cation performed, the sums for each transition, the sums for each universe
updates, the number of performed and discarded instances of each function
update within a universe update and the number of elements added to the
universe for each universe extension.
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Our main interest is to show the use of the resources when simulating
the run of the dynamic transitions of the evolving algebra speci�cation.

Two types of resources are to be measured, the use of room and the use
of time. When performing Evolving Algebra transitions we count the num-
bers of function updates and the number of elements added to the de�ned
universes.

The number of elements added to a universe corresponds to the use
of room (i.e. memory in a computer). The number of function updates
performed corresponds to the use of time (i.e. execution time in a computer).

If we specify an indeterminate system we are also able to measure the
degree of indeterminism in the speci�cation. If the number of predicates
evaluated to �true� are equal to the number of performed transitions, we
have speci�ed a determinate system. If the result of dividing the number of
predicates by the numbers of performed transitions is greater than 1.0 we
have introduced some degree of indeterminism which is measured by this
ratio.

The Numbers Printed in the Runtime Statistics

The following totals will be printed:

� The total number of time a transition is performed.

� The total number of predicates which is evaluated to �true�.

� The total number of predicate which is evaluated to �true� divided by
the total number of transitions performed. A number greater than 1
means that some degree of indetermination is a property of the Evolv-
ing Algebra speci�cation, since the choice of more than one transition
which has �true� as value of its predicate is an indeterminate choice.

� The total numbers of function updates (which is not part of a universe
update) performed.

� The total numbers of universe updates performed.

� The total numbers of universe extensions performed.

� The total numbers of elements added to a universe.

� The total numbers of function updates (which is part of a universe
update) performed.

� The total numbers of function updates (which is part of a universe
update) discarded.

� The total numbers of function updates performed.

The following sums will be printed for each de�ned transition:

� The number of times this transition is performed.

175



� The number of function updates (which is not part of a universe up-
date) performed.

� The number of universe extensions performed.

� The number of universe updates performed.

� The number of elements added to a universe.

� The number of times a function updates (which is part of a universe
update) is performed.

� The number of times a function updates (which is part of a universe
update) is discarded.

� The number of elements added a universe divided by number of time
this transition is performed.

� The number of times a universe update is performed divided by the
number of times this transition is performed.

� The sums of all function updates performed.

The following sums will be printed for each de�ned universe update:

� The number of elements added to all universes extended in this uni-
verse update.

� The number of times the functions updates de�ned as part this uni-
verse update is performed.

� The number of times the function updates de�ned as part of this uni-
verse update is discarded.

The following sum will be printed for each de�ned universe extension:

� The number of new element added to the universe de�ned in this
extension.

The following sums will be printed for each function updates which is
part of a universe update:

� The number of instances of this function update made and performed.

� The number of instances of this function update made and discarded.

9.5 Comparision with Huggins EA-interpreter

In this section I will call the Evolving Algebra interpreter implemented by
the author the Scheme EA-Interpreter and the Evolving Interpreter imple-
mented by James K. Huggins the C EA-Interpreter [Hug94].
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9.5.1 Implementation

The Evolving Algebra Interpreter made by James K. Huggins is implemented
in the programming language C, therefore it is called the C EA-interpreter
here.

The EA-interpreter described in this report is made in the Scheme Lisp
(MIT Scheme 7.1), hence it is called the Scheme EA-interpreter.

9.5.2 Function De�nition

The C EA-interpreter

Each function de�nition consists of:

� A function name.

� The arity of the function.

� Flags telling how the function are to be used.

� Default expression.

� Function tuples. The value at certain locations is pre-initialized.

The arity of the function is checked against the number of arguments given
to the function in expressions.

The Scheme EA-interpreter

Each function de�nition consists of:

� A function name

� Full signature of the function.

� A Scheme procedure which de�nes the �semantic� of the computation
of the function value.

� A Scheme procedure which de�nes how the update of the functions
eventually should be performed.

� A �ag which state some properties of the function. The meaning of
the �ag is determined by the procedures associated with the function.

The existence of the signature is checked against other part of the Evolving
Algebra speci�cation. The system gives warning if more than one signature
of the same function is loaded. The syntax of the signature de�nition is
checked.

9.5.3 The Initial Rules

Both the C Evolving Algebra Interpreter and the Scheme Evolving Alge-
bra interpreter has the rules for giving initial values to be set before the
speci�cation is to be run.
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9.5.4 Transition Rules

9.5.5 Expressions

The C EA-interpreter

An expression may conist of:

� An integer

� A real number

� A quoted string

� A function name for a zero arity function

� A function name together with the arguments given to the function

� A LOAD reference which refer to values which can not be given a
direct reference.

The Scheme EA-interpreter

An expression may consist of:

� An integer

� A quoted string and other ways of providing values

� A function name for a zero arity function

� A function name together with the arguments given to the function

Most value including the empty list can be given to the Scheme Evolving
Algebra interpreter, so no LOAD reference seems to be necessary.

Function Assignments

The function assignments is similar in the C Evolving Algebra interpreter
and the Scheme Evolving interpreter.

9.5.6 Guarded Rules

The C EA-interpreter

In the C Evolving Algebra interpreter a guarded rule may have the form of
simple if rule, or elseif may be used for to do one selection of many possible.
An else rule may optionally be given to state the default selection.

The transition rules may be nested in the C Evolving Algebra interpreter.

The Scheme EA-interpreter

In the Scheme Evolving Algebra interpreter the guarded rule consists only
of the simple if rule.

The transition rules may not be nested.
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9.5.7 Universe Extensions

The C EA-interpreter

The universe extension is implemented permitting one or more universes to
be extended. The new elements added to each universe can be temporarily
referred with rules inside the universe extension.

The Scheme EA-interpreter

Also in the Scheme EA-interpreter one or more universes can be extended
by new anonymous elements. The new elements inside each universe be
referred with function assignments inside the universe extension.

In addition it is possible to refer to the new elements added to the uni-
verses in a generic way, causing all function assignments to be generated for
all possible combinations of new elements.

9.5.8 Universe Contractions

Universe contraction is implemented in the C Evolving Algebra interpreter.

It is not implemented in the Scheme Evolving Algebra interpreter.

9.5.9 De�ning Functions and Universes

Standard Universes

The C Evolving Algebra has de�ned 8 standard universes. Other universes
may be de�ned implicit by using the extension rule.

Dynamically de�ned universes

In the Scheme Evolving Algebra all universes are implicit de�ned. A universe
is implicit de�ned by using the universe name in in the expression which gives
the signature for a function.

If an extension is to be used for a universe, a Scheme procedure which
makes the new elements to be added to the universe has to be de�ned and
associated with the universe name.

Standard Functions

In the C Evolving Algebra interpreter a set of standard functions and uni-
verses is implemented. The set consists of 30 functions which act as prede-
�ned primitives in the C Evolving Algebra interpreter.

Other functions may be de�ned. The �semantics� of the functions i
de�ned by:

� The functions default expression. For example the a one-ary Successor
functions may be de�ned in terms of the standard two-ary function
Add.
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� By values given in the tuple part of the function de�nition, values
given in the initial rules of the Evolving Algebra speci�cation and
values given during the run of Evolving Algebra rules.

If more than the 30 standard functions is needed, the C Evolving Algebra
interpreter has to be extended.

Dynamically de�ned Functions

The Scheme Evolving Algebra interpreter has no minimal set of standard
functions de�ned. All functions de�ned has to be associated with a Scheme
procedure, and the Scheme procedures used to de�ne the �semantics� of the
functions is also loaded into the system. Both the association of functions to
Scheme procedures and the loading of the Scheme procedures from a �le, can
be done dynamically at any time before the Evolving Algebra speci�cation
is executed.

The only exception to this scheme of dynamically associated functions
with Scheme procedures, is that some predicate functions, such as equal,
lesser than, greater than, not equal and not are prede�ned (for convenience
reason).

9.5.10 Running the Interpreter

The C EA-interpreter

The Evolving Algebra speci�cation has to be loaded at the time the in-
terpreter is started. Then runtime commands can be given. Some of the
commands which may be given is: run the given speci�cation, run until
an expression has value false, run until an expression has value true, reset
the interpreter, reload the interpreter, run one step or run n steps, eval an
expression, set trace, set no trace or exit.

The Scheme EA-interpreter

The Evolving Algebra speci�cation is a full interpreter. The Evolving Al-
gebra speci�cation or part of the Evolving Algebra speci�cation may be
loaded from �le any time, or the user may give the speci�cation or part of
the speci�cation directly into the interpreter.

The Evolving Algebra speci�cation may be run in one run or a given
number of n steps may be executed each time, until the execution of the
Evolving Algebra speci�cation (eventually) halts.

It is possible to evaluate the state of the execution by running Scheme
expressions in the environment set up by the Evolving Algebra interpreter.

9.5.11 Statistics

The Scheme EA-interpreter

The Scheme EA-interpreter saves statistics about each Evolving Algebra
speci�cation and the run of the Evolving Algebra speci�cation. In this way
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it is possible to count the use of resources, such as use of �time� and �space�
when running the Evolving Algebra speci�cation.

The number of elements added to the universes can be seen as an ab-
stract count of the use of space in a computer, and the number of functions
assignment can be seen as an abstract count of the use of time in a computer.

The C EA-interpreter

The C Evolving Algebra interpreter does not count any statistics.

9.6 Issue Regarding Implementation of Extended

Evolving Algebra

In this section we will brie�y discuss some issue with regards to the future
implementation of the Extended Evolving Algebra. We will consider data
which needs to be associated with modules and with instances of modules,
and with the global data-structure. We will tell what Invoke and Invoke-
return commands should do, and brie�y discuss cases when we safely can
discard instances of a module. The possibility of discarding instances of
modules is essential if we want to optimize tail-recursive call of modules.

9.6.1 Instances of a Module

The purpose of dividing the Evolving Algebra speci�cation into modules is
to provide a possibility of making more than one logical execution sequence
of transitions. So within each instance of module we have to store the state
of locally de�ned functions each time another module or instance of a module
is invoked. The exception from this rule, is if we will never return to the
instance, which is the case when we specify to optimize tail recursive calls.

Some of the EA-functions is not intended to be updated. Such functions
may point to algorithms to be performed, where the algorithms remains
�xed during the execution of the EA-speci�cation. To optimize the use of
space, such function should be marked as �xed.

An implementation should record the following data about each instance
of a module:

� The identi�er of the instance.

� The name of the module associated with the instance.

� The contents of the Inherited value. The contents is the instance
identi�er given as the second parameter, the last time the instance
was invoked with the Invoke statement.

� The contents of the Itself value. The contents is always the identi�er
of the instance itself.

� The state of all local de�ned functions for the instance (except those
functions which never change).

� A �ag telling if this instance can be invoked again or not.
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9.6.2 The Module

Some data are shared for all instances of a module. An implementation
should record the following data about each module:

� The name of the module.

� The de�nition of the module.

� The state of all non-local functions de�ned to be visible only within
the module.

� Pointers to all functions visible outside the module.

9.6.3 Global Data

An implementation should record the following global data:

� The module which begins the execution of the Evolving Algebra spec-
i�cation.

� All functions de�ned outside the module.

� The state of each of the functions de�ned outside the module.

� For each de�ned function, information about the modules which are
allowed to access the function.

� The instance which is active.

� A �ag which tells if the Evolving Algebra has �nished the execution
or not.

9.6.4 Invoke and Invoke Return

When the Invoke statement is performed the following happens:

� The instance of the module given in the �rst parameter is invoked.

� The Inherited constant of the instance invoked is updated with the
second argument given to the Invoke statement.

� The execution of the instance continues according to the state of the
instance.

When the Invoke Return statement is performed the following happens:

� The instance of the module given in the parameter is invoked.

� The Inherited constant keeps its value.

� The execution of the instance continue according to the state of the
instance.
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9.6.5 Telling If the Instance Can Be Invoked Again

If the identi�er is stored in a non-local function, or is given as the second
argument to the Invoke statement, the instance should be marked to be
accessible from another instance.

If the identi�er of an instance is never stored in a non-local functions,
and its identi�er is not given to the Invoke function, the instance should be
marked an non-accessible when another instance is invoked with the Invoke
statement. The same is the case if the identi�er is never stored in a non-local
function and and another instance is invoked with Invoke-return.

A non accessible instance can be garbage collected when it becomes not
active.
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Chapter 10

Running the Interpreter

10.1 Supercombinators Used

10.1.1 Church Numeral for one (pure version)

The compilation and execution of the Evolving Algebra De�nition of simple
template instantiations was run on the supercombinator expressions shown
below. The expression is the Church Numeral for the number one de�ned
under the assumption that only S, K and I exists as real combinators (See p
48 [HS86] for the de�nition of the Church Numerals). All other combinators
are combinations of S, K and I.

One = (S B) (K I) f x

B = S (K S) K

S x y = x z (y z)

K x y = x

I z = z

10.1.2 Church Numeral for one (a simpler version)

This is the Church numeral for one assuming that B, S, K and I exists as
real combinators. This de�nition is simpler to compute than the previous
one.

One = (S B) (K I) f x

B x y z = x (y z)

S x y = x z (y z)

K x y = x

I z = z

10.2 Weak Head Normal Form

The weak head normal form is de�ned in [Jon87] as follows:

De�nition 13 A lambda expression is in weak head normal form (WHNF)
if and only if it is of the form

FE1E2 : : : En
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where n � 0;
and either F is a variable or data object

or F is a lambda abstraction or built-in function

(FE1E2 : : : En) is not a redex for m � n.

An expression has no top level redex if and only if it is in weak head normal

form.

It is important to realize that an expression in weak head normal form may
contain inner redexes, such that the expression in weak head normal form
is not necessarily in normal form.

10.2.1 Reducing the Church Numerals to Weak Head Nor-

mal Form

Both the template instantiations and the G-machine de�nitions of the su-
percombinators reduce the expressions into weak head normal form provided
that we do not introduce primitives or permit evaluation of strict arguments.

The Church Numeral constructed as de�ned above will reach weak nor-
mal form just after the �rst number is computed. The reason why, is that
the next redex to be chosen is not at the top level. The reduction process
stops since we have reached the weak head normal form. But the redex for
the Church Numeral is not in normal form.

For example the Church Numeral for two reduces as follows f and x

is here regarded as data objects, since we do not permit free variables in
supercombinator expressions:

Two = (S B (S B (K I))) f x

which in the �rst step is reduced to

B f ((S B) (K I) f) x

which is thereafter reduced to:

f ((((S B) (K I)) f) x)

The last expression is in weak head normal form but not in normal form
since it contains an inner redex.

10.2.2 Extending the algorithm to take strict arguments and

primitives

If we extend the algorithm for Template Instantiation and G-machine to
permit strict arguments we may force the inner redex to be evaluated. In
this this way can compute the Church Numeral into normal form, if desired,
since we can decide the time the arguments are to be evaluated.
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10.3 Template instantiations without De�ned Prim-

itives

The results below is for Evolving Algebra Code de�ning simple template
instantiations.

The Evolving Algebra de�nition consists of:

� 26 de�ned transitions.

� 93 de�ned assignments (function updates and function updates within
universe updates).

� 16 de�ned universe extensions.

� 60 de�ned function names.

� 14 de�ned universe names.

The Evolving Algebra De�nition was run with two versions of Church
Numerals.

10.3.1 Running the Church Numeral for one (pure version)

The result of the run of the complicated version of Church numeral for one
was as follows:

� The number of times a transitions is executed is 224.

� The number of assignments performed is 709.

� The number of new elements added to all the universe is 135

10.3.2 Running the Church Numeral for one (simple version)

The result of the run was as follows:

� The number of times a transitions is executed is 146.

� The number of assignments performed is 485.

� The number of new elements added to all the universe is 102.

10.4 Simple G-machine without De�ned Primitives

The results below is for Evolving Algebra Code de�ning G-machine compi-
lation and execution.

The Evolving Algebra de�nition consists of:

� 19 de�ned transitions.

� 85 de�ned assignments (function updates and function updates within
universe updates).
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� 16 de�ned universe extensions.

� 64 de�ned function names.

� 14 de�ned universe names.

10.4.1 Church Numeral for one (pure version)

The result of the run of the complicated version of Church numeral for one
was as follows:

� The number of times a transitions is executed is 154.

� The number of assignments performed is 613.

� The number of new elements added to all the universe is 137.

10.4.2 Church Numeral for one (a simpler version)

The result of the run was as follows:

� The number of times a transitions is executed is 113.

� The number of assignments performed is 484.

� The number of new elements added to all the universe is 111.

10.5 Discussion of the Result

10.5.1 Template Instantiations and G-machines for Super-

combinators without Primitives

When comparing the result of running the Evolving Algebra for template
instantiation with the result of running the Evolving Algebra for G-machine,
we see that the G-machine perform less number of assignments and tran-
sitions compared with the Template instantiation. On the other hand the
G-machine makes some more new elements to be added to the the universe.

For the simple version of Church Numeral for one, 9 more elements was
added to the universe using the G-machine, and for the more complicated
pure version of the Church Numeral only 2 more elements was added. The
reduction of number of assignments for the G-machine is 109, and the re-
duction of number of performed transitions is 70 for the complicated pure
version of the Church Numeral for one (7 and 33 for the simple version of
Church Numeral for one).
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Part IV

Discussion and Conclusion
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Introduction

This part consists of the following:

� Discussion of Evolving Algebra as a programming language.

� Discussion of other semantic languages and Evolving Algebra.

� Some concluding remarks.

Evolving Algebra is a speci�cation language which is more �exible with
regards to abstractions, and can be used to specify the use of computation
resources in an abstract way. So we are able to make the speci�cation
as detailed and complex as we want. Then, it makes sense also to regard
Evolving Algebra as some sort of prototyping programming language. So we
discuss the property of Core Evolving Algebra as a programming language
in chapter 11. The lack of control structures and the need to making module
as part of the abstractions is discussed.

In chapter 12 Evolving Algebra, Operational Semantic and Denotational
Semantic is discussed. To some extent a comparison with Evolving Algebra
and Denotational Semantic is made.

In chapter 13 we have made some concluding remarks about the work
done, main features of Evolving Algebra, and why extensions to the Evolv-
ing Algebra is needed. A short summary of other (besides the authors)
implementations of Evolving Algebra interpreters is written. The chapter
(and the reports) closes with a short notes of possible further research in
the �eld of Evolving Algebra.
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Chapter 11

Evolving Algebra as a

Programming Language

11.1 Introduction

When implementing the speci�cation of the interpretation and compilation
of the functional language on the Evolving Algebra interpreter, the Evolving
Algebra speci�cation language was used like a programming language. It
can be well worth to evaluate the Evolving Algebra speci�cation language as
a programming language. The reason why we would try such an evaluations
can be given as follows:

� When writing detailed speci�cation, the task of writing speci�cation
becomes very similar to the task of writing a computer program.

� The possibility that exists to specify use of resources such as time
and space, makes a speci�cation in Evolving Algebra more similar
to a computer program, than a speci�cation written in a some more
traditional speci�cation language (e. g. denotational semantics).

Besides of evaluating the Evolving Algebra as a programming language,
some new construction de�ning control structures which can be used to
extend the Evolving Algebra language are introduced in section 11.5.

It does notmean that the Evolving Algebra speci�cation language should
be extended with all those new constructions. It is merely intended to shed
light to the problem of writing, understanding and implementing speci�ca-
tion written in Evolving Algebra, especially at a detailed level of abstrac-
tion 1. The reason why we do not want to de�ne too many constructs, is
the potential problem and complication which lies in the needs of de�ning
the semantic of the speci�cation language itself.

The author have skill and training as a computer programmer. Many of
the construction suggested in section 11.5 is similar to well known construc-
tion in programming language. So, the suggested construction is assumed
to be easy to use and understand for persons with programming skills. But

1And may be other speci�cation languages with the same or more �exibility, which

may be discovered in the future.
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it can be questioned if even well known program language construction in
general is easy to understand from a semantic point of view and to use when
writing a program or speci�cation.

11.2 Evolving Algebra as a Speci�cation and Pro-

gramming Languages

11.2.1 Specifying Data Structures

Some of the strength of Evolving Algebra is the possibility to represent
whichever data structure you want. In the Evolving Algebra speci�cation
which specify the graph reduction we are able to represent trees, acyclic
graphs, stacks and sequence of instructions.

11.2.2 Control Structures

A language suitable for de�ning computing tasks or to be used as a spec-
i�cation language will need some control-structures. In addition to telling
what to do, we will need (to some degree) to tell how to do what we want.
If a speci�cation is going to be implemented, it is necessary to tell how to
perform what we want to achieve. That is true even if we only want to make
a prototype of an real implementation.

So which control structures is provided in the Core Evolving Algebra?

Test on a condition A transition with updates are performed if the pred-
icate belonging to the transition evaluates to �true� and this transition
is chosen among all transitions which predicates evaluates to �true�.

One main loop After execution of a transition all transitions are tested to
see if some of the predicates becomes �true�. The loop stops if none
of the transitions evaluates to �true�.

Simultaneous assignment All updates within a transition is performed
simultaneously.

Dynamic adding of new elements to a universe One ore more of the
universe may be extended by adding one or more new elements to the
universe.

As we can see it is not many control structures in the Core Evolving
Algebra Language. So we want to discuss what we loose and what we gain
by the lack of control structures.

When we try to specify a languages (or an algorithm) it is important
express the meaning of certain constructs (e.g optimized tail recursion). If
the speci�cation language itself contains few constructs we are forced to
de�ne the meaning of more powerful language constructs using only few and
hopefully well understood constructs in the speci�cations language.

On the other hand lack of control structures may cause some problems.
Some of the problems are listed below:
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� Di�cult to express what we want to express. It is not a natural way of
expressing many constructions. Say we want to express an iteration.
If we do not introduce new constructions we have to test if a predicate
for a transition satis�es some invariant, and execute the updates in
the transition as many times the invariant is satis�ed. So we will use
the same construction in Evolving Algebra to express an iteration and
a �case� or �if� statement in Evolving Algebra.

� Problems to divide the speci�cation into modules. Since we are forced
to use one simple main loop, all transitions in a speci�cation can be
dependent on each others, such that changes in one transition may
a�ect any of the other transitions in the speci�cations.

� Not easy to change the speci�cation. A change in a speci�cation may
cause the whole speci�cation to be rewritten. That is so since we can
not divide the speci�cation into modules.

� The speci�cation may be di�cult to read. That is especially true if
many details have to be speci�ed.

11.3 Some Examples

To illustrate some of the points above, we may use some examples. We
will �rst express the examples using some well known language constructs
(which should be self explanatory) and using some simple block structure.
Then we specify the same examples using Core Evolving Algebra.

11.3.1 Loops and Sequential Execution

The examples below will illustrate how we specify sequential processing and
loops in Evolving Algebra.

Making Two Sequences of Numbers

Say we want to express an algorithm which is supposed to do the following:

1. Generate an ascending sequence of numbers from 1 to n.

2. Generate an descending sequence of numbers from n to 1.

The ascending sequence has to be generated before the descending sequence
of numbers.

We will use two loops to generate the two sequences of numbers.
Using a block structured programming languages, we would express the

algorithm like the follows:

BEGIN_SEQUENCE

FOR a:=1 TO n

DO

BEGIN_SEQUENCE

a:=a+1;
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asc_seq:=concat(seq,a);

END_SEQUENCE

OD;

FOR b:=n TO 1

OD

BEGIN_SEQUENCE

b:=b-1;

desc_seq:=concat(seq,b);

END_SEQUENCE

OD;

END_SEQUENCE

The two main step in the algorithm is the generation of the ascending
and the descending sequence.

In Evolving Algebra we will express the two loops using the following
transitions (with the initial values given below):

% The initial values

a==0

b==n (where n is a number)

make_descending_sequence==false

The Evolving Algebra transitions follows below:

if a < n &

make_ascending_sequence

then

a:=a+1;

asc_seq:=concat(asc_seq,a)

fi

if a=n &

not(make_descending_sequence)

then

make_descending_sequence:=true;

fi

if b > 1 &

make_descending_sequence

then

b:=b-1;

desc_seq:=concat(desc_seq,a);

fi

We are able to get the job done in Evolving Algebra. However, the
price we have to pay is that we obscure the fact that the two main steps in
the algorithms is the two loops making the ascending and the descending
sequence of numbers.
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We might be tempted to believe that the �rst and last transitions above
resembles the two loops. However, they do not, since both transitions per-
form just one round in the loop each time they are performed.

We will give another illustration of this in the next examples.

Making one sequence

The next algorithm makes a sequence in one loop.
Here we want to express the generation of the following sequence:

1; n; 2; n� 1; : : : ; n� 1; 2; n; 1

In a block structured programming language we might use the following
statements to express the generation of the sequence above:

FOR i=1 TO n

DO

BEGIN_SEQUENCE

a:=i;

seq:=concat(seq,a);

b:=n-i;

seq:=concat(seq,b);

END_SEQUENCE

OD

The main step is the loop which generates the sequence.
The tasks to be performed each time the loop is performed is to generate

the ascending number followed by the descending number.
In Evolving Algebra we would express the generation of the sequence

above in the following way (the initial values is given �rst followed by the
Evolving Algebra transitions):

a==0

b==n % (where n is a number)

make_ascending_number==true

make_descending_number==false

The Evolving Algebra Transitions follows below:

if a < n &

make_ascending_number

then

a:=a+1;

seq:=concat(seq,a);

make_ascending_number:=false

make_descending_number:=true

fi

if b > 1 &

make_descending_number

then
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b:=b-1;

seq:=concat(seq,b);

make_ascending_number:=true;

make_descending_number:=false;

fi

In the example above the �rst transition add the �rst ascending number
within the loop to the sequence of numbers, and the last transition adds the
second descending number within the loop to the sequence of numbers. The
loop is �nished when none of the transitions above gets �true� in the if part
of the transition.

Here the Evolving Algebra transitions describe the minor steps within
the loop. The �rst transition adds the next ascending element to the se-
quence, the second transition adds the next descending number to the se-
quence. Again we see that the main step, which is the loop generating the
sequence is obscured in the Evolving Algebra speci�cation.

Give a more Abstract Speci�cation

We may try to abstract the algorithm, so we do not specify the iterations.
So in a conventional language we express the algorithm which generates the
ascending and descending sequences of numbers at the more abstract level:

BEGIN_SEQUENCE

make_ascending_seq_of_numbers;

make_descending_seq_of_numbers;

END_SEQUENCE

This algorithm can be translated to Evolving Algebra in the following
way (the initial values is given �rst, followed by the transitions):

descending_sequence==false

ascending_sequence==true

The transitions follows below:

if ascending_sequence

then

asc_seq:=make_ascending_seq_of_numbers;

ascending_sequence:=false;

descending_sequence:=true;

fi

if descending_sequence

then

desc_seq:=make_descending_seq_of_numbers;

descending_sequence:=false;

fi
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Note that algorithm still has to meet the requirement that the ascending
sequence has to be made before the descending sequence.

Here we are able to express the twomain steps to be performed. The cost
is that we can not specify anything about the loops to be performed in order
to make the two sequences. If we want to make a more detailed speci�cation
which describe how the two sequences of numbers are generated, we need to
rewrite the whole speci�cation.

Some Comments

The two examples above show us that it is possible to specify algorithms
which is using loop constructs and sequential execution using Evolving Al-
gebra. However, if we want to express such algorithm step by step (where we
regard a loop as a main step), we are not able to to so in Evolving Algebra
(unless we abstract out the speci�cation of the loops).

We are simply missing a suitable general construct to de�ne a loop, and
in addition we do not have any construct expressing that some statements
are to be performed in a sequence.

11.3.2 Making the two sequences in parallel

We may relax on the requirement on which order the the two sequents of
numbers are to be made.

An Abstract Speci�cation

First we use a block structured language to express the algorithm:

DO_IN_PARALLEL

make_ascending_seq_of_number;

make_descending_seq_of_number;

END_DO_IN_PARALLEL

No we can give the following abstract Evolving Algebra version of the
algorithm:

if make_sequence

then

asc_seq:=make_ascending_seq_of_numbers;

desc_seq:=make_descending_seq_of_numbers;

fi

At this level we can clearly express the two main steps to be performed
in parallel.

A Less Abstract Speci�cation

Each transition adds a descending or an ascending element to the descending
or ascending sequence of numbers. The two transitions may be interleaved
in arbitrary order, the only requirement is that each number within each
sequence is performed in right order,

The less abstract version of the algorithm will now be as follows:
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DO_IN_PARALLEL

FOR a:=1 TO n

DO

BEGIN_SEQUENCE

a:=a+1;

asc_seq:=concat(seq,a);

END_SEQUENCE

OD;

FOR b:=n TO 1

OD

BEGIN_SEQUENCE

b:=b-1;

desc_seq:=concat(seq,b);

END_SEQUENCE

OD;

END_DO_IN_PARALLEL

In Evolving Algebra we will use the following transitions:

% The initial values

a==0

b==n (where n is a number)

if a < n

then

a:=a+1;

asc_seq:=concat(asc_seq,a)

fi

if b > 1

then

b:=b-1;

desc_seq:=concat(desc_seq,a);

fi

Again we see that the transitions express the minor steps to be performed
within each loop. The main tasks of making two sequences in parallel are
not expressed in any explicit way.

In the block structured language, it is easy to follow both the minor and
major steps in the algorithm.

It seems that the core of the problems lies in the lack of suitable control
structures in Evolving Algebra. So we will investigate this point further
giving more examples.

11.3.3 Dividing into Cases

Test if the an integer is positive, negative or zero

This very simple algorithm will tell if an integer is positive, negative or zero.
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Using a block structured languages we may express the simple test as
follows:

CASE number OF

negative(number):

result:=Negative

zero(number):

result:=Zero

positive(number):

result:=Positive

END_CASE

This simple test will translate to the following Evolving Algebra transi-
tions:

if negative(number)

then

result:=Negative

fi

if zero(number)

then

result:=Zero

fi

if positive(number)

then

result:=Zero

fi

The three Evolving Algebra transitions describe the three possible out-
come of the test on the number. If we regard the test as one step, we are
able in this particular case to describe the step using the three Evolving
Algebra transition shown above.

However, we have in the examples so far, used the guard (the if part) of
the transition to specify the following di�erent language constructs:

� Sequential execution

� A loop

� Selection

A more Complex Test

No we extend the example to test if the number is an integer, a real number
or a complex number. If it is an integer number we test if it is positive
negative or a zero number. The major step is the test if the number is
integer, a real or a complex number. The minor step is to test if the integer
is positive, negative or zero.

Using a Case construction in a block structured language, we de�ne the
test as follows:
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CASE number OF

integer(number):

CASE number OF

negative(number):

result:=Integer

zero(number):

result:=Zero

positive(number):

result:=Positive

END_CASE

real(number):

result:=Real

complex(number):

result:=Complex

END_CASE

The translation to Evolving Algebra will be as follows:

if integer(number) &

negative(number)

then

result:=Negative

fi

if integer(number) &

zero(number)

then

result:=Zero

fi

if integer(number) &

positive(number)

then

result:=Zero

fi

if real(number)

then

result:=Real

fi

if complex(number)

then

result:=Complex

fi

Again we see that we are able to get the work done in Core Evolving
Algebra. But the test as stated in the block structured language, describe
the test in two steps, the �rst step is to �nd out if the number is an integer,
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a real number or complex number. If the number is an integer the second
step is to test if the number is positive, negative or zero. This is obscured
in the Evolving Transition above, by combining the two tests into one test
for integers.

We may ensure that the two tests are performed strictly in sequence by
adding a new Evolving Algebra transition:

if integer(number)

then

result:=Integer

fi

In addition we change the tests for positive, negative or zero integer in the
following way (only the Evolving Algebra transition for the positive integer
is shown):

if result = Integer &

positive(number)

then

result:=Positive

fi

Even this speci�cation is not very clear. We are forced to use six tran-
sition to describe the tests. For the reader of the speci�cation it is not very
clear that we perform the tests into two sequential steps. In addition which
step is the major step and which step is the minor step is not obvious.

11.3.4 De�ne Common Operation on some Signatures

Say, we want to manipulate a sequence of elements. We may want to take
the �rst element or the nth' element from a sequence. In addition we want
to take the sequence with the �rst element removed and test if the sequence
is empty.

In the example we have a sequence of letters and a sequence of numbers.
The signature is given below:

numbers: NUMBER*

letters: LETTER*

The functions for the sequence of numbers will be as follows:

first-number: NUMBER* --> NUMBER

tail-number: NUMBER* --> NUMBER*

nth-number: POSITION x NUMBER* --> NUMBER

is_empty_numbers: NUMBER* --> BOOL

The functions for the sequence of letters is shown below:

first-letter: LETTER* --> LETTER

tail-letter: LETTER* --> LETTER*

nth-letter: POSITION x LETTER* --> LETTER

is_empty_letters: LETTER* --> BOOL

As we can see, we have to invent di�erent names for common operators,
depending on the signature the operators is applied upon.
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11.3.5 Modules and Subroutine Calls

The extension suggested in chapter 3 covers the problem of dividing a spec-
i�cation into a modules and subroutines. So, from the programmers point
of view, it is not more to add.

11.4 The Dynamic Part of Evolving Algebra De-

scribed as an Algorithm

We may think that the tedious and inconvenient way to de�ne the Evolving
Algebra speci�cation is due to some very fundamental basic elements in the
language. Since the static part (de�nition of the signatures is based on �rst
order logic, we may regard this part as a basic and well understood part of
Evolving Algebra.

The question is if the dynamic part can be considered to be a similar
basic well understood part of the speci�cation language.

Let us try to describe the process of executing a Evolving Algebra spec-
i�cation using some block structured language.

WHILE <some if-predicates is evaluated to true>

DO

SELECT ARBITRARY ONE FROM

<all transition where the

if-predicates is evaluated to true>

WITH THE SELECTED <transition>

DO IN PARALLEL

FOR EVERY <specified universe extension> DO

DO IN SEQUENCE

FOR EVERY <specified universe> DO

MAKE <new elements and add to the universe>;

OD (for every);

FOR EVERY <specified function update within the

universe extension> DO

FOR EVERY <possible combination of new elements

within an function update> DO

MAKE <an instances of the function update> AND

PERFORM FUNCTION UPDATE <instance>

OD (for every)

OD (for every);

OD (in sequence)

OD (for every):

FOR EVERY <specified function update at outer level> DO

PERFORM FUNCTION UPDATE <as specified>

OD

OD (do in parallel)

END <selected transition>

OD (while loop)
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This description should not be considered as a new de�nition of Evolving

Algebra (The de�nition can be found in [BR91c] and [Bör90a]). It is an

illustration of how dynamic part of the Evolving Algebra speci�cation lan-

guage itself can be described as a quite complex algorithm. This description

must be understood in some way.

This somewhat abstract description of an Evolving Algebra interpret
reveals that the description of the dynamic part of Evolving Algebra is not
simple nor is build using well understood primitive building stones.

We have construction such as SELECT ARBITRARY ONE FROM and
DO IN PARALLEL ... : ... OD and DO IN SEQUENCE ... ; ... OD
which itself needs a semantic speci�cation. We need to specify exactly what
PERFORM FUNCTION UPDATE means. In addition we need to de�ne
the semantic for the construction FOR EVERY ... DO ... OD.

We give an informal explanation of the constructs used above:

WHILE ... DO ... OD As long as the stated conditions is true do what is
speci�ed in the inner block. This loop makes a sequence of operations.

SELECT ARBITRARY ONE FROM ... Choose arbitrary one element
from the �nite set speci�ed.

WITH THE SELECTED ... END With the chosen element do what is
speci�ed in the inner block.

DO IN PARALLEL ... : ... OD Do the speci�ed operations in parallel

DO IN SEQUENCE ... ; ... OD Do the speci�ed operations in sequence.

FOR EVERY ... DO ... OD For every element in the set do the speci-
�ed operation once. The set is assumed to be �nite. The computation
may be performed in any order or in parallel.

PERFORM FUNCTION UPDATE Compute the functions update. The
arguments on the left hand sides specify in which point the function
gets a new value, and the expression at the right hand side gives the
new value. The assignments is done such that the function updates
may be performed in parallel.

MAKE Make what the text in the speci�cation says.

It is possible to get an algorithmic understanding of the abstract descrip-
tion, since we always handle a �nite many transitions, �nite many universes,
�nite many elements to be added to the universes, �nite many function up-
dates and universe update within a transition.

From the description above we can see that Evolving Algebra to some
extent favor speci�cation suited for parallel programming and more or less
indeterminate choices.

The examples above (See section 11.3) illustrate that speci�cation for
determinate programming, where many operations are to be performed in
some order is poorly supported. Simple language constructs as for and while
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loops is tedious to specify in Evolving Algebra. And it is not much support
to modularize the speci�cation.

We could argue that some degree of indeterminate speci�cation and par-
allel constructions provides the necessary abstraction.

However, it is up to the person who has to make the speci�cation to
decide the level of abstraction at every part of the speci�cation. So the
speci�cation language itself should not enforce particular types of speci�ca-
tions.

A basic speci�cation language should therefore support speci�cation of
usual language construct at any degree of determination and independent
of the possibilities to execute some part of the speci�cation in parallel.

11.5 Some New Control Structures

Here we introduce some new control structures. The signature is assumed
to be �xed, so only the dynamic part (transitions) of Evolving Algebra are
extended. The control structure presented is common language constructs
well known in common programming languages.

We will for rest of this section speak about pure Evolving Algebra as
Evolving Algebra without any of the control structures introduced below.

11.5.1 Subroutines

We need some tools to support modules. One of the simplest way to support
module is to introduce a subroutine construct. In chapter 3 we discuss much

more general construction for modules.

We introduce the PERFORM command for a subroutine call:

if <predicate>

then

....

PERFORM <module-name>

....

fi

The transitions belonging to a subroutine module are encapsulated as fol-
lows:

SUBROUTINE MODULE <module-name>

% First transitions listed in the module

if <predicate-1>

then

<updates-1>

fi

...

SUBROUTINE MODULE END
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Translation to Pure Evolving Algebra

We will �rst show the translation of a subroutine call to pure Evolving
Algebra.

if <predicate>

then

...

% Translation of PERFORM <module-name>

EXTEND SUBRELEM by temp(SUBRELEM)

subroutine_name(temp(SUBRELEM)):=<module-name>

subroutine_stack:=push_subroutine_stack

(temp(SUBRELEM),subroutine_stack)

ENDEXTEND

...

fi

Next the translation of the subroutines module follows below:

% Translation of the first transitions

% listed in the module.

%

if subroutine_name(top_subroutine_element

(subroutine_stack))=<module-name>

& <predicate-1>

then

<updates-1>

fi

% Other transitions in the module comes below.

...

% A special transitions which returns to the calling level of transitions.

%

if subroutine_name(top_subroutine_element

(subroutine_stack))=<module-name>

& not(<predicate-1>)

%

% Predicates for other transitions in the module comes

% below in the test

...

then

subroutine_stack:=pop_subroutine_stack(subroutine_stack)

fi

Informal Description of the Subroutines

The following are executed when a subroutine call are performed:

� All transitions within the subroutine module are tested.
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� If some of the predicates has the value �true� one of the transitions
are performed.

� When none of the transitions are �true� the control is returned to the
calling level (which may be another module).

Recursive calls

We may use the constructs above to specify recursive calls. If we do not care
about how the recursive calls are performed the translation above su�ce.
However, if we do care (e. g. we want to implement the optimized tail
recursion as de�ned in the Scheme Standard) about how recursive calls are
to be implemented, it is better to use the general mechanism introduced in
chapter 3.

Iteration as an explicit construct

A special case of a recursive control structure is known as an iteration. We
do not use any stack to hold any information about the level of the recursion
when we use an iteration. Therefor many programming language use this
form of control structure to explicitly specify an tail recursive call which is
not using any stack to store the levels of recursion calls (See also chapter 3
which specify construction for optimized tail recursive call).

We introduce the iteration as follows:

if <predicate>

then

WHILE <invariant-true> DO

<set-of-updates-inv>

OD

<set-of-updates-after>

fi

We do not introduce similar constructs known as repeat loop, for loop or a
combination of the repeat and the while loop.

The while loop above could easily be translated to pure Evolving Algebra
as follows:

if <predicate>

& <invariant-true>

then

<set-of-updates-inv>

fi

The �rst transition above is the transitions in the while loop.

if <predicate>

& not(<invariant-true>)

then

<set-of-updates-after>

fi

The last transition is the set of updates to be performed after the while loop.
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11.5.2 Sequences

Sometimes it may be convenient to state that the set of updates have to be
ordered in some sequences.

if <predicate>

then

BEGIN SEQUENCE

<set-of-updates-0>

NEXT-STEP:

....

END SEQUENCE

fi

Translation to Pure Evolving Algebra

The translation to pure Evolving Algebra is shown below:

% Start of the sequence.

if <predicate>

then

next_step_<trans-id>:=0

fi

% The first set of updates in the sequence

if next_step_<trans-id>=0

then

next_step_<trans-id>:=add(1,next_step_<trans-id>)

<set-of-updates-0>

fi

% Reset at the end of the sequence

if next_step_<trans-id> > no_of_set_of_updates

then

next_step_<trans-id>:=0

fi

11.5.3 Case Construct

At last we introduce the case command as an slightly generalization of the
if construct. We may give the case command the following form:

if <predicate>

then

CASE element OF

<val-1>:

<set-of-updates-1>

<val-2>:

NOUPDATES

......
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<val-n>:

<set-of-updates-n>

OTHERWISE

<set-of-updates-n+1>

ESAC

<other-updates>

fi

We translates the case command to the following pure Evolving Algebra:

% One branch

if <predicate>

& <element> = <val-1>

then

<set-of-updates-1>

<other-updates>

fi

% Branch with no updates

if <predicate>

& <element> = <val-2>

then

<other-updates>

% The default branch

if <predicate>

& <element> =/= <val-1>

& <element> =/= <val-2>

...

& <element> =/= <val-n>

then

<set-of-updates-n+1>

<other-updates>

fi

11.5.4 Polymorphic Operators

Every functions in Evolving Algebra is connected to a signature de�nition.
So in order to specify common operation (e. g. operations on a list) we
need to specify a new function for every signature the operation applies to.
We do not always want to invent new name to specify common functions,
so we may want to introduce polymorphic operations. As an example we
introduce some polymorphic operations on list structurers:

NTH_ELEMENT(list-of-instructions)

FIRST_ELEMENT(list-of-instructions)

TAIL_LIST(list-of-instructions)

NULL(list-of-instructions)
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We assume that it is possible to translate the polymorphic de�nitions
to pure Evolving Algebra for all signatures (or types) we want to apply the
operators to.

The example above may be translated to functions applied to a list of
instructions as shown below. The operators applied on other data structures
are to be translated to similar Evolving Algebra functions.

nth_element_prog_stack(list_of_instructions)

first_element_prog_stack(list_of_instructions)

tail_list_prog_stack(list_of_instructions)

null_list_prog_stack(list_of_instructions)

11.6 Abstraction

We do not always want to specify a language constructs or an algorithm
in great details. So we will want to make abstractions in our speci�cation.
How easy is it to make make abstractions in Evolving Algebra?

We do not need to think of the speci�cation at the level of assembly
programming (or at the level of de�ning Turing Machine). The Evolving
Algebra gives the �exibility to make more abstract speci�cations.

When making a speci�cation on how to make a graph, we can think on
the levels of nodes, and archs in the graph. It is simple to make updates
which corresponds naturally to the execution steps.

11.6.1 Abstraction and Making Modular Parts of the Spec-

i�cation

If we for some reasons do not want to specify some mechanism, we simply
invent some functions (names), and maybe we will tell (informally) what
this function is supposed to do. In this way we can do some abstraction by
simply hiding some mechanisms.

We can also specify functions which does not taking any argument, us-
ing those functions as �oracles�. We can then try to make independent
speci�cations of what those functions are supposed to do.

On the other hand, we are left with quite primitive control structures
in pure Evolving Algebra. This lack of control structures cause problems,
simply because we are not able to modularize the speci�cation, and then
hide details in some of the modules. So we are forced to totally rewrite the
Evolving Algebra speci�cation for every level of abstraction.

If we extend the control structures of Evolving Algebra it may be easier
to make the necessary abstraction within some part of the speci�cation,
without a�ecting other part of the speci�cation.

11.6.2 Levels of Abstraction in the Speci�cation

It may be desirable to make the speci�cation in more than one level of
abstraction. At least we would want to make a speci�cation on a level
intended to be read only by man, and in addition make a speci�cation which
could be interpreted by an Evolving Algebra interpreter.
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11.6.3 Speci�cation to be Read by Man

A speci�cation at this level needs only contain enough to be understood
by a human reader. All unimportant mechanisms can be hidden, such that
the speci�cation only deals with what is considered to be important. To
ease the reading we want to extend the number of control structures in pure
Evolving Algebra.

11.6.4 Speci�cation as a Prototype Implementation

A speci�cation intended to be evaluated by an Evolving Algebra interpreter,
needs to be speci�ed in a such way that it can be executed on a computer.
If the interpret to be used is using only pure Evolving Algebra, then the
speci�cation itself has to be written at a quite low level, or some (maybe
large procedures) has to be written for functions which has to be abstracted.
In addition the speci�cation may be di�cult to read for humans.

11.6.5 Combining Di�erent Levels of Speci�cations

It seems to be di�cult to combine di�erent levels of abstractions in an
Evolving Algebra speci�cation. Lack of the possibilities to modularize an
Evolving Algebra speci�cation, makes it di�cult to combine di�erent levels
of speci�cations.

We may do such combinations easier by introducing new the control
structures or newmechanisms. As an example the introduction of subroutine
makes it easier to abstract parts of the speci�cation.

11.7 Understanding the Evolving Algebra Speci�-

cation

A speci�cation is intended to be read by humans. So is it possible to use
Evolving Algebra to write speci�cation which can be read and understood?
It seems to be possible even when using pure Evolving Algebra. We have
the following possibilities:

� We can write a speci�cation at a level intended most to be read by
humans. We do not try to implement any prototype of such a speci�-
cation.

� It may be desirable to write a speci�cation which can be interpreted
by an Evolving Algebra interpret. If we want such a speci�cation to be
read and understood by humans, it may be necessary to slightly rewrite
the speci�cation using some abbreviations of composite functions.

As an example of an abbreviation we may write:

first_item_from_source:=first(pointer_to(get_source(input_list)))

where functions on the right hand side is supposed to be small primitives
easy to implement (as procedures) in an Evolving Algebra evaluator.
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11.8 Specifying Use of Resources

A usual approach when making semantic speci�cation is to specify what to
do and nothing else. Use of resources such as processing time and memory
space is considered not to be part of a semantic speci�cation. Use of time and
space depends on the particular implementation of the speci�ed algorithm
or language.

It can be good reason not to limit the semantic speci�cation to only
describe what to do. Someone who write a program or algorithm to be
computed will be concerned about the time and space used to perform the
computation. Much e�ort has to be done to �nd solution which makes
reasonable use of resources. So why should use of resources not be part of
the semantic speci�cation?

As an example we can take the the optimalization of the tail recursive
call in Lisp. An tail recursive procedure, is an recursive procedure where
the recursive call is performed as the last sentence in a sequence. In the
case of tail recursive procedures it is possible to skip the operation of saving
the procedure instance on a stack for later execution when performing the
recursive call.

If we optimize the tail recursive call as described above, a tail recursive
call will not allocate space dynamicly to procedure instances. A tail recur-
sive procedure call will be equivalent to perform iterations in a imperative
language (like Algol) with regards to use of space. So there is no need to
to introduce special construction like do loops to perform iterations, since a
tail recursive call can be used.

In Scheme the optimization of tail recursive procedure call is speci�ed
to be the part of the Scheme language.

In contrast the Common Lisp do not specify such optimization. To
avoid wasting space we have to use special construction similar to do loop
to perform iterations instead of using tail recursive call.

We can see the needs of specifying the use of resources in an abstract
way as part of the semantic.

Evolving Algebra is well suited to specify use of resources in an abstract
way (independent of implementation on a speci�c machine, operating system
or programming language).

In addition we are able to measure the resources used, when implement-
ing the speci�cation at an Evolving Algebra interpret.
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Chapter 12

Evolving Algebra and Other

Semantic Languages

In this section we will describe other semantic languages and to some extent
compare the other languages with the Evolving Algebra semantic language.

The author is aware the di�culties of comparing di�erent semantic lan-
guages. Di�erent semantic languages may be useful to express di�erent
aspects and way of thinking about the programming language or algorithm.
So no comparison can be really justi�ed, if the purpose is to �nd out which
is the best of the semantic languages. So the purpose here is mainly to shed
light on how Evolving Algebra is as a semantic language in relation to other
semantic language.

12.1 Evolving Algebra and Operational Semantics

We will brie�y compare Evolving Algebra and Operational Semantics. In
this section we will discuss the following main �avors of operational seman-
tics:

� Operational semantics as a transitions system

� Structural Operational Semantics

� Natural Semantics

Then, we will treat the aspects of Evolving Algebra language which is of
special interest with regards to the operational semantics.

12.1.1 Operational Semantics Described as a Transitions Sys-

tem

General Framework

Operational semantics can be described as a general transition system (See [Plo81]).
Each step can be seen as a transition from one con�guration to the next con-
�guration, and is called a transition relation:


 ! 
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A terminal transition system is a transition system, where it exists a
set of �nal con�guration T such that no transition relation from a �nal
con�guration to other con�gurations holds. This set T of con�gurations is
intended to denote normal termination of the system.

A named transition system is a transition system where each transition
relation is given a distinct name.

A stuck con�guration is a con�guration in a terminal transition system,
say �, such that no relation to other transition relation holds and � 62 T . A
stuck con�guration is intended to denote an error termination of the system.

Transition Systems and Automata

The �rst type of systems speci�ed using the transition systems outlined
above, is di�erent types of automata.

The three types of automata described in [Plo81] is

� Finite automata

� Petri Nets

� SMC machine

We will below give a brief summary of embedding of the Finite Automata
and the SMC machine into the transition system.

The �nite automata is embedded into a terminal transition systems by
de�ning each con�guration to be a pair of a (control) state and a sequence
in the given alphabet (data). A set of �nal con�guration T is given such
that any �nal con�guration has a control component in the �nal state F of
the �nite automata. We also assume that an initial control component q0 is
given.

The Stack Memory Control (SMC) machine is embedded into a terminal
transition system bye de�ning each con�guration to consist of a triple of:

� Value Stack

� Memory Cell

� Control Stack

The L-language which is used as an example language can compute sim-
ple arithmetic and boolean expressions, and perform assignment, sequencing
of operations, if tests, while loop and operation of null arity. The SMC ma-
chine is the tool used to de�ne the semantic to the L-language.

Operational Semantics for Simple Expressions and Commands

In chapter 2 in [Plo81] the SMC machine approach to semantic language is
generalized. The SMC machine tends to make too many transition steps,
because the use of memory is treated in great detail. So the very detailed
speci�cation regarding the use of memory is omitted. The transition steps
becomes more like a sequence of reductions in a term rewrite system. In
fact the possible transitions is speci�ed like a formal deduction system.
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In the last three chapters in [Plo81] the operational semantics is described
in form of derivation rules. Each transition now becomes one step in the term
rewriting system (or one step in a formal deduction system which specify
the properties of the language).

In this way semantics for the following command language constructs
are developed:

Simple Expression Expression such as addition, multiplication, subtrac-
tion, division, and boolean expressions.

Boolean expression The usual operators are treated. Rules for sequential
evaluation and parallel evaluation is speci�ed.

Simple Commands Commands such as assignment, sequencing, if, then,
else and while.

Dynamic Errors Type checking mechanism for catching dynamic errors,
which may occur when a language construct is evaluated.

Static Errors Type checking mechanism for catching static errors, which
can be detected after a syntactic check of the program construction.

Examples of how the principle of structural induction may be applied to
the semantics rules for simple expressions and commands mentioned above
are given.

De�nition and Declarations

The operational semantics for de�nitions and declarations is given in form
of formal deduction rules. The following language constructs is treated in
chapter 3 in [Plo81]:

Local De�nitions Local de�nitions in a simple applicative language.

Compound De�nitions Sequential de�nitions, simultaneous de�nitions
and block de�nitions in an applicative language.

Declarations Declarations in an imperative language. Sequential, simul-
taneous and block de�nitions is treated. Values, stores and names
becomes the three main elements in the semantic description.

Functions, Procedures and Classes

In chapter 4 in [Plo81] a semantic for functions, procedures and classes
are speci�ed. The semantics for the following parameter mechanisms are
speci�ed:

� Call by value

� Call by name

� Call by reference
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12.1.2 Structural Operational Semantics

Structural operational semantics try to describe the individual steps in the
execution of a program (See Section 2.1 in [NN92]).

The express the semantic we use a transition relation of the form

(S; s)) 


where S is statement(s) to be executed and s is the initial state. The 
 may
be one of two

� A new con�guration (S1; s1) meaning that the execution of S is not
�nished and the new con�guration which says what remains to do.

� A state st meaning that the execution of S is �nished.

From this form and the usual notation of derivational rules the semantic
is given by semantic rules and and axioms, which form sequences of deriva-
tions.

The derivation sequence may be:

� Finite, where the sequence ends in a de�ned state.

� In�nite

� Finite, not ending in any de�ned state.

The last case is obtained by introducing a statement abort and not
de�ning any relation for abort. The derivation sequence will thus end in an
intermediate con�guration, meaning that the execution of abort does not
gives any de�ned state.

In structural operational semantics we may express usual language con-
structions such as assignment, the empty statement, composition, the if

statement and the while statement. In addition we are able to express a
non-deterministic or statement, and interleaving in parallel a statements.
We may also express the semantic for a block structured language (See p 52
in [NN92]).

It seems to be di�cult to express operation on arbitrary data structures
using Structured Operational Semantics.

12.1.3 Natural Semantics

Natural semantics try to describe the initial and �nal state after execution
of a statement in a program. See Section 2.2 in [NN92]. To describe a
transition we use the relation of the form:

(S; s)) s1

The meaning of this relation is that the execution of the statement S
from the state s will terminate in the state s1.

From this form we can de�ne semantics using axioms an rules. The
derivations has the form of derivation tree, since we may use more than one
premise in the rules.

The derivation tree may be:
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� Finite, where the sequence ends in a de�ned state.

� In�nite derivation tree.

An derivation tree will be in�nite if the execution can not reach a de�ned
for one of the following reasons:

� The execution loops.

� No de�ned state can be reached because the execution aborts.

As in structural operational semantics we may express usual language
constructions as assignment, the empty statement, composition, the if

statement and the while statement in natural semantics.

When concerning nondeterministic or statement and interleaving in par-
allel statements, we have the following situation:

Non determinism Can not be exactly speci�ed. The looping is suppressed
by non-determinism.

Execution in parallel The interleaving can not be expressed since all ex-
ecution of statements is atomic.

We can without to much di�culties express the semantics for languages
using block structures and procedures.

As for structured operational semantics it seems di�cult to express op-
erations on arbitrary data structures.

12.1.4 Use of Operational Semantics

When using Operational Semantics we de�ne some operations to be per-
formed on some �xed data structures. In this way we hope to explain the
semantics of the language constructs by telling which operations the con-
structs are supposed to perform on an abstract computer. However, opera-
tion on a �xed data-structure sets a limit of what we can express.

Use of resources

When generating �nite derivation sequences or derivation trees in structural
operational semantics as described in [Plo81] and in [NN92] we may count
the number of steps used to describe the execution tree for (an instance) of
a program. However, it may be quite di�cult (if possible at all) to relate
the number of derivation steps to some abstract measure of resources used
(e.g. times of execution or use of space).

In natural semantics it is even worser. We are not able to distinguish a
loop which lasts forever, and an execution which terminates in some unde-
�ned state after a �nite number of steps (See p 44 in [NN92]).

So, we can safely conclude that the ability to specify use of resources as
the part of the semantic is not possible using operational semantics.
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12.1.5 Evolving Algebra

Pure Evolving Algebra may seem very similar to operational semantics.
However, the main di�erence is that we are not bound to any particular
data structure. Instead we are able to specify operations on any data struc-
ture we want. And since we are free to de�ne whichever functions we want,
we are free to choose any level of abstraction.

In the pure Evolving Algebra we are limited to use very few operations
in order to de�ne a semantic:

� An assignment

� The if test in the �rst part of a transition

� Generation of new elements to add to some universe.

� One loop which lasts as long there are transitions to perform.

The bene�t of using so few operations is the possibility of counting the
use of those operations. In this way we get easily an abstract measure of
the use of resources (number of performed function updates and number of
new elements added to the universes), which may correspond to the use of
time and space on a computer.

However, we may abstract out some parts of the semantic by de�ning
function which is said to perform some parts of the execution. So two
assignments (often called function updates in this report) may not use the
same amount of resources, since we may hide the use of resources behind
the function de�ned and used. In such case it may make sense to measure
the use of each de�ned function update and each new elements created for
every universe used in the Evolving Algebra speci�cation.

12.2 Evolving Algebra and Denotational Seman-

tics

In section we will compare core evolving algebra and denotational seman-
tics. The description of the denotational semantics is mainly based on the
text [Kir91].

The comparison is divided into the following main sections:

1. An introduction section about Evolving Algebra and Denotational Se-
mantics.

2. Comparison of language constructs.

3. How to describe properties in the semantic languages.

12.2.1 Evolving Algebra

Evolving algebra consists of a many-sorted, �nite, partial, �rst order algebra
and a set of transition rules.
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The transition rules change the value of functions and set in the algebra,
so we can say that a semantic speci�cation written in evolving algebra is
dynamic.

We can change the algebra in the following way using the transition
rules:

� Function Updates.

� Adding a new element to a set.

� Delete an element of a set.

An evolving algebra speci�cation has a set of transition rules. Every
transition rule consists of a test and lot of updates. All changes are per-
formed step by step. An operational description of the changes in the algebra
could be described in the following way:

while <some transitions apply> do

1. Perform a non deterministic selection among the transitions

which meets the condition for execution.

2. Perform all updates within a transition simultaneous.

od

If none of the transitions apply then Stop.

If not more than one transition apply at every step we are making a
model of a determinate system. In the other case we are making model of a
system which is indeterminate.

12.2.2 Denotational Semantics

The semantic is given by specifying mappings from a syntactical to a se-
mantic domain.

Recursive Equations

We need to de�ne functions as recursive equations. An example of a recursive
equation follows:

f(x) = if b(x) then f(g(x)) else x)

To ensure that a recursive equation has at least one solution, we must
show that the recursive de�ned function f has at at least one �x-points. In
this way we ensure that the recursive equation is at least partial de�ned.

Assign the following signature for the function f :

f : A! A

If the equation
a = f(a)

holds for at least one element a in A, then we say f has a �x-points.
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If f has one ore more �x-points we de�ne the semantic function for the
equation

a = f(a)

to be the least �x-points of f .

Such �x-points exists if and only if the function f is continuous. A func-
tion which maps a complete partial ordering to a complete partial ordering is
continuous if and only if it is monotone and preserve the least upper bound.

Models in Denotational Semantics

denotational semantics and the models associated with the speci�cations
gives precise mathematical de�nitions. The price we have to pay is the use
of complicated and in some sense a model which is not manageable.

If we use total higher order functions we may at least expect a combina-
torial explosion of possible values. In many cases the models of the semantic
de�nitions will be non-algorithmic.

In such models we get objects of in�nite size and uncountable sets. As
a consequence we get non-algorithmic structures.

In order to be sure that we can give some meaning to a de�nition in
denotational semantics, we have to prove the consistence of the de�nition.

It turns out that such proofs often are complicated for common program
language construction. As an example it is enough to mention the proof of
consistence for the while loop. To do such proof we have to prove that we
can solve the �x-points equation for the while loop. (See [Kir91]).

To show the consistence of a model is not equal to understand the model.
We will need an algorithmic understanding of the language or algorithm
where we de�ne the model. Such algorithmic understanding i impossible if
the model is non-algorithmic.

12.3 Make Comparison of Some Common Lan-

guage Constructs

12.3.1 Sequence of Operations

Denotational Semantics

In denotational semantics we compose the functions which de�ne the se-
quence of operations. If we need to use goto or exit we have to use con-
tinuations and reverse the compositions of functions. Continuations can
be best understood as a speci�cation of the remaining computations in the
program.

Evolving Algebra

A sequence of operation can be de�ned by transitions which are performed
in sequence or we may prefer to use composition of the functions.
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12.3.2 Fixed number of iterations

When the program know in advance how many times it will iterate, we have
a �xed number of iterations. In this case we can be sure that the iteration
loop will terminate.

Denotational Semantics

In denotational semantics we express the iterations as composing the same
function n times.

Evolving Algebra

We express the iterations as a transition which is performed as long as the
counter do not exceed n.

12.3.3 Unbound number of iterations

Here the number of iterations is not �xed in advance. The termination of
the loop depends on some conditions. The condition for termination may
not be set, such that we have the possibility of looping forever.

Denotational Semantics

In denotational semantics we express the iterations in form of a recursive
equation. So we have to �nd the least �x-points to this equation.

Evolving Algebra

In evolving algebra we simply specify the transition which execute one iter-
ation step as long the condition for termination does not hold.

12.3.4 Recursive De�nition

Denotational Semantics

In denotational semantics we state a recursive de�nition as a recursive equa-
tion. We have to prove that the function de�ned is total and unique in order
to ensure a consistent de�nition.

Evolving Algebra

A recursive de�nition must be rewritten to an iterative construct. We have
to ensure the correctness of the rewrite.

12.3.5 Non Determinism

A language we may want to specify is a nondeterministic languages where
we use a set of guarded if and do sentences. A guarded sentence is a pair
where the �rst element is a predicate and the second element is a sentence
to be computed if the predicate evaluates to �true�. If more than one of
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the predicates in the set of guarded sentences evaluate to �true� we have a
non deterministic choice among those sentences. See [Kir91] for a complete
description of the language. The description of the do sentence in the non
deterministic language (See p 245 in [Kir91]) is very similar to the way we
de�ne the operational behavior of a set of transitions in evolving algebra.

Evolving algebra

Non-deterministic speci�cation in evolving algebra is obtained if more than
one of the predicates evaluates to �true� at the same time. A non determin-
istic selection is made of one of those transitions which have the predicate
value �true�.

Denotational Semantics

If we specify a non deterministic language construct we get a transition of
a state to a set of states, where each state may be a possible result of the
non deterministic operation.

The signature of a function de�ning a non deterministic construct could
be a set of states, S, mapped to the power set of S:

f : S ! P(S)

All possible sets of states which can be the result of the execution of the
indeterminate construction is contained in the range of the function f .

To be able to specify an iteration in a indeterminate language, we have
to de�ne a �x-points for the function used to de�ne the iteration. That
means we have to prove that f is a continuous function mapping a complete
partial order to itself, i. e.:

f : S ! P[S]

So we have to �nd a suitable ordering of the family of set de�ning the
range of an indeterminate construct.

We will also have to restrict the family of sets of states to �nitely gener-
ated subsets of the power set. All sets which may be the result of computing
the indeterminate language has to be in the new family of set.

So the we have to de�ne a complete partial order called the power-domain
where the following demands has to be satis�ed (See also p 249 [Kir91]:

� The carrier of the power-domain are a subset of the power set.

� Every singleton set made from an element in the set of states is in the
power-domain.

� The power-domain is closed under unions.

� For every strict function f which maps the complete partial order of
states to the power-domain there exists an extension f+ which maps
the power-domain to itself.
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The extension f+ is de�ned at page 249 in [Kir91].

Since the subset ordering does not apply the Egli-Milner ordering can
be chosen (See pp 251:253 in [Kir91]).

To �nd a suitable set for the power-domain, we make execution trees
for the imperative. The nodes in the execution represents the state, and
each arc represents a possible execution step. The leaf nodes in the tree will
represent the terminating states.

We assume that we have only a �nite number of indeterminate choices.
Then the execution trees has a �nite number of branches, although a branch
may have an in�nite length.

So we choose all �nite nonempty sets and in addition all in�nite sets
containing the unde�ned element. An in�nite set can be seen as a result of
executing an in�nite loop.

We then have to prove that we have found a complete partial order which
maps imperatives in the indeterminate languages. (See [Kir91]).

12.4 How to describe properties in the algorithms

or language

12.4.1 State Transition Systems

Denotational Semantics

State transitions are speci�ed through suitable semantic functions.

Evolving Algebra

State transition are described by updates within a transition. A state is
described as a �rst order algebra upon �nite sets.

12.4.2 Use of Resources

Denotational Semantics

When using denotational semantics we specify the relationship between in-
put and output data. Given some input we specify what output we get. We
do not specify which operations to be performed, the sequence of operations
or how we perform the operations.

So it is di�cult to specify the use of time and space.

Evolving Algebra

All steps to be performed can be speci�ed in evolving algebra. The speci�-
cation can be understood in an algorithmic way. Since we are free to de�ne
and use any �rst order logic function we want, we may give speci�cations at
level similar to high level programming languages.

So we can specify use of resources. Resources may be the use of time or
use of space. If we want to get a measure for use of time we may count the
number of updates performed, and we can get the use of space by counting
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the number of elements in the (�nite) universes 1. Thus the speci�cation
can take account of the use of resources like time and space.

12.4.3 Modify the Existing Speci�cations

Denotational Semantics

Introduction of new features in a language may very well lead to a rewrite of
the speci�cation. One example is the introduction of the go to statement.
When go to is introduced we need to use continuations and reverse the
compositions of functions.

Evolving Algebra

In evolving algebra change in the speci�cation can be done by changing,
adding or removing a transition. Sometimes it may be necessary to change
some of the signatures, so transitions which is not going to be changed may
be a�ected. A group of transitions may also need to get new tests added as
a consequence of change in one of the transition.

1If we use a table to represent the values of a function which takes one or more

arguments, the space may also be mesaured by the number of points de�ned for the

function (the number of elements in the table for the function).
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Chapter 13

Some Concluding Remarks

Based on the Experience

with Evolving Algebra

13.1 The Round Trip

The work done in this thesis is divided into three main parts:

1. Implementation of the Evolving Algebra interpreter.

2. Using the Evolving Algebra language to write speci�cation of the in-
terpretation and compilation of a functional language based on graph
reductions.

3. Implement and running the speci�cation on the Evolving Algebra in-
terpret.

As far as the author know, this is the �rst time such a round trip is done.

It is possible to write a large speci�cation, implement an interpreter and
run a large speci�cation using Evolving Algebra.

In addition some extension to Evolving Algebra is is added. The ex-
tensions make it possible to divide an Evolving Algebra speci�cation into
modules.

13.2 The Core Evolving Algebra

The speci�cation of the interpretation and compilation part of functional
language is done using Core Evolving Algebra.

The Evolving Algebra permits detailed speci�cation to be written. When
a speci�cation becomes detailed, the speci�cation also tends to be large.

The core Evolving Algebra permits the use of one execution sequence,
and one name space. So the author's experience with the Core Evolving
Algebra speci�cation language can be described as such:

� It is possible to give a quite detailed speci�cation of an algorithm.
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� A detailed speci�cations tends to be large.

� Because the Core Evolving Algebra has only one name space and one
execution sequence, a (detailed) speci�cation may soon be so compli-
cated, such that it is di�cult to both to manage the speci�cation and
to avoid faults in the speci�cation.

� It is possible to make the speci�cation using exactly the Core Evolving
Algebra language, and no use of abbreviation or extraneous notation.
This property is essential if we want to run the speci�cation on an
Evolving Algebra interpreter, 1.

� There is no problem of specifying use of abstract resources such as time
and space in Core Evolving Algebra. On the interpreter it is possible
to measure the use of resources.

13.2.1 Evolving Algebra and the Use of Resources

The possibilities of specifying resources in Evolving Algebra is of interest
when making a speci�cation.

The traditional approach is to leave the use of resources, such as use
of time and space out of the speci�cation. A traditional speci�cation tells
us only what is going to be done. Gradually, when the use of semantics
has evolved, it has becomes more and more needed to include the use of
resources in the semantic speci�cation.

Often, the use of resources is an essential part of the speci�cation. As
an example, it makes a lot of di�erence if an optimized tail recursive call
is used in a language, or if new elements always are added to the recursion
stack.

In Evolving Algebra we are able to specify something about how we want
to compute an algorithm. And we are able to specify the behavior of the
algorithm to such extent that it possible in an abstract way to specify the
use resources, such as computing time and computing space. In addition
we are able to measure the use of time and space (in an abstract way)
when the Evolving Algebra speci�cation is executed on an Evolving Algebra
interpreter as a computer program.

We are not able to express such use of abstract resources neither in
operational semantics nor in denotational semantics.

13.3 Making Modules

In computer science it is important take the abstraction of program and
algorithms serious. One important tools used, when making such abstraction
is simply to divide the detailed speci�cation of the algorithm 2 into modules.
So good speci�cation (or programming) practice within computer science is

1Supposed that the interpreter is not augmented to run any extension to the Core

Evolving Algebra.
2Such detailed speci�cation intended to be run on a computer is known as a program

within the computer science community.
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to divide detailed speci�cation into modules, and try to handle the modules
as much as possible as whole entities.

In logic the needs to divide speci�cations into modules does not seems
to be taken as serious as it should be. In part it has been possible to
limit the size of the speci�cation, formula or algorithm in order to keep the
speci�cation readable.

When it has not been possible to limit the size of the speci�cation new
name has been invented when necessary to re-name parts of the speci�cation
not in focus, so the speci�cation should still be readable. This strategy
only works when we do not consider automatic generation of new distinct
functions 3.

13.3.1 Making Modules in the Evolving Algebra Speci�ca-

tion

The extension to Evolving Algebra described in chapter 3 permits the spec-
i�cation to be divided into modules. One or more instance of an Evolving
Module can be de�ned.

The extension to the Evolving Algebra permits following constructions
to be easily speci�ed:

� Modules which act like procedures.

� Recursive procedure calls.

� Tail recursive procedure calls.

� Executing of co-routines.

The extension provide mechanisms which can be used to de�ne modules
and to specify the use of the modules. Since the Evolving Algebra extension
is based on mechanisms, and not directly on a speci�c concept (such as
recursive procedure calls), new features or mechanisms can be added to the
extension in the future, if necessary.

13.3.2 Why Adding New Features to Evolving Algebra

The author felt a strong need to divide the speci�cation written in Core
Evolving Algebra. The reason for this lies in the experience of writing large
speci�cation in Evolving Algebra.

When writing large and detailed speci�cation the author found the fol-
lowing shortcomings with Core Evolving Algebra:

� Di�cult to maintain the speci�cation. Since all functions are global,
and we are specifying just one execution sequence, it is di�cult to keep
track of all details about how the speci�cation is presumed to operate.

3Which is necessary when maintaining more than one instance of a procedure during

execution of recursive calls.
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� If a new abstraction level is desired, the whole speci�cation needs to
be rewritten. In this way a top down approach to the task of writing
a speci�cation becomes di�cult.

� As a consequence of the two points above it may be di�cult to ensure
that the speci�cation in fact is �correctly� written.

13.3.3 Implementation of the Evolving Algebra Module Ex-

tension

The module extension of Evolving Algebra is not implemented on the Evolv-
ing Algebra interpreter (See chapter 9). So the question is if this extension
could be implemented reasonable well on an Evolving Interpreter.

The author do not see any reason why the module extension could not
be implemented on an Evolving Algebra interpreter.

The following point is important with regards to the implementation:

� We may think of the Evolving Algebra module as a one execution
context. A �nite set of procedures, both global functions and functions
shared between certain modules and instances of modules is visible
within one context.

An execution context can be seen as one sequence of execution steps
performed within an environment of visible functions. Each execution
step can for the purpose of implementation be de�ned to be an Evolv-
ing Algebra transition. The execution sequence in the context can be
halted and possibly be resumed later.

� Only one execution context can be the current execution context at
any time.

� The data structure in the Evolving Algebra interpreter has to re�ect
the module speci�cation. No Evolving Algebra function should be
available (visible) for execution outside what is de�ned for the current
execution context.

� The Evolving Algebra interpreter must be able to switch from one exe-
cution context to another execution context according to the extended
Evolving Algebra speci�cations.

� More than one instance of a module may be created as an execution
context. The instances and all functions local to one of the instances
has to be given distinct internal names within the interpreter.

� All communication between the execution context take places through
global or shared functions. However, some special constants used to
control the jumps between di�erent contexts has to be maintained.

None of the requirements above is di�cult to implement when imple-
menting an interpreter for Evolving Algebra. However, care has to be taken
with regards to e�ciency of the implementation.
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For e�ciency reason it can be well worth to investigate the possibility
of combining the use of a high level programming language like Scheme
with a medium level programming language like C, when implementing an
extended Evolving Algebra interpreter.

If we think that Evolving Algebra should be extended to cover dis-
tributed and parallel computing, such approachmay in practice be necessary.
In such case the the language used to implement the interpreter should be
able to call subroutines written in C. In addition it should be possible to
call routines written in the high level language (such as Scheme) from a C
routine. The reason why, is that most of the libraries and operating system
calls has an interface which is supposed to be used from the C language.

On the other hand the author judge the implementation of an Evolving
Algebra interpreter solely in the C language (or C++ language), to bee
far too complicated to be feasible within reasonable time and amount of
work. In this respect the author consider the implementation of an Evolving
Algebra interpreter which has all properties as described in chapter 9 4 and
in addition implements the extensions proposed in this report.

13.4 Short Summary of other Evolving Algebra

Implementations

13.4.1 Evolving Algebra Interpreter Written in C

An implementation of an Evolving Algebra interpreter in Cwhich the author
know about (See [Hug94]) is based on a �xed number of functions, which may
be combined in order to de�ne the implementation of new functions. The
author believe that this way to implement an Evolving Algebra interpreter
is too restrictive with regards to the possibility to execute Evolving Algebra
speci�cation at di�erent chosen abstraction levels. The reason is that the
whole speci�cation is dependent on those (may bee too few) basic functions
(See section 9.5 for a comparison between the C interpreter and the Scheme
interpreter).

This interpreter (See [Hug94]) is the only interpreter besides the author's
interpreter the author has inspected.

13.4.2 DASL Compiler Implemented in Prolog

In addition to the interpreter mentioned in subsection13.4.1 above, the au-
thor is recently become aware of a report by [Kap93]. This report describes a
prototype of a compiler for the language DASL which is an extension to the
Evolving Algebra speci�cation language. In addition to pure Evolving Alge-
bra the language includes polymorphic types and equational speci�cations
which constitutes a con�uent rewrite system.

This compiler is implemented in Prolog.

4e.g. links user de�ned procedures which de�ne the semantics of Evolving Algebra

functions.
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13.5 Future Research

This thesis does not cover Evolving Algebra speci�cations for parallel sys-
tems and distributed systems.

The extension of Evolving Algebra for making modules described in
chapter 3 can to some extent be used to describe processes on parallel or
distributed systems. However, those tools has to be extended in order to
cover communication and synchronization of processes in the parallel and
distributed environment.

This is left to the future research task to make speci�cation of parallel
and distributed systems, and extend the Evolving Algebra to cover such
systems, and divide such systems into modules.
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Appendix A

Evolving Algebra

Speci�cation Given to the

Interpret

Her we list the Evolving Algebra speci�cation as given to the interpret.

A.1 The Template Instantiation Speci�cation

A.1.1 Speci�cation of the Compilation

The speci�cation to compile the supercombinator de�nitions into a graph
representation is shown below:

% resets before loading

reset

% Signatures

signature status : STATUS

signature tempstack: (TADDR *)

signature emptystack: (TADDR *)

signature initialstack: (TADDR *)

signature isemptystack: ((TADDR *) --> BOOL)

signature topaddr: ((TADDR *) --> TADDR)

signature pushstack: (((TADDR *) x TADDR) --> (TADDR *))

signature popstack: ((TADDR *) --> (TADDR *))

signature currscdefaddr: TADDR

signature valueofaddr: (TADDR --> [SCEXPR + INSTR])

signature graph: (TADDR --> NODE)

signature mainscdefname: SCNAME

signature getmainname: ((SCEXPR *) --> SCNAME)

signature allscdefs: (SCEXPR *)

signature isemptyscdefs: (SCEXPR --> BOOL)
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signature getnextscdef: ((SCEXPR*) --> SCEXPR)

signature tailscdefs: ((SCEXPR*) --> (SCEXPR*))

signature getnamefromglobals: (TADDR --> SCNAME)

signature getaddrfromglobals: (SCNAME --> TADDR)

signature emptyexpr: SCEXPR

signature currscdef: SCEXPR

signature exprtype: (SCEXPR --> SCTYPE)

signature makeparams: (SCEXPR --> (SCEXPR *))

signature getscdefname: (SCEXPR --> SCNAME)

signature srcbody: (SCEXPR --> SCEXPR)

signature firstappexpr: (SCEXPR --> SCEXPR)

signature secondappexpr: (SCEXPR --> SCEXPR)

signature makenum: (SCEXPR --> NUMBER)

signature makescname: (SCEXPR --> SCNAME)

signature makevarname: (SCEXPR --> VARNAME)

signature nodechild: ((NUMBER x NODE) --> [TADDR + {Empty}])

signature nodetype: (NODE --> NTYPE)

signature nodeparams: (NODE --> (VARNAME *))

signature nodenum: (NODE --> NUMBER)

signature nodescname: (NODE --> SCNAME)

signature nodevarname: (NODE --> VARNAME)

% Load procedure files

% Load standard user environment procedures from file!

%

loadproc "Ea-system-lib/ea-std-user-extension.scm";

loadproc "Ea-system-lib/ea-std-user-update.scm";

loadproc "Ea-system-lib/ea-std-user-lookup.scm";

% Load procedures maintaining lists

loadproc "Ea-system-lib/ea-std-user-list.scm";

% Load arithmetic procedures

loadproc "Ea-system-lib/ea-std-user-arithmetic.scm";

% Load graphical reduction procedure.

loadproc "Graf-reduksjon-lib/ea-graf-red-app-expr.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-find-type.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-number.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-scdef.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-scname.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-variable.scm";

% Assignments

% assign <func-symb>, <lookup-proc>, <upd-proc>, <fmess-symb>;
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% Status

assignfunc status, constant-std-lookup-data,

user-update-constant, std-const-dta;

% Pointer to the graph

assignfunc graph, table-std-lookup,

user-update-function, std-table;

assignfunc valueofaddr, table-std-lookup,

user-update-function, std-table;

% The address stack

assignfunc currscdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc tempstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptystack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc initialstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptystack, empty-list, dummy-func, upd-not-perm;

assignfunc topaddr, first-from-list, dummy-func, upd-not-perm;

assignfunc pushstack, add-to-list, dummy-func, upd-not-perm;

assignfunc popstack, tail-from-list, dummy-func, upd-not-perm;

% The sc definitions

assignfunc mainscdefname, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getmainname, get-scdef-main-name,

dummy-func, upd-not-perm;

assignfunc allscdefs, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptyscdefs, empty-list, dummy-func, upd-not-perm;

assignfunc getnextscdef, first-from-list, dummy-func, upd-not-perm;

assignfunc tailscdefs, tail-from-list, dummy-func, upd-not-perm;

% The globals

assignfunc getnamefromglobals, table-std-lookup,

user-update-function, std-table;

assignfunc getaddrfromglobals, table-std-lookup,

user-update-function, std-table;

% The sc expression

assignfunc emptyexpr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currscdef, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getscdefname, get-scdef-name, dummy-func, upd-not-perm;

assignfunc exprtype, find-type-gen, dummy-func, upd-not-perm;
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assignfunc makeparams, get-params, dummy-func, upd-not-perm;

assignfunc srcbody, get-scbody-expr, dummy-func, upd-not-perm;

assignfunc firstappexpr, get-first-app-expr,

dummy-func, upd-not-perm;

assignfunc secondappexpr, get-second-app-expr,

dummy-func, upd-not-perm;

assignfunc makenum, get-sc-number, dummy-func, upd-not-perm;

assignfunc makescname, get-sc-name, dummy-func, upd-not-perm;

assignfunc makevarname, get-sc-var, dummy-func, upd-not-perm;

% The graph

assignfunc nodechild, table-std-lookup,

user-update-function, std-table;

assignfunc nodetype, table-std-lookup,

user-update-function, std-table;

assignfunc nodeparams, table-std-lookup,

user-update-function, std-table;

assignfunc nodenum, table-std-lookup,

user-update-function, std-table;

assignfunc nodescname, table-std-lookup,

user-update-function, std-table;

assignfunc nodevarname, table-std-lookup,

user-update-function, std-table;

% Assign to universe

% assign <universe-symbol> <universe-ext-proc> <umess-symbol>;

assignuniverse NODE, std-ext-collection, number;

assignuniverse TADDR, std-ext-collection, newsymbol;

% Initial values

loadalg "Graf-red-source/SC/church-partiell-two.src";

%initial allscdefs :==

% [((= ((sc "Main") ()) (((sc "K") (num 1)) (num 2)))

% (= ((sc "K") ((var "x") (var "y"))) ((sc "I") (var "x")))

% (= ((sc "I") ((var "z"))) (var "z")) )]

initial emptyexpr :== [ (empty) ]

%initial status :== "Get-curr-sc-def"

initial status :== "Initial"

initial emptystack :== [()]

initial currscdefaddr :== [start]

%initial tempstack :== [()]

% Start the compilation

if ( = (status, "Initial") &

(! isemptyscdefs(allscdefs)) );
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%then

funcupdate mainscdefname:=getmainname(allscdefs)

funcupdate status:="Get-curr-sc-def"

endupdates

% Prepare for compilation of the supercombinator definition

if ( = (status, "Get-curr-sc-def") &

(! isemptyscdefs(allscdefs)) );

%then

extend

extenduniverse TADDR;

withupdates

funcupdate currscdefaddr:=temp(TADDR,1);

funcupdate getnamefromglobals(temp(TADDR,1)):=

getscdefname(getnextscdef(allscdefs));

funcupdate getaddrfromglobals(getscdefname(getnextscdef(allscdefs))):=

temp(TADDR,1);

funcupdate valueofaddr(temp(TADDR,1)):=getnextscdef(allscdefs);

endextend

funcupdate allscdefs:=tailscdefs(allscdefs);

funcupdate status:="Compile-sc-def";

endupdates

% Prepare for performing graph reductions

if ( isemptyscdefs(allscdefs) &

= (status, "Get-curr-sc-def") );

%then

funcupdate status:="Perform-graph-reds"

endupdates

% Supercombinator definition

if ( = (status, "Compile-sc-def") &

= (exprtype(valueofaddr(currscdefaddr)),

"SDEFexpr"));

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(currscdefaddr):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Supercomb";

funcupdate nodeparams(temp(NODE,1)):=

makeparams(valueofaddr(currscdefaddr));

funcupdate nodechild(1,temp(NODE,1)):=temp(TADDR,1);

funcupdate valueofaddr(temp(TADDR,1)):=

srcbody(valueofaddr(currscdefaddr));

funcupdate tempstack:=pushstack(emptystack,temp(TADDR,1));

endextend
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funcupdate status:="Compile-the-body";

endupdates

% Application

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"APexpr"));

%then

extend

extenduniverse TADDR # 2;

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=emptyexpr;

funcupdate nodechild(1,temp(NODE,1)):=temp(TADDR,1);

funcupdate nodechild(2,temp(NODE,1)):=temp(TADDR,2);

funcupdate nodetype(temp(NODE,1)):="APnode";

funcupdate valueofaddr(temp(TADDR,1)):=

firstappexpr(valueofaddr(topaddr(tempstack)));

funcupdate valueofaddr(temp(TADDR,2)):=

secondappexpr(valueofaddr(topaddr(tempstack)));

funcupdate tempstack:=pushstack(

pushstack(tempstack,temp(TADDR,1)),

temp(TADDR,2));

endextend

endupdates

% Number expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"NUMexpr"));

%then

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=

temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=

emptyexpr;

funcupdate nodetype(temp(NODE,1)):="Num";

funcupdate nodenum(temp(NODE,1)):=

makenum(valueofaddr(topaddr(tempstack)));

endextend

endupdates
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% Name expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"SCname"));

%then

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=

temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=

emptyexpr;

funcupdate nodetype(temp(NODE,1)):="SCName";

funcupdate nodescname(temp(NODE,1)):=

makescname(valueofaddr(topaddr(tempstack)));

endextend

endupdates

% Local variable name expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"VARname"));

%then

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=

temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=

emptyexpr;

funcupdate nodetype(temp(NODE,1)):="LVar";

funcupdate nodevarname(temp(NODE,1)):=

makevarname(valueofaddr(topaddr(tempstack)));

endextend

endupdates

% Traverse up

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"EMPty"))

%then

funcupdate tempstack:=popstack(tempstack);

endupdates;

% End of on supecombinator definition
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if ( = (status, "Compile-the-body") &

isemptystack(tempstack));

%then

funcupdate status:="Get-curr-sc-def";

endupdates;

% Loads part two

loadalg "Graf-red-source/supercomb-red.src";

A.1.2 Speci�cation of the Reduction Process

The speci�cation to reduce the compiled graph is shown here:

% To be loaded into the evolving algebra interpret

% after supercomb-comp.src

% More signatures.

%

signature getoperator: (INSTR --> OPERATOR)

signature egraphinstr: INSTR

signature instrstack: (INSTR *)

signature makegcode: (INSTR --> (INSTR *))

signature addrstack: (TADDR *)

signature scdefaddr: TADDR

signature dumpstack: (DUMP *)

signature emptydumpstack: (DUMP *)

signature leftbranch: NUMBER

signature rightbranch: NUMBER

signature currparams: (VARNAME *)

signature currarity: NUMBER

signature lengthas: ((TADDR *) --> NUMBER)

signature numberofparams: ((VARNAME *) --> NUMBER)

signature rootofredex: TADDR

signature currcounter: NUMBER

signature getsubstvalueaddr: (NAME --> TADDR)

signature getparamvar: ((NUMBER x (NAME *)) --> NAME)

signature add: ((NUMBER x NUMBER) --> NUMBER)

signature pointertodef: (TADDR --> TADDR)

signature finished: (TADDR --> BOOL)

signature rootofinstance: TADDR

signature sameaddr: TADDR x TADDR --> BOOL

signature result: NUMBER

% Procedures to be loaded

loadproc "Ea-system-lib/ea-std-user-misc.scm";

% More assignments

assignfunc egraphinstr, constant-std-lookup-data,
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user-update-constant, std-const-dta;

assignfunc instrstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc addrstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc scdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc dumpstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptydumpstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc leftbranch, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc rightbranch, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currparams, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currarity, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getoperator, table-std-lookup,

user-update-function, std-table;

assignfunc makegcode, make-list, dummy-func, upd-not-perm;

assignfunc lengthas, length-of-the-list, dummy-func, upd-not-perm;

assignfunc numberofparams, length-of-the-list, dummy-func, upd-not-perm;

assignfunc makegcode, make-list, dummy-func, upd-not-perm;

assignfunc rootofredex, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc rootofinstance, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc result, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currcounter, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getsubstvalueaddr, table-std-lookup,

user-update-function, std-table;

assignfunc pointertodef, table-std-lookup,

user-update-function, std-table;

assignfunc finished, table-std-lookup,

user-update-function, std-table;

assignfunc getparamvar, get-param-name, dummy-func, upd-not-perm;

assignfunc add, add-numbers, dummy-func, upd-not-perm;

assignfunc sameaddr, compare-two-vars, dummy-func, upd-not-perm;

% Assign to the universe.

assignuniverse INSTR, std-ext-collection, newsymbol;

% Initial values

243



initial emptydumpstack:== [()]

initial addrstack:== [()]

if = (status, "Perform-graph-reds");

%then

funcupdate dumpstack:=emptydumpstack;

funcupdate leftbranch:=1;

funcupdate rightbranch:=2;

extend

extenduniverse INSTR;

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Egraph";

funcupdate egraphinstr:=temp(INSTR,1);

funcupdate instrstack:=makegcode(temp(INSTR,1));

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="SCName";

funcupdate nodescname(temp(NODE,1)):=mainscdefname;

funcupdate addrstack:=pushstack(emptystack,temp(TADDR,1));

endextend

funcupdate status:="Unwind";

endupdates;

if ( = (status, "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "APnode"));

%then

funcupdate addrstack:=pushstack(addrstack,nodechild(leftbranch,

graph(topaddr(addrstack))));

endupdates

if ( = (status, "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "Num"));

%then

funcupdate result:=nodenum(graph(topaddr(addrstack)))

funcupdate status:="Normal-form";

endupdates

if ( = (status, "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "SCName"));

%then

funcupdate scdefaddr:=

getaddrfromglobals(nodescname(graph(topaddr(addrstack))));

funcupdate status:="Unwind-scname";

endupdates

if ( = (status, "Unwind-scname") &

= (nodetype(graph(scdefaddr)), "Supercomb") &
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> (lengthas(addrstack),numberofparams(nodeparams(graph(scdefaddr)))) )

%then

funcupdate currparams:=nodeparams(graph(scdefaddr));

funcupdate currarity:=numberofparams(nodeparams(graph(scdefaddr)));

funcupdate status:="Make-substs-init";

endupdates

% Initialize the substitutions

if = (status, "Make-substs-init");

%then

funcupdate currcounter:=0;

funcupdate status:="Make-substs";

endupdates

% Extend the list of substitution pair.

if ( = (status, "Make-substs") &

< (currcounter,currarity));

%then

funcupdate getsubstvalueaddr(getparamvar

(add(currcounter,1),currparams)):=

nodechild(rightbranch,graph(topaddr

(popstack(addrstack))));

funcupdate currcounter:=add(currcounter,1);

funcupdate addrstack:=popstack(addrstack);

endupdates

% Finished with the substitutions

% Retain the last element of address stack until the root of redex constant

% is set.

if ( = (status, "Make-substs") &

= (currcounter,currarity));

%then

funcupdate rootofredex:=topaddr(addrstack);

funcupdate status:="Init-instance";

endupdates

if = (status, "Init-instance");

%then

extend

extenduniverse TADDR;

withupdates

funcupdate pointertodef(temp(TADDR,1)):=

nodechild(1,graph(scdefaddr));

funcupdate addrstack:=pushstack(addrstack,temp(TADDR,1));

funcupdate rootofinstance:=temp(TADDR,1)

funcupdate finished(temp(TADDR,1)):="False";

endextend

funcupdate status:="Build-instance";
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endupdates

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"APnode"));

%then

funcupdate finished(topaddr(addrstack)):="True";

extend

extenduniverse TADDR # 2;

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):=

nodetype(graph(pointertodef(topaddr(addrstack))));

funcupdate nodechild(leftbranch,temp(NODE,1)):=temp(TADDR,1);

funcupdate nodechild(rightbranch,temp(NODE,1)):=temp(TADDR,2);

funcupdate finished(temp(TADDR,1)):="False";

funcupdate finished(temp(TADDR,2)):="False";

funcupdate pointertodef(temp(TADDR,1)):=

nodechild(leftbranch,graph(pointertodef(topaddr(addrstack))));

funcupdate pointertodef(temp(TADDR,2)):=

nodechild(rightbranch,graph(pointertodef(topaddr(addrstack))));

funcupdate addrstack:=pushstack(

pushstack(addrstack,temp(TADDR,1)),temp(TADDR,2));

endextend

endupdates

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"Num"));

%then

funcupdate finished(topaddr(addrstack)):="True";

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):=

nodetype(graph(pointertodef(topaddr(addrstack))));

funcupdate nodenum(temp(NODE,1)):=

nodenum(graph(pointertodef(topaddr(addrstack))));

endextend

endupdates

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"SCName"));

%then
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funcupdate finished(topaddr(addrstack)):="True";

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):=

nodetype(graph(pointertodef(topaddr(addrstack))));

funcupdate nodescname(temp(NODE,1)):=

nodescname(graph(pointertodef(topaddr(addrstack))));

endextend

endupdates

% Sharing distinct variables.

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"LVar"));

%then

funcupdate finished(topaddr(addrstack)):="True";

funcupdate graph(topaddr(addrstack)):=

graph(getsubstvalueaddr(nodevarname(graph

(pointertodef(topaddr(addrstack))))));

endupdates

if ( = (status, "Build-instance") &

= (finished(topaddr(addrstack)),"True") &

(! sameaddr(topaddr(addrstack),rootofinstance)));

%then

funcupdate addrstack:=popstack(addrstack);

endupdates

if ( = (status, "Build-instance") &

= (finished(topaddr(addrstack)),"True") &

sameaddr(topaddr(addrstack),rootofinstance));

%then

funcupdate status:="Update";

endupdates

% Make a copy of the result of the reduction

if = (status, "Update");

%then

funcupdate addrstack:=

pushstack(popstack(popstack(addrstack)),rootofinstance);

funcupdate status:="Unwind";

endupdates
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A.2 The G-machine Speci�cation

A.2.1 Speci�cation of the Compilation

The speci�cation to compile the supercombinator de�nitions into G-machine
instructions is shown below:

% G-maskinen

% resets before loading

reset

% Signatures

signature status : STATUS

signature add: ((NUMBER x NUMBER) --> NUMBER)

signature tempstack: (TADDR *)

signature emptystack: (TADDR *)

signature initialstack: (TADDR *)

signature isemptystack: ((TADDR *) --> BOOL)

signature topaddr: ((TADDR *) --> TADDR)

signature pushstack: (((TADDR *) x TADDR) --> (TADDR *))

signature popstack: ((TADDR *) --> (TADDR *))

signature currscdefaddr: TADDR

signature valueofaddr: (TADDR --> [SCEXPR + INSTR])

signature graph: (TADDR --> NODE)

signature mainscdefname: SCNAME

signature getmainname: ((SCEXPR *) --> SCNAME)

signature allscdefs: (SCEXPR *)

signature isemptyscdefs: (SCEXPR --> BOOL)

signature getnextscdef: ((SCEXPR*) --> SCEXPR)

signature tailscdefs: ((SCEXPR*) --> (SCEXPR*))

signature getnamefromglobals: (TADDR --> SCNAME)

signature getaddrfromglobals: (SCNAME --> TADDR)

signature emptyexpr: SCEXPR

signature currscdef: SCEXPR

signature exprtype: (SCEXPR --> SCTYPE)

signature makeparams: (SCEXPR --> (SCEXPR *))

signature getscdefname: (SCEXPR --> SCNAME)

signature srcbody: (SCEXPR --> SCEXPR)

signature firstappexpr: (SCEXPR --> SCEXPR)

signature secondappexpr: (SCEXPR --> SCEXPR)

signature makenum: (SCEXPR --> NUMBER)

signature makescname: (SCEXPR --> SCNAME)

signature makevarname: (SCEXPR --> VARNAME)
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signature numberofparams: ((SCEXPR *) --> NUMBER)

signature getparamlist: (TADDR --> (PARAMPOS *))

signature makeparamposlist: (SCEXPR --> (PARAMPOS *))

signature incrementposlist: ((NUMBER x (PARAMPOS *)) --> (PARAMPOS *))

signature getposition: (((PARAMPOS *) x VARNAME) --> NUMBER)

signature getoperator: (INSTR --> OPERATOR)

signature getoperand: ((NUMBER x INSTR) --> OPERAND)

signature codelist: (INSTR *)

signature instrstack: (INSTR *)

signature emptycodelist: (INSTR *)

signature makegcode: (INSTR --> (INSTR *))

signature makegcodetwo: ((INSTR x INSTR) --> (INSTR *))

signature concatcode: (((INSTR *) x (INSTR *)) --> (INSTR *))

signature instructions: (TADDR --> (INSTR *))

signature hascode: (TADDR --> BOOL)

signature nodetype: (NODE --> NTYPE)

signature defarity: (NODE --> NUMBER)

signature finishedcode: (NODE --> (INSTR *))

signature leftbranch: NUMBER

signature rightbranch: NUMBER

% To be used by the reduction part of Graph Machine

signature nodechild: ((NUMBER x NODE) --> [TADDR + {Empty}])

signature nodeparams: (NODE --> (VARNAME *))

signature nodenum: (NODE --> NUMBER)

signature nodescname: (NODE --> SCNAME)

signature nodevarname: (NODE --> VARNAME)

% Load procedure files

% Load standard user environment procedures from file!

%

loadproc "Ea-system-lib/ea-std-user-extension.scm";

loadproc "Ea-system-lib/ea-std-user-update.scm";

loadproc "Ea-system-lib/ea-std-user-lookup.scm";

% Load procedures maintaining lists

loadproc "Ea-system-lib/ea-std-user-list.scm";

% Load arithmetic procedures

loadproc "Ea-system-lib/ea-std-user-arithmetic.scm";

% Load graphical reduction procedure.

loadproc "Graf-reduksjon-lib/ea-graf-red-app-expr.scm";
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loadproc "Graf-reduksjon-lib/ea-graf-red-find-type.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-number.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-scdef.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-scname.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-variable.scm";

loadproc "Graf-reduksjon-lib/ea-gcode-make-parlist.scm";

% Assignments

% assign <func-symb>, <lookup-proc>, <upd-proc>, <fmess-symb>;

% Status

assignfunc status, constant-std-lookup-data,

user-update-constant, std-const-dta;

% Addition

assignfunc add, add-numbers, dummy-func, upd-not-perm;

% Pointer to the graph

assignfunc graph, table-std-lookup,

user-update-function, std-table;

assignfunc valueofaddr, table-std-lookup,

user-update-function, std-table;

% The address stack

assignfunc currscdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc tempstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptystack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc initialstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptystack, empty-list, dummy-func, upd-not-perm;

assignfunc topaddr, first-from-list, dummy-func, upd-not-perm;

assignfunc pushstack, add-to-list, dummy-func, upd-not-perm;

assignfunc popstack, tail-from-list, dummy-func, upd-not-perm;

% The sc definitions

assignfunc mainscdefname, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getmainname, get-scdef-main-name,

dummy-func, upd-not-perm;

assignfunc allscdefs, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptyscdefs, empty-list, dummy-func, upd-not-perm;

assignfunc getnextscdef, first-from-list, dummy-func, upd-not-perm;

assignfunc tailscdefs, tail-from-list, dummy-func, upd-not-perm;

% The globals

assignfunc getnamefromglobals, table-std-lookup,

user-update-function, std-table;
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assignfunc getaddrfromglobals, table-std-lookup,

user-update-function, std-table;

% The sc expression

assignfunc emptyexpr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currscdef, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getscdefname, get-scdef-name, dummy-func, upd-not-perm;

assignfunc exprtype, find-type-gen, dummy-func, upd-not-perm;

assignfunc makeparams, get-params, dummy-func, upd-not-perm;

assignfunc srcbody, get-scbody-expr, dummy-func, upd-not-perm;

assignfunc firstappexpr, get-first-app-expr,

dummy-func, upd-not-perm;

assignfunc secondappexpr, get-second-app-expr,

dummy-func, upd-not-perm;

assignfunc makenum, get-sc-number, dummy-func, upd-not-perm;

assignfunc makescname, get-sc-name, dummy-func, upd-not-perm;

assignfunc makevarname, get-sc-var, dummy-func, upd-not-perm;

% Parameter-list

assignfunc numberofparams, length-of-the-list, dummy-func, upd-not-perm;

assignfunc getparamlist, table-std-lookup,

user-update-function, std-table;

% * New procedures to be made.

assignfunc makeparamposlist, make-param-pos-list, dummy-func, upd-not-perm;

assignfunc incrementposlist, increm-param-pos, dummy-func, upd-not-perm;

assignfunc getposition, get-position, dummy-func, upd-not-perm;

% Contents of instructions

assignfunc getoperator, table-std-lookup,

user-update-function, std-table;

assignfunc getoperand, table-std-lookup,

user-update-function, std-table;

% The instructions

assignfunc codelist, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc instrstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptycodelist, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc makegcode, make-list, dummy-func, upd-not-perm;

assignfunc makegcodetwo, make-list, dummy-func, upd-not-perm;

assignfunc concatcode, concat-lists, dummy-func, upd-not-perm;

assignfunc instructions, table-std-lookup,

user-update-function, std-table;
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assignfunc hascode, table-std-lookup,

user-update-function, std-table;

% The graph

assignfunc nodetype, table-std-lookup,

user-update-function, std-table;

assignfunc defarity, table-std-lookup,

user-update-function, std-table;

assignfunc finishedcode, table-std-lookup,

user-update-function, std-table;

assignfunc leftbranch, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc rightbranch, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc nodechild, table-std-lookup,

user-update-function, std-table;

assignfunc nodeparams, table-std-lookup,

user-update-function, std-table;

assignfunc nodenum, table-std-lookup,

user-update-function, std-table;

assignfunc nodescname, table-std-lookup,

user-update-function, std-table;

assignfunc nodevarname, table-std-lookup,

user-update-function, std-table;

% Assign to universe

% assign <universe-symbol> <universe-ext-proc> <umess-symbol>;

assignuniverse NODE, std-ext-collection, number;

assignuniverse TADDR, std-ext-collection, newsymbol;

assignuniverse INSTR, std-ext-collection, newsymbol;

% Initial values

loadalg "Graf-red-source/SC/church-partiell-two.src";

%initial allscdefs :==

% [((= ((sc "Main") ()) (((sc "K") (num 1)) (num 2)))

% (= ((sc "K") ((var "x") (var "y"))) ((sc "I") (var "x")))

% (= ((sc "I") ((var "z"))) (var "z")) )]

initial emptyexpr :== [ (empty) ]

%initial status :== "Get-curr-sc-def"

initial status :== "Initial"

initial emptystack :== [()]

initial codelist :== [()]

initial emptycodelist :== [()]

initial currscdefaddr :== [start]

%initial tempstack :== [()]
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% Start the compilation

if ( = (status, "Initial") &

(! isemptyscdefs(allscdefs)) );

%then

funcupdate mainscdefname:=getmainname(allscdefs)

funcupdate status:="Get-curr-sc-def"

endupdates

% Prepare for compilation of the supercombinator definition

if ( = (status, "Get-curr-sc-def") &

(! isemptyscdefs(allscdefs)) );

%then

extend

extenduniverse TADDR;

withupdates

funcupdate currscdefaddr:=temp(TADDR,1);

funcupdate getnamefromglobals(temp(TADDR,1)):=

getscdefname(getnextscdef(allscdefs));

funcupdate getaddrfromglobals(getscdefname(getnextscdef(allscdefs))):=

temp(TADDR,1);

funcupdate valueofaddr(temp(TADDR,1)):=getnextscdef(allscdefs);

endextend

funcupdate allscdefs:=tailscdefs(allscdefs);

funcupdate status:="Compile-sc-def";

endupdates

% Prepare for performing graph reductions

if ( = (status, "Get-curr-sc-def") &

isemptyscdefs(allscdefs) );

%then

extend

extenduniverse INSTR # 2;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Pushglobal";

funcupdate getoperand(1,temp(INSTR,1)):=mainscdefname;

funcupdate getoperator(temp(INSTR,2)):="Unwind";

funcupdate instrstack:=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

endextend

funcupdate status:="Exec-code";

funcupdate leftbranch:=1

funcupdate rightbranch:=2

endupdates

% Supercombinator definition

if ( = (status, "Compile-sc-def") &
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= (exprtype(valueofaddr(currscdefaddr)),"SDEFexpr"));

%then

extend

extenduniverse TADDR # 2;

extenduniverse NODE;

extenduniverse INSTR # 2;

withupdates

funcupdate graph(currscdefaddr):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Global";

funcupdate defarity(temp(NODE,1)):=

numberofparams(makeparams(valueofaddr(currscdefaddr)));

funcupdate valueofaddr(temp(TADDR,2)):=

srcbody(valueofaddr(currscdefaddr));

funcupdate getparamlist(temp(TADDR,2)):=

makeparamposlist(valueofaddr(currscdefaddr));

funcupdate hascode(temp(TADDR,2)):="False";

funcupdate getoperator(temp(INSTR,1)):="Slide";

funcupdate getoperand(1,temp(INSTR,1)):=

add(1,numberofparams(makeparams

(valueofaddr(currscdefaddr))));

funcupdate getoperator(temp(INSTR,2)):="Unwind";

funcupdate instructions(temp(TADDR,1)):=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

funcupdate hascode(temp(TADDR,1)):="True";

% Make the testpredicates below happy.

funcupdate valueofaddr(temp(TADDR,1)):=valueofaddr(currscdefaddr);

funcupdate tempstack:=pushstack(

pushstack(emptystack,temp(TADDR,1)),

temp(TADDR,2));

endextend

funcupdate status:="Compile-the-body";

endupdates

% Application

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"APexpr") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse TADDR # 2;

extenduniverse INSTR;

withupdates

% First AP expression underneath the second on the

% instruction stack (and on top of address stack).

funcupdate valueofaddr(temp(TADDR,1)):=

firstappexpr(valueofaddr(topaddr(tempstack)));

funcupdate hascode(temp(TADDR,1)):="False"
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funcupdate getparamlist(temp(TADDR,1)):=

incrementposlist(1,getparamlist(topaddr(tempstack)));

% Second AP expression on top of the instruction stack

% (and second on address stack).

funcupdate valueofaddr(temp(TADDR,2)):=

secondappexpr(valueofaddr(topaddr(tempstack)));

funcupdate hascode(temp(TADDR,2)):="False";

funcupdate getparamlist(temp(TADDR,2)):=

getparamlist(topaddr(tempstack));

% Make the AP instruction

funcupdate getoperator(temp(INSTR,1)):="MKap";

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

funcupdate tempstack:=pushstack(

pushstack(tempstack,temp(TADDR,1)),

temp(TADDR,2));

endextend

endupdates

% Number expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"NUMexpr") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Pushint";

funcupdate getoperand(1,temp(INSTR,1)):=

makenum(valueofaddr(topaddr(tempstack)));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

% Name expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"SCname") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Pushglobal";
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funcupdate getoperand(1,temp(INSTR,1)):=

makescname(valueofaddr(topaddr(tempstack)));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

% Variable expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"VARname") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Push";

funcupdate getoperand(1,temp(INSTR,1)):=

getposition(getparamlist(topaddr(tempstack)),

makevarname(valueofaddr(topaddr(tempstack))));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

% Traverse up

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"True"));

%then

% The instruction is always appendended at the end of

% the instruction list.

funcupdate codelist:=concatcode(codelist,

instructions(topaddr(tempstack)));

funcupdate tempstack:=popstack(tempstack);

endupdates;

% End of on supecombinator definition

if ( = (status, "Compile-the-body") &

isemptystack(tempstack));

%then

funcupdate status:="Get-curr-sc-def";

funcupdate finishedcode(graph(currscdefaddr)):=codelist;

funcupdate codelist:=emptycodelist;

endupdates;

256



% Loads part two

loadalg "Graf-red-source/gmaskin-red.src";

A.2.2 Speci�cation of the Reduction Process

The speci�cation to execute the G-machine instructions is shown below:

% To be loaded into the evolving algebra interpret

% after supercomb-comp.src

% More signatures.

%

signature topinstr: ((INSTR *) --> INSTR)

signature popinstr: ((INSTR *) --> (INSTR *))

signature addrstack: (TADDR *)

signature currglobdefaddr: TADDR

signature getnthaddr: ((NUMBER x (TADDR *)) --> TADDR)

signature popnaddrs: ((NUMBER x (TADDR *)) --> (TADDR *))

signature lengthas: ((TADDR *) --> NUMBER)

signature result: NUMBER

% More assignments

assignfunc topinstr, first-from-list, dummy-func, upd-not-perm;

assignfunc popinstr, tail-from-list, dummy-func, upd-not-perm;

assignfunc addrstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currglobdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc popnaddrs, take-nth-first-from-list, dummy-func, upd-not-perm;

assignfunc getnthaddr, pick-elem-from-list, dummy-func, upd-not-perm;

assignfunc lengthas, length-of-the-list, dummy-func, upd-not-perm;

assignfunc result, constant-std-lookup-data,

user-update-constant, std-const-dta;

% No assign to universe

% Initial values

initial addrstack:== [()]

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Pushglobal") );

%then

extend

extenduniverse TADDR;

extenduniverse NODE;
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withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="SCname";

funcupdate nodescname(temp(NODE,1)):=

getoperand(1,topinstr(instrstack));

funcupdate addrstack:=pushstack(addrstack,temp(TADDR,1));

endextend

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Pushint") );

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Num";

funcupdate nodenum(temp(NODE,1)):=

getoperand(1,topinstr(instrstack));

funcupdate addrstack:=pushstack(addrstack,temp(TADDR,1));

endextend

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Push") );

%then

funcupdate addrstack:=

pushstack(addrstack,nodechild(rightbranch,

graph(getnthaddr

(add(getoperand(1,topinstr(instrstack)),2),

addrstack)) ));

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "MKap") );

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="APnode";

funcupdate nodechild(leftbranch,temp(NODE,1)):=

getnthaddr(1,addrstack);
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funcupdate nodechild(rightbranch,temp(NODE,1)):=

getnthaddr(2,addrstack);

funcupdate addrstack:=pushstack(popnaddrs(2,addrstack),temp(TADDR,1));

endextend

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Slide") );

%then

funcupdate addrstack:=

pushstack(popnaddrs(add(getoperand(1,topinstr(instrstack)),1)

,addrstack)

,topaddr(addrstack))

funcupdate instrstack:=popinstr(instrstack);

endupdates;

% The unwind instructions.

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "APnode") );

%then

funcupdate addrstack:=

pushstack(addrstack,nodechild(leftbranch,graph(topaddr(addrstack))));

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "Num") );

%then

funcupdate status:="Normal-form";

funcupdate result:=nodenum(graph(topaddr(addrstack)));

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "SCname") );

%then

funcupdate currglobdefaddr:=

getaddrfromglobals(nodescname(graph(topaddr(addrstack))));

funcupdate instrstack:=popinstr(instrstack);

funcupdate status:="Exec-sc-def";

endupdates;

if ( = (status, "Exec-sc-def") &

= (nodetype(graph(currglobdefaddr)), "Global") &

> (lengthas(addrstack),defarity(graph(currglobdefaddr)))) );
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%then

funcupdate instrstack:=

concatcode(finishedcode(graph(currglobdefaddr)),instrstack);

funcupdate status:="Exec-code";

endupdates;

A.3 The Template Instantiation Speci�cation ex-

tended to strict arguments and primitives

A.3.1 Speci�cation of the Compilation

The speci�cation to compile the supercombinator de�nitions extended to
strict arguments and primitives into a graph representation is shown below:

% resets before loading

reset

% Signatures

signature status : STATUS

signature tempstack: (TADDR *)

signature emptystack: (TADDR *)

signature initialstack: (TADDR *)

signature isemptystack: ((TADDR *) --> BOOL)

signature topaddr: ((TADDR *) --> TADDR)

signature pushstack: (((TADDR *) x TADDR) --> (TADDR *))

signature popstack: ((TADDR *) --> (TADDR *))

signature currscdefaddr: TADDR

signature currprimdefaddr: TADDR

signature valueofaddr: (TADDR --> [SCEXPR + INSTR])

signature graph: (TADDR --> NODE)

signature mainscdefname: SCPRIMNAME

signature getmainname: ((SCEXPR *) --> SCPRIMNAME)

signature allscdefs: (SCEXPR *)

signature isemptyscdefs: ((SCEXPR *) --> BOOL)

signature getnextscdef: ((SCEXPR *) --> SCEXPR)

signature tailscdefs: ((SCEXPR *) --> (SCEXPR*))

signature allprimdefs: (PRIMEXPR *)

signature isemptyprimdefs: (PRIMEXPR --> BOOL)

signature getnextprimdef: ((PRIMEXPR *) --> PRIMEXPR)

signature tailprimdefs: ((PRIMEXPR *) --> (PRIMEXPR*))

signature getnamefromglobals: (TADDR --> SCPRIMNAME)

signature getaddrfromglobals: (SCPRIMNAME --> TADDR)
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signature emptyexpr: SCEXPR

signature currscdef: SCEXPR

signature exprtype: (SCEXPR --> SCTYPE)

signature getscdefname: (SCEXPR --> SCPRIMNAME)

signature makeparams: (SCEXPR --> (SCEXPR *))

signature srcbody: (SCEXPR --> SCEXPR)

signature firstappexpr: (SCEXPR --> SCEXPR)

signature secondappexpr: (SCEXPR --> SCEXPR)

signature makenum: (SCEXPR --> NUMBER)

signature makebool: (SCEXPR --> BOOLVAL)

signature makedata: (SCEXPR --> DATAVAL)

signature makescname: (SCEXPR --> SCPRIMNAME)

signature makeprimname: (SCEXPR --> SCPRIMNAME)

signature makevarname: (SCEXPR --> VARNAME)

signature getprimdefname: (PRIMEXPR --> SCPRIMNAME)

signature makeprimparaminfo: (PRIMEXPR --> (SCPRIMPARAMTYPE *))

signature makeprimarity: (PRIMEXPR --> NUMBER)

signature nodechild: ((NUMBER x NODE) --> [TADDR + {Empty}])

signature nodetype: (NODE --> NTYPE)

signature nodeparams: (NODE --> (VARNAME *))

%signature nodenum: (NODE --> NUMBER)

signature nodevalue: (NODE --> [NUMBER + BOOL + DATA])

signature nodescname: (NODE --> SCPRIMNAME)

signature nodeprimname: (NODE --> SCPRIMNAME)

signature nodevarname: (NODE --> VARNAME)

signature nodearity: (NODE --> NUMBER)

signature nodeparaminfo: (NODE --> (PARAMTYPE *))

% Load procedure files

% Load standard user environment procedures from file!

%

loadproc "Ea-system-lib/ea-std-user-extension.scm";

loadproc "Ea-system-lib/ea-std-user-update.scm";

loadproc "Ea-system-lib/ea-std-user-lookup.scm";

% Load procedures maintaining lists

loadproc "Ea-system-lib/ea-std-user-list.scm";

% Load arithmetic procedures

loadproc "Ea-system-lib/ea-std-user-arithmetic.scm";

% Load graphical reduction procedure.

loadproc "Graf-reduksjon-lib/ea-graf-red-app-expr.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-find-type.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-number.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-scdef.scm";
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loadproc "Graf-reduksjon-lib/ea-graf-red-scname.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-variable.scm";

loadproc "Graf-reduksjon-lib/ea-prim-def.scm";

% Assignments

% assign <func-symb>, <lookup-proc>, <upd-proc>, <fmess-symb>;

% Status

assignfunc status, constant-std-lookup-data,

user-update-constant, std-const-dta;

% Pointer to the graph

assignfunc graph, table-std-lookup,

user-update-function, std-table;

assignfunc valueofaddr, table-std-lookup,

user-update-function, std-table;

% The address stack

assignfunc currscdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currprimdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc tempstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptystack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc initialstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptystack, empty-list, dummy-func, upd-not-perm;

assignfunc topaddr, first-from-list, dummy-func, upd-not-perm;

assignfunc pushstack, add-to-list, dummy-func, upd-not-perm;

assignfunc popstack, tail-from-list, dummy-func, upd-not-perm;

% The sc definitions

assignfunc mainscdefname, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getmainname, get-scdef-main-name,

dummy-func, upd-not-perm;

assignfunc allscdefs, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptyscdefs, empty-list, dummy-func, upd-not-perm;

assignfunc getnextscdef, first-from-list, dummy-func, upd-not-perm;

assignfunc tailscdefs, tail-from-list, dummy-func, upd-not-perm;

% The primitive definitions

assignfunc allprimdefs, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptyprimdefs, empty-list, dummy-func, upd-not-perm;

assignfunc getnextprimdef, first-from-list, dummy-func, upd-not-perm;
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assignfunc tailprimdefs, tail-from-list, dummy-func, upd-not-perm;

% The globals

assignfunc getnamefromglobals, table-std-lookup,

user-update-function, std-table;

assignfunc getaddrfromglobals, table-std-lookup,

user-update-function, std-table;

% The sc expression

assignfunc emptyexpr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currscdef, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getscdefname, get-scdef-name, dummy-func, upd-not-perm;

assignfunc exprtype, find-type-gen, dummy-func, upd-not-perm;

assignfunc makeparams, get-params, dummy-func, upd-not-perm;

assignfunc srcbody, get-scbody-expr, dummy-func, upd-not-perm;

assignfunc firstappexpr, get-first-app-expr,

dummy-func, upd-not-perm;

assignfunc secondappexpr, get-second-app-expr,

dummy-func, upd-not-perm;

assignfunc makenum, get-sc-number, dummy-func, upd-not-perm;

assignfunc makebool, get-sc-boolean, dummy-func, upd-not-perm;

assignfunc makedata, get-sc-data, dummy-func, upd-not-perm;

assignfunc makescname, get-sc-name, dummy-func, upd-not-perm;

assignfunc makeprimname, get-prim-name, dummy-func, upd-not-perm;

assignfunc makevarname, get-sc-var, dummy-func, upd-not-perm;

% The primitive expression

assignfunc getprimdefname, get-primdef-name, dummy-func, upd-not-perm;

assignfunc makeprimparaminfo, get-prim-param-types, dummy-func,

upd-not-perm;

assignfunc makeprimarity, get-prim-arity, dummy-func, upd-not-perm;

% The graph

assignfunc nodechild, table-std-lookup,

user-update-function, std-table;

assignfunc nodetype, table-std-lookup,

user-update-function, std-table;

assignfunc nodeparams, table-std-lookup,

user-update-function, std-table;

%assignfunc nodenum, table-std-lookup,

% user-update-function, std-table;

assignfunc nodevalue, table-std-lookup,

user-update-function, std-table;

assignfunc nodescname, table-std-lookup,

user-update-function, std-table;
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assignfunc nodeprimname, table-std-lookup,

user-update-function, std-table;

assignfunc nodevarname, table-std-lookup,

user-update-function, std-table;

assignfunc nodearity, table-std-lookup,

user-update-function, std-table;

assignfunc nodeparaminfo, table-std-lookup,

user-update-function, std-table;

% Assign to universe

% assign <universe-symbol> <universe-ext-proc> <umess-symbol>;

assignuniverse NODE, std-ext-collection, number;

assignuniverse TADDR, std-ext-collection, newsymbol;

% Initial values

%loadalg "Graf-red-source/PRIM-SC/prim-test-dump.src";

loadalg "Graf-red-source/PRIM-SC/strict-sc-test.src";

%initial allscdefs :==

% [((= ((sc "SEL") ()) ((((prim "if") (bool "true")) (sc "CP")) (num 4)))

% (= ((sc "CP") ()) (((prim "plus") (num 1)) (num 2)))

% )]

% Primitive definitions unlikely to change. More may be added.

initial allprimdefs :==

[((primitive (prim "plus") (num 2) (number number))

(primitive (prim "if") (num 3) (boolean nonstrict nonstrict))

)]

% More to be added.

initial emptyexpr :== [ (empty) ]

%initial status :== "Get-curr-sc-def"

initial status :== "Initial"

initial emptystack :== [()]

initial currscdefaddr :== [start]

%initial tempstack :== [()]

% Start the compilation

if ( = (status, "Initial") &

(! isemptyscdefs(allscdefs)) );

%then

funcupdate mainscdefname:=getmainname(allscdefs)

funcupdate status:="Get-curr-sc-def"

endupdates

% Prepare for compilation of the supercombinator definition
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if ( = (status, "Get-curr-sc-def") &

(! isemptyscdefs(allscdefs)) );

%then

extend

extenduniverse TADDR;

withupdates

funcupdate currscdefaddr:=temp(TADDR,1);

funcupdate getnamefromglobals(temp(TADDR,1)):=

getscdefname(getnextscdef(allscdefs));

funcupdate getaddrfromglobals(getscdefname(getnextscdef(allscdefs))):=

temp(TADDR,1);

funcupdate valueofaddr(temp(TADDR,1)):=getnextscdef(allscdefs);

endextend

funcupdate allscdefs:=tailscdefs(allscdefs);

funcupdate status:="Compile-sc-def";

endupdates

% Prepare for performing graph reductions

if ( isemptyscdefs(allscdefs) &

= (status, "Get-curr-sc-def") );

%then

funcupdate status:="Get-curr-prim-def"

endupdates

% Prepare for compilation of the primitive definition

if ( = (status, "Get-curr-prim-def") &

(! isemptyprimdefs(allprimdefs)) );

%then

extend

extenduniverse TADDR;

withupdates

funcupdate currprimdefaddr:=temp(TADDR,1);

funcupdate getnamefromglobals(temp(TADDR,1)):=

getprimdefname(getnextprimdef(allprimdefs));

funcupdate getaddrfromglobals(getprimdefname(getnextprimdef(allprimdefs))):=

temp(TADDR,1);

funcupdate valueofaddr(temp(TADDR,1)):=getnextprimdef(allprimdefs);

endextend

funcupdate allprimdefs:=tailprimdefs(allprimdefs);

funcupdate status:="Compile-prim-def";

endupdates

% Supercombinator definition

if = (status, "Compile-prim-def");

%then

extend

extenduniverse NODE;

withupdates
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funcupdate graph(currprimdefaddr):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Primitive";

funcupdate nodeparaminfo(temp(NODE,1)):=

makeprimparaminfo(valueofaddr(currprimdefaddr));

funcupdate nodearity(temp(NODE,1)):=

makeprimarity(valueofaddr(currprimdefaddr));

endextend

funcupdate status:="Get-curr-prim-def";

endupdates

% Prepare for performing graph reductions

if ( isemptyprimdefs(allprimdefs) &

= (status, "Get-curr-prim-def") );

%then

funcupdate status:="Perform-graph-reds"

endupdates

% Supercombinator definition

if ( = (status, "Compile-sc-def") &

= (exprtype(valueofaddr(currscdefaddr)),

"SDEFexpr"));

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(currscdefaddr):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Supercomb";

funcupdate nodeparams(temp(NODE,1)):=

makeparams(valueofaddr(currscdefaddr));

funcupdate nodechild(1,temp(NODE,1)):=temp(TADDR,1);

funcupdate valueofaddr(temp(TADDR,1)):=

srcbody(valueofaddr(currscdefaddr));

funcupdate tempstack:=pushstack(emptystack,temp(TADDR,1));

endextend

funcupdate status:="Compile-the-body";

endupdates

% Application

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"APexpr"));

%then

extend

extenduniverse TADDR # 2;

extenduniverse NODE;

withupdates
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funcupdate graph(topaddr(tempstack)):=temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=emptyexpr;

funcupdate nodechild(1,temp(NODE,1)):=temp(TADDR,1);

funcupdate nodechild(2,temp(NODE,1)):=temp(TADDR,2);

funcupdate nodetype(temp(NODE,1)):="APnode";

funcupdate valueofaddr(temp(TADDR,1)):=

firstappexpr(valueofaddr(topaddr(tempstack)));

funcupdate valueofaddr(temp(TADDR,2)):=

secondappexpr(valueofaddr(topaddr(tempstack)));

funcupdate tempstack:=pushstack(

pushstack(tempstack,temp(TADDR,1)),

temp(TADDR,2));

endextend

endupdates

% Number expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"NUMexpr"));

%then

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=

temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=

emptyexpr;

funcupdate nodetype(temp(NODE,1)):="Num";

funcupdate nodevalue(temp(NODE,1)):=

makenum(valueofaddr(topaddr(tempstack)));

endextend

endupdates

% Boolean expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"BOOLexpr"));

%then

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=

temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=

emptyexpr;
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funcupdate nodetype(temp(NODE,1)):="Bool";

funcupdate nodevalue(temp(NODE,1)):=

makebool(valueofaddr(topaddr(tempstack)));

endextend

endupdates

% Data expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"DATAexpr"));

%then

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=

temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=

emptyexpr;

funcupdate nodetype(temp(NODE,1)):="Data";

funcupdate nodevalue(temp(NODE,1)):=

makedata(valueofaddr(topaddr(tempstack)));

endextend

endupdates

% SC Name expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"SCname"));

%then

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=

temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=

emptyexpr;

funcupdate nodetype(temp(NODE,1)):="SCName";

funcupdate nodescname(temp(NODE,1)):=

makescname(valueofaddr(topaddr(tempstack)));

endextend

endupdates

% Prim Name expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),
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"PrimName"));

%then

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=

temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=

emptyexpr;

funcupdate nodetype(temp(NODE,1)):="PRIMName";

funcupdate nodeprimname(temp(NODE,1)):=

makeprimname(valueofaddr(topaddr(tempstack)));

endextend

endupdates

% Local variable name expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"VARname"));

%then

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(tempstack)):=

temp(NODE,1);

funcupdate valueofaddr(topaddr(tempstack)):=

emptyexpr;

funcupdate nodetype(temp(NODE,1)):="LVar";

funcupdate nodevarname(temp(NODE,1)):=

makevarname(valueofaddr(topaddr(tempstack)));

endextend

endupdates

% Traverse up

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),

"EMPty"))

%then

funcupdate tempstack:=popstack(tempstack);

endupdates;

% End of on supecombinator definition

if ( = (status, "Compile-the-body") &

isemptystack(tempstack));

%then

funcupdate status:="Get-curr-sc-def";
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endupdates;

% Loads part two

loadalg "Graf-red-source/strict-sc-prim-red.src";

A.3.2 Speci�cation of the Reduction Process

The speci�cation to reduce the compiled graph extended with primitives is
shown here:

% To be loaded into the evolving algebra interpret

% after supercomb-comp.src

% More signatures.

%

signature getoperator: (INSTR --> OPERATOR)

signature egraphinstr: INSTR

signature instrstack: (INSTR *)

signature makegcode: (INSTR --> (INSTR *))

signature addrstack: (TADDR *)

signature scdefaddr: TADDR

signature primdefaddr: TADDR

signature leftbranch: NUMBER

signature rightbranch: NUMBER

signature lengthas: ((TADDR *) --> NUMBER)

signature numberofparams: ((SCPARAM *) --> NUMBER)

signature rootofredex: TADDR

signature getsubstvalueaddr: (VARNAME --> TADDR)

signature getscparaminfo: ((NUMBER x (SCPARAM *)) --> SCPARAMTYPE)

signature getparamvar: ((NUMBER x (SCPARAM *)) --> VARNAME)

signature add: ((NUMBER x NUMBER) --> NUMBER)

signature subtract: ((NUMBER x NUMBER) --> NUMBER)

signature pointertodef: (TADDR --> TADDR)

signature finished: (TADDR --> BOOL)

signature rootofinstance: TADDR

signature sameaddr: ((TADDR x TADDR) --> BOOL)

signature result: NUMBER

% The supercombinator object

signature scobj: SCOBJ

signature objscdefnode: (SCOBJ --> NODE)

signature currcounter: (SCOBJ --> NUMBER)

signature currarity: (SCOBJ --> NUMBER)

signature currparams: (SCOBJ --> (SCPARAM *))

% The primitive object

signature primobj: PRIMOBJ

signature objprimname: (PRIMOBJ --> SCPRIMNAME)

signature objprimdefnode: (PRIMOBJ --> NODE)
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signature objprimcounter: (PRIMOBJ --> NUMBER)

signature objprimarglist: (PRIMOBJ --> ([NUMBER + BOOL + DATA + NODE] *))

% The arguments given to the primitive

signature emptyprimarglist: ([NUMBER + BOOL + DATA + NODE] *)

signature pusharg: ((([NUMBER + BOOL + DATA + NODE] *)

x [NUMBER + BOOL + DATA + NODE])

--> ([NUMBER + BOOL + DATA + NODE] *) )

signature matchnodeparam: ((NODETYPE x PARAMTYPE) --> BOOL)

% Compute the primitive

signature applyresultvalue: (RESULTTYPE x NODETYPE x

[NUMBER + BOOL + DATA + NODE])

signature applyprimitive: ((SCPRIMNAME

x ([NUMBER + BOOL + DATA + NODE] *))

--> (RESULTTYPE x NODETYPE x

[NUMBER + BOOL + DATA + NODE]))

signature resultvalueoftype: ((RESULTTYPE x NODETYPE x

[NUMBER + BOOL + DATA + NODE])

--> RESULTTYPE)

signature typeofnode: ((RESULTTYPE x NODETYPE x

[NUMBER + BOOL + DATA + NODE])

--> NODETYPE)

signature resultvalue: ((RESULTTYPE x NODETYPE x

[NUMBER + BOOL + DATA + NODE])

--> [NUMBER + BOOL + DATA + NODE])

% The parameter type (of the primitive)

signature paramtype: (NUMBER x (PARAMTYPE *)) --> PARAMTYPE

% Observing the paramenter type

signature isstrictparam: (PARAMTYPE --> BOOL)

signature isnotbasictype: (NODETYPE --> BOOL)

signature iswhnftype: (NODETYPE --> BOOL)

% The dump stack

signature dumpstack: (DUMP *)

signature emptydumpstack: ((DUMP *) --> BOOL)

signature pushdump: (((DUMP *) x DUMP) --> DUMP)

signature popdump: ((DUMP *) --> (DUMP *))

signature topdump: ((DUMP *) --> DUMP)

signature typeofdumpel: ((DUMP *) --> DUMPTYPE)

% Operations on dumpelement
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signature primobjdump: (DUMP --> PRIMOBJ)

signature scobjdump: (DUMP --> SCOBJ)

signature addrstackdump: (DUMP --> (TADDR *))

% Procedures to be loaded

loadproc "Ea-system-lib/ea-std-user-misc.scm";

% More assignments

assignfunc egraphinstr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc instrstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc addrstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc scdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc primdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptyprimarglist, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc pusharg, add-to-list, dummy-func, upd-not-perm;

assignfunc getscparaminfo, get-param-info, dummy-func, upd-not-perm;

assignfunc dumpstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptydumpstack, empty-list, dummy-func, upd-not-perm;

assignfunc pushdump, add-to-list, dummy-func, upd-not-perm;

assignfunc popdump, tail-from-list, dummy-func, upd-not-perm;

assignfunc topdump, first-from-list, dummy-func, upd-not-perm;

assignfunc primobjdump, table-std-lookup,

user-update-function, std-table;

assignfunc scobjdump, table-std-lookup,

user-update-function, std-table;

assignfunc typeofdumpel, table-std-lookup,

user-update-function, std-table;

assignfunc objscdefnode, table-std-lookup,

user-update-function, std-table;

assignfunc addrstackdump, table-std-lookup,

user-update-function, std-table;

assignfunc primobj, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc scobj, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc objprimname, table-std-lookup,

user-update-function, std-table;

assignfunc objprimdefnode, table-std-lookup,

user-update-function, std-table;

assignfunc objprimcounter, table-std-lookup,
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user-update-function, std-table;

assignfunc objprimarglist, table-std-lookup,

user-update-function, std-table;

assignfunc paramtype, pick-elem-from-list, dummy-func, upd-not-perm;

assignfunc matchnodeparam, is-match-node-param-type, dummy-func, upd-not-perm;

assignfunc applyresultvalue, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc applyprimitive, apply-primitive, dummy-func, upd-not-perm;

assignfunc resultvalueoftype, get-result-type, dummy-func, upd-not-perm;

assignfunc typeofnode, get-type-of-node, dummy-func, upd-not-perm;

assignfunc resultvalue, get-result-value, dummy-func, upd-not-perm;

assignfunc isstrictparam, is-strict-param-type, dummy-func, upd-not-perm;

assignfunc isnotbasictype, is-not-basic-node-type, dummy-func, upd-not-perm;

assignfunc iswhnftype, is-whnf-node-type, dummy-func, upd-not-perm;

assignfunc leftbranch, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc rightbranch, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currparams, table-std-lookup,

user-update-function, std-table;

assignfunc currarity, table-std-lookup,

user-update-function, std-table;

assignfunc getoperator, table-std-lookup,

user-update-function, std-table;

assignfunc makegcode, make-list, dummy-func, upd-not-perm;

assignfunc lengthas, length-of-the-list, dummy-func, upd-not-perm;

assignfunc numberofparams, length-of-the-list, dummy-func, upd-not-perm;

assignfunc makegcode, make-list, dummy-func, upd-not-perm;

assignfunc rootofredex, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc rootofinstance, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc result, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currcounter, table-std-lookup,

user-update-function, std-table;

assignfunc getsubstvalueaddr, table-std-lookup,

user-update-function, std-table;

assignfunc pointertodef, table-std-lookup,

user-update-function, std-table;

assignfunc finished, table-std-lookup,

user-update-function, std-table;

assignfunc getparamvar, get-param-name, dummy-func, upd-not-perm;

assignfunc add, add-numbers, dummy-func, upd-not-perm;

assignfunc subtract, subtract-numbers, dummy-func, upd-not-perm;

assignfunc sameaddr, compare-two-vars, dummy-func, upd-not-perm;
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% Assign to the universe.

assignuniverse INSTR, std-ext-collection, newsymbol;

assignuniverse PRIMOBJ, std-ext-collection, newsymbol;

assignuniverse SCOBJ, std-ext-collection, newsymbol;

assignuniverse DUMP, std-ext-collection, newsymbol;

% Initial values

initial dumpstack:== [()]

initial addrstack:== [()]

initial emptyprimarglist:== [()]

if = (status, "Perform-graph-reds");

%then

funcupdate leftbranch:=1;

funcupdate rightbranch:=2;

extend

extenduniverse INSTR;

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Egraph";

funcupdate egraphinstr:=temp(INSTR,1);

funcupdate instrstack:=makegcode(temp(INSTR,1));

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="SCName";

funcupdate nodescname(temp(NODE,1)):=mainscdefname;

funcupdate addrstack:=pushstack(emptystack,temp(TADDR,1));

endextend

funcupdate status:="Unwind";

endupdates;

if ( = (status, "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "APnode"));

%then

funcupdate addrstack:=pushstack(addrstack,nodechild(leftbranch,

graph(topaddr(addrstack))));

endupdates

% Not any more to do.

if ( = (status, "Unwind") &

iswhnftype(nodetype(graph(topaddr(addrstack)))) &

emptydumpstack(dumpstack) );

%then

funcupdate result:=nodevalue(graph(topaddr(addrstack)))

funcupdate status:="Weak-Head-Normal-form";

endupdates

% Restore from the dump (primitive argument)
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if ( = (status, "Unwind") &

iswhnftype(nodetype(graph(topaddr(addrstack)))) &

(! emptydumpstack(dumpstack)) &

= (typeofdumpel(topdump(dumpstack)), "primobj"));

%then

funcupdate addrstack:=addrstackdump(topdump(dumpstack));

funcupdate primobj:=primobjdump(topdump(dumpstack));

% Insert the evaluated expression instead of the graph

funcupdate nodechild(rightbranch,graph(topaddr

(popstack(addrstackdump(topdump(dumpstack)))))):=

topaddr(addrstack)

funcupdate dumpstack:=popdump(dumpstack);

funcupdate status:="Get-prim-args";

endupdates

% Restore the dump (substitution)

if ( = (status, "Unwind") &

iswhnftype(nodetype(graph(topaddr(addrstack)))) &

(! emptydumpstack(dumpstack)) &

= (typeofdumpel(topdump(dumpstack)), "scobj"));

%then

funcupdate addrstack:=addrstackdump(topdump(dumpstack));

funcupdate scobj:=scobjdump(topdump(dumpstack));

% Insert the evaluated expression instead of the graph

funcupdate nodechild(rightbranch,graph(topaddr

(popstack(addrstackdump(topdump(dumpstack)))))):=

topaddr(addrstack)

funcupdate dumpstack:=popdump(dumpstack);

funcupdate status:="Make-substs";

endupdates

if ( = (status, "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "PRIMName"));

%then

funcupdate primdefaddr:=

getaddrfromglobals(nodeprimname(graph(topaddr(addrstack))));

funcupdate status:="Unwind-primname";

endupdates

if ( = (status, "Unwind-primname") &

= (nodetype(graph(primdefaddr)), "Primitive") &

> (lengthas(addrstack),nodearity(graph(primdefaddr)))) )

%then

extend

extenduniverse PRIMOBJ;

withupdates

funcupdate objprimname(temp(PRIMOBJ,1)):=

275



nodeprimname(graph(topaddr(addrstack)));

funcupdate objprimdefnode(temp(PRIMOBJ,1)):=graph(primdefaddr);

funcupdate objprimcounter(temp(PRIMOBJ,1)):=1;

funcupdate primobj:=temp(PRIMOBJ,1);

funcupdate objprimarglist(temp(PRIMOBJ,1)):=emptyprimarglist;

funcupdate status:="Get-prim-args";

endextend

endupdates

if ( = (status, "Get-prim-args") &

<= (objprimcounter(primobj),nodearity(objprimdefnode(primobj))) &

isstrictparam(paramtype(objprimcounter(primobj),

nodeparaminfo(objprimdefnode(primobj)))) &

matchnodeparam(

nodetype(graph(nodechild(rightbranch,

graph(topaddr(popstack(addrstack)))))),

paramtype(objprimcounter(primobj),

nodeparaminfo(objprimdefnode(primobj)))) );

%then

funcupdate objprimarglist(primobj):=pusharg(objprimarglist(primobj),

nodevalue(graph(nodechild(

rightbranch,graph(topaddr(popstack(addrstack)))))));

funcupdate objprimcounter(primobj):=add(objprimcounter(primobj),1);

funcupdate addrstack:=popstack(addrstack);

endupdates

if ( = (status, "Get-prim-args") &

<= (objprimcounter(primobj),nodearity(objprimdefnode(primobj))) &

(! isstrictparam(paramtype(objprimcounter(primobj),

nodeparaminfo(objprimdefnode(primobj))))) );

%then

funcupdate objprimarglist(primobj):=pusharg(objprimarglist(primobj),

graph(nodechild(rightbranch,graph(topaddr(popstack(addrstack))))));

funcupdate objprimcounter(primobj):=

add(objprimcounter(primobj),1);

funcupdate addrstack:=popstack(addrstack);

endupdates

if ( = (status, "Get-prim-args") &

<= (objprimcounter(primobj),nodearity(objprimdefnode(primobj))) &

isstrictparam(paramtype(objprimcounter(primobj),

nodeparaminfo(objprimdefnode(primobj)))) &

isnotbasictype(nodetype(graph(nodechild(rightbranch,

graph(topaddr(popstack(addrstack))))))) );

%then

extend

extenduniverse DUMP;
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withupdates

funcupdate addrstackdump(temp(DUMP,1)):=addrstack;

funcupdate primobjdump(temp(DUMP,1)):=primobj;

funcupdate typeofdumpel(temp(DUMP,1)):="primobj";

funcupdate dumpstack:=pushdump(dumpstack,temp(DUMP,1));

funcupdate addrstack:=pushstack(emptystack,nodechild(rightbranch,

graph(topaddr(popstack(addrstack)))));

endextend

funcupdate status:="Unwind";

endupdates

if ( = (status, "Get-prim-args") &

> (objprimcounter(primobj),nodearity(objprimdefnode(primobj))) );

%then

funcupdate applyresultvalue:=applyprimitive(objprimname(primobj)

,objprimarglist(primobj));

funcupdate status:="Prim-result";

endupdates

if ( = (status, "Prim-result") &

= (resultvalueoftype(applyresultvalue), "Pass-node"));

%then

funcupdate graph(topaddr(addrstack)):=resultvalue(applyresultvalue);

funcupdate status:="Unwind";

endupdates

if ( = (status, "Prim-result") &

= (resultvalueoftype(applyresultvalue), "Make-node" ));

%then

extend

extenduniverse NODE;

withupdates

funcupdate nodevalue(temp(NODE,1)):=resultvalue(applyresultvalue);

funcupdate nodetype(temp(NODE,1)):=

typeofnode(applyresultvalue);

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

endextend

funcupdate status:="Unwind";

endupdates

if ( = (status, "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "SCName"));

%then

funcupdate scdefaddr:=

getaddrfromglobals(nodescname(graph(topaddr(addrstack))));

funcupdate status:="Unwind-scname";

endupdates
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if ( = (status, "Unwind-scname") &

= (nodetype(graph(scdefaddr)), "Supercomb") &

> (lengthas(addrstack),numberofparams(nodeparams(graph(scdefaddr)))) )

%then

extend

extenduniverse SCOBJ;

withupdates

funcupdate objscdefnode(temp(SCOBJ,1)):=graph(scdefaddr);

funcupdate currarity(temp(SCOBJ,1)):=

numberofparams(nodeparams(graph(scdefaddr)));

funcupdate currcounter(temp(SCOBJ,1)):=0;

funcupdate currparams(temp(SCOBJ,1)):=nodeparams(graph(scdefaddr));

funcupdate scobj:=temp(SCOBJ,1);

endextend

funcupdate status:="Make-substs";

endupdates

% Extend the list of substitution pair for nonstrict parameters

if ( = (status, "Make-substs") &

< (currcounter(scobj),currarity(scobj)) &

= (getscparaminfo(add(currcounter(scobj),1),currparams(scobj)),

"nonstrict") );

%then

funcupdate getsubstvalueaddr(getparamvar

(add(currcounter(scobj),1),currparams(scobj))):=

nodechild(rightbranch,graph(topaddr

(popstack(addrstack))));

funcupdate currcounter(scobj):=add(currcounter(scobj),1);

funcupdate addrstack:=popstack(addrstack);

endupdates

if ( = (status, "Make-substs") &

< (currcounter(scobj),currarity(scobj)) &

= (getscparaminfo(add(currcounter(scobj),1),currparams(scobj)),

"strict") &

iswhnftype(nodetype(graph(nodechild(rightbranch,

graph(topaddr(popstack(addrstack))))))) );

%then

funcupdate getsubstvalueaddr(getparamvar

(add(currcounter(scobj),1),currparams(scobj))):=

nodechild(rightbranch,graph(topaddr

(popstack(addrstack))));

funcupdate currcounter(scobj):=add(currcounter(scobj),1);

funcupdate addrstack:=popstack(addrstack);

endupdates

if ( = (status, "Make-substs") &

< (currcounter(scobj),currarity(scobj)) &
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= (getscparaminfo(add(currcounter(scobj),1),currparams(scobj)),

"strict") &

isnotbasictype(nodetype(graph(nodechild(rightbranch,

graph(topaddr(popstack(addrstack))))))) );

%then

extend

extenduniverse DUMP;

withupdates

funcupdate addrstackdump(temp(DUMP,1)):=addrstack;

funcupdate scobjdump(temp(DUMP,1)):=scobj;

funcupdate typeofdumpel(temp(DUMP,1)):="scobj";

funcupdate dumpstack:=pushdump(dumpstack,temp(DUMP,1));

funcupdate addrstack:=pushstack(emptystack,nodechild(rightbranch,

graph(topaddr(popstack(addrstack)))));

endextend

funcupdate status:="Unwind";

endupdates

% Finished with the substitutions

% Retain the last element of address stack until the root of redex constant

% is set.

if ( = (status, "Make-substs") &

= (currcounter(scobj),currarity(scobj)));

%then

funcupdate rootofredex:=topaddr(addrstack);

funcupdate status:="Init-instance";

endupdates

if = (status, "Init-instance");

%then

extend

extenduniverse TADDR;

withupdates

funcupdate pointertodef(temp(TADDR,1)):=

nodechild(1,objscdefnode(scobj));

funcupdate addrstack:=pushstack(addrstack,temp(TADDR,1));

funcupdate rootofinstance:=temp(TADDR,1)

funcupdate finished(temp(TADDR,1)):="False";

endextend

funcupdate status:="Build-instance";

endupdates

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"APnode"));

%then

funcupdate finished(topaddr(addrstack)):="True";

extend
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extenduniverse TADDR # 2;

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):=

nodetype(graph(pointertodef(topaddr(addrstack))));

funcupdate nodechild(leftbranch,temp(NODE,1)):=temp(TADDR,1);

funcupdate nodechild(rightbranch,temp(NODE,1)):=temp(TADDR,2);

funcupdate finished(temp(TADDR,1)):="False";

funcupdate finished(temp(TADDR,2)):="False";

funcupdate pointertodef(temp(TADDR,1)):=

nodechild(leftbranch,graph(pointertodef(topaddr(addrstack))));

funcupdate pointertodef(temp(TADDR,2)):=

nodechild(rightbranch,graph(pointertodef(topaddr(addrstack))));

funcupdate addrstack:=pushstack(

pushstack(addrstack,temp(TADDR,1)),temp(TADDR,2));

endextend

endupdates

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"Num"));

%then

funcupdate finished(topaddr(addrstack)):="True";

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):=

nodetype(graph(pointertodef(topaddr(addrstack))));

funcupdate nodevalue(temp(NODE,1)):=

nodevalue(graph(pointertodef(topaddr(addrstack))));

endextend

endupdates

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"Bool"));

%then

funcupdate finished(topaddr(addrstack)):="True";

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):=

nodetype(graph(pointertodef(topaddr(addrstack))));

funcupdate nodevalue(temp(NODE,1)):=

nodevalue(graph(pointertodef(topaddr(addrstack))));

280



endextend

endupdates

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"Data"));

%then

funcupdate finished(topaddr(addrstack)):="True";

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):=

nodetype(graph(pointertodef(topaddr(addrstack))));

funcupdate nodevalue(temp(NODE,1)):=

nodevalue(graph(pointertodef(topaddr(addrstack))));

endextend

endupdates

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"SCName"));

%then

funcupdate finished(topaddr(addrstack)):="True";

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):=

nodetype(graph(pointertodef(topaddr(addrstack))));

funcupdate nodescname(temp(NODE,1)):=

nodescname(graph(pointertodef(topaddr(addrstack))));

endextend

endupdates

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"PRIMName"));

%then

funcupdate finished(topaddr(addrstack)):="True";

extend

extenduniverse NODE;

withupdates

funcupdate graph(topaddr(addrstack)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):=

nodetype(graph(pointertodef(topaddr(addrstack))));

funcupdate nodeprimname(temp(NODE,1)):=

nodeprimname(graph(pointertodef(topaddr(addrstack))));
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endextend

endupdates

% Sharing distinct variables.

if ( = (status, "Build-instance") &

=/= (finished(topaddr(addrstack)),"True") &

= (nodetype(graph(pointertodef(topaddr(addrstack)))),"LVar"));

%then

funcupdate finished(topaddr(addrstack)):="True";

funcupdate graph(topaddr(addrstack)):=

graph(getsubstvalueaddr(nodevarname(graph

(pointertodef(topaddr(addrstack))))));

endupdates

if ( = (status, "Build-instance") &

= (finished(topaddr(addrstack)),"True") &

(! sameaddr(topaddr(addrstack),rootofinstance)));

%then

funcupdate addrstack:=popstack(addrstack);

endupdates

if ( = (status, "Build-instance") &

= (finished(topaddr(addrstack)),"True") &

sameaddr(topaddr(addrstack),rootofinstance));

%then

funcupdate status:="Update";

endupdates

% Make a copy of the result of the reduction

if = (status, "Update");

%then

funcupdate addrstack:=

pushstack(popstack(popstack(addrstack)),rootofinstance);

funcupdate status:="Unwind";

endupdates

% Update the root of the redex

% *** Later on.

A.4 The G-machine Speci�cation

A.4.1 Speci�cation of the Compilation

The speci�cation to compile the supercombinator de�nitions extended with
strict arguments and primitives into G-machine instructions is shown below:

% resets before loading

reset
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% Signatures

signature status : STATUS

signature add: ((NUMBER x NUMBER) --> NUMBER)

signature tempstack: (TADDR *)

signature emptystack: (TADDR *)

signature initialstack: (TADDR *)

signature isemptystack: ((TADDR *) --> BOOL)

signature topaddr: ((TADDR *) --> TADDR)

signature pushstack: (((TADDR *) x TADDR) --> (TADDR *))

signature popstack: ((TADDR *) --> (TADDR *))

signature currscdefaddr: TADDR

signature valueofaddr: (TADDR --> [SCEXPR + INSTR])

signature graph: (TADDR --> NODE)

signature mainscdefname: SCNAME

signature getmainname: ((SCEXPR *) --> SCNAME)

signature allscdefs: (SCEXPR *)

signature isemptyscdefs: ((SCEXPR *) --> BOOL)

signature getnextscdef: ((SCEXPR*) --> SCEXPR)

signature tailscdefs: ((SCEXPR*) --> (SCEXPR*))

signature currprimdefaddr: TADDR

signature allprimdefs: (PRIMEXPR *)

signature isemptyprimdefs: (PRIMEXPR --> BOOL)

signature getnextprimdef: ((PRIMEXPR *) --> PRIMEXPR)

signature tailprimdefs: ((PRIMEXPR *) --> (PRIMEXPR*))

% Primitive expressions

signature getprimdefname: (PRIMEXPR --> PRIMNAME)

signature makeprimparamposinfolist: (PRIMEXPR --> (PPOSINFO *))

signature makeprimarity: (PRIMEXPR --> NUMBER)

% Primitive informations

signature primexprtype: (TADDR --> PRIMEXPRTYPE)

signature nameofprimitive: (TADDR --> PRIMNAME)

signature getprimposparaminfolist: (TADDR --> (PPOSINFO *))

signature getprimposition: (((PPOSINFO *) x NUMBER) --> NUMBER)

signature primposition: (TADDR --> NUMBER)

signature getpriminfoparam: (((PPOSINFO *) x NUMBER) --> PPINFO)

signature priminfoparam: (TADDR --> PPINFO)

signature secondprimpos: (TADDR --> NUMBER)

signature thirdprimpos: (TADDR --> NUMBER)

signature defprimarity: (TADDR --> NUMBER)

signature makeprimname: (SCEXPR --> PRIMNAME)
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signature getnamefromglobals: (TADDR --> SCNAME)

signature getaddrfromglobals: (SCNAME --> TADDR)

signature emptyexpr: SCEXPR

signature currscdef: SCEXPR

signature exprtype: (SCEXPR --> SCTYPE)

signature makeparams: (SCEXPR --> (SCEXPR *))

signature getscdefname: (SCEXPR --> SCNAME)

signature srcbody: (SCEXPR --> SCEXPR)

signature firstappexpr: (SCEXPR --> SCEXPR)

signature secondappexpr: (SCEXPR --> SCEXPR)

signature makenum: (SCEXPR --> NUMBER)

signature makebool: (SCEXPR --> BOOLDATA)

signature makedata: (SCEXPR --> DATA)

signature makescname: (SCEXPR --> SCNAME)

signature makevarname: (SCEXPR --> VARNAME)

signature numberofparams: ((SCEXPR *) --> NUMBER)

signature getparamlist: (TADDR --> (PARAMPOS *))

signature makeparamposlist: (SCEXPR --> (PARAMPOS *))

signature incrementposlist: ((NUMBER x (PARAMPOS *)) --> (PARAMPOS *))

signature getposition: (((PARAMPOS *) x VARNAME) --> NUMBER)

% Info about which sc parameters is strict

signature getparaminfo: (((PARAMPOS *) x VARNAME) --> SCPINFO)

signature getoperator: (INSTR --> OPERATOR)

signature getoperand: ((NUMBER x INSTR) --> OPERAND)

signature codelist: (INSTR *)

signature instrstack: (INSTR *)

signature emptycodelist: (INSTR *)

signature makegcode: (INSTR --> (INSTR *))

signature makegcodetwo: ((INSTR x INSTR) --> (INSTR *))

signature concatcode: (((INSTR *) x (INSTR *)) --> (INSTR *))

signature instructions: (TADDR --> (INSTR *))

signature hascode: (TADDR --> BOOL)

signature nodetype: (NODE --> NTYPE)

signature defarity: (NODE --> NUMBER)

signature finishedcode: (NODE --> (INSTR *))

signature leftbranch: NUMBER

signature rightbranch: NUMBER

% Load procedure files

% Load standard user environment procedures from file!
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%

loadproc "Ea-system-lib/ea-std-user-extension.scm";

loadproc "Ea-system-lib/ea-std-user-update.scm";

loadproc "Ea-system-lib/ea-std-user-lookup.scm";

% Load procedures maintaining lists

loadproc "Ea-system-lib/ea-std-user-list.scm";

% Load arithmetic procedures

loadproc "Ea-system-lib/ea-std-user-arithmetic.scm";

% Load graphical reduction procedure.

loadproc "Graf-reduksjon-lib/ea-graf-red-app-expr.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-find-type.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-number.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-scdef.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-scname.scm";

loadproc "Graf-reduksjon-lib/ea-graf-red-variable.scm";

loadproc "Graf-reduksjon-lib/ea-gcode-make-parlist.scm";

loadproc "Graf-reduksjon-lib/ea-prim-def.scm";

% Assignments

% assign <func-symb>, <lookup-proc>, <upd-proc>, <fmess-symb>;

% Status

assignfunc status, constant-std-lookup-data,

user-update-constant, std-const-dta;

% Addition

assignfunc add, add-numbers, dummy-func, upd-not-perm;

% Pointer to the graph

assignfunc graph, table-std-lookup,

user-update-function, std-table;

assignfunc valueofaddr, table-std-lookup,

user-update-function, std-table;

% The address stack

assignfunc currscdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc tempstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptystack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc initialstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptystack, empty-list, dummy-func, upd-not-perm;

assignfunc topaddr, first-from-list, dummy-func, upd-not-perm;

assignfunc pushstack, add-to-list, dummy-func, upd-not-perm;

assignfunc popstack, tail-from-list, dummy-func, upd-not-perm;
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% The sc definitions

assignfunc mainscdefname, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getmainname, get-scdef-main-name,

dummy-func, upd-not-perm;

assignfunc allscdefs, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptyscdefs, empty-list, dummy-func, upd-not-perm;

assignfunc getnextscdef, first-from-list, dummy-func, upd-not-perm;

assignfunc tailscdefs, tail-from-list, dummy-func, upd-not-perm;

% The globals

assignfunc getnamefromglobals, table-std-lookup,

user-update-function, std-table;

assignfunc getaddrfromglobals, table-std-lookup,

user-update-function, std-table;

% The sc expression

assignfunc emptyexpr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc currscdef, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc getscdefname, get-scdef-name, dummy-func, upd-not-perm;

assignfunc exprtype, find-type-gen, dummy-func, upd-not-perm;

assignfunc makeparams, get-params, dummy-func, upd-not-perm;

assignfunc srcbody, get-scbody-expr, dummy-func, upd-not-perm;

assignfunc firstappexpr, get-first-app-expr,

dummy-func, upd-not-perm;

assignfunc secondappexpr, get-second-app-expr,

dummy-func, upd-not-perm;

assignfunc makenum, get-sc-number, dummy-func, upd-not-perm;

assignfunc makebool, get-sc-boolean, dummy-func, upd-not-perm;

assignfunc makedata, get-sc-data, dummy-func, upd-not-perm;

assignfunc makescname, get-sc-name, dummy-func, upd-not-perm;

assignfunc makevarname, get-sc-var, dummy-func, upd-not-perm;

% The primitive definitions

assignfunc currprimdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc allprimdefs, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc isemptyprimdefs, empty-list, dummy-func, upd-not-perm;

assignfunc getnextprimdef, first-from-list, dummy-func, upd-not-perm;

assignfunc tailprimdefs, tail-from-list, dummy-func, upd-not-perm;

% Operations on primitives

assignfunc primexprtype, table-std-lookup,
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user-update-function, std-table;

assignfunc nameofprimitive, table-std-lookup,

user-update-function, std-table;

assignfunc getprimposparaminfolist, table-std-lookup,

user-update-function, std-table;

assignfunc primposition, table-std-lookup,

user-update-function, std-table;

assignfunc priminfoparam, table-std-lookup,

user-update-function, std-table;

assignfunc secondprimpos, table-std-lookup,

user-update-function, std-table;

assignfunc thirdprimpos, table-std-lookup,

user-update-function, std-table;

assignfunc defprimarity, table-std-lookup,

user-update-function, std-table;

assignfunc primexprtype, table-std-lookup,

user-update-function, std-table;

assignfunc getprimdefname, get-primdef-name,

dummy-func, upd-not-perm;

assignfunc makeprimparamposinfolist, make-prim-param-pos-info-list,

dummy-func, upd-not-perm;

assignfunc makeprimarity, get-prim-arity, dummy-func, upd-not-perm;

assignfunc getprimposition, get-prim-param-position,

dummy-func, upd-not-perm;

assignfunc getpriminfoparam, get-prim-param-info,

dummy-func, upd-not-perm;

% Primitive name

assignfunc makeprimname, get-prim-name,

dummy-func, upd-not-perm;

% Parameter-list

assignfunc numberofparams, length-of-the-list, dummy-func, upd-not-perm;

assignfunc getparamlist, table-std-lookup,

user-update-function, std-table;

assignfunc getparaminfo, get-param-sc-info, dummy-func, upd-not-perm;

% * New procedures to be made.

assignfunc makeparamposlist, make-param-pos-list, dummy-func, upd-not-perm;

assignfunc incrementposlist, increm-param-pos, dummy-func, upd-not-perm;

assignfunc getposition, get-position, dummy-func, upd-not-perm;

% Contents of instructions

assignfunc getoperator, table-std-lookup,

user-update-function, std-table;

assignfunc getoperand, table-std-lookup,

user-update-function, std-table;
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% The instructions

assignfunc codelist, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc instrstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptycodelist, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc makegcode, make-list, dummy-func, upd-not-perm;

assignfunc makegcodetwo, make-list, dummy-func, upd-not-perm;

assignfunc concatcode, concat-lists, dummy-func, upd-not-perm;

assignfunc instructions, table-std-lookup,

user-update-function, std-table;

assignfunc hascode, table-std-lookup,

user-update-function, std-table;

% The graph

assignfunc nodetype, table-std-lookup,

user-update-function, std-table;

assignfunc defarity, table-std-lookup,

user-update-function, std-table;

assignfunc finishedcode, table-std-lookup,

user-update-function, std-table;

assignfunc leftbranch, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc rightbranch, constant-std-lookup-data,

user-update-constant, std-const-dta;

% Assign to universe

% assign <universe-symbol> <universe-ext-proc> <umess-symbol>;

assignuniverse NODE, std-ext-collection, number;

assignuniverse TADDR, std-ext-collection, newsymbol;

assignuniverse INSTR, std-ext-collection, newsymbol;

% Initial values

loadalg "Graf-red-source/PRIM-SC/prim-test-false.src";

%initial allscdefs :==

% [((= ((sc "SEL") ()) ((((prim "if") (bool "true")) (sc "CP")) (num 4)))

% (= ((sc "CP") ()) (((prim "plus") (num 1)) (num 2)))

% )]

% Primitive definitions unlikely to change. More may be added.

initial allprimdefs :==

[((primitive (prim "plus") (num 2) (number number))

(primitive (prim "if") (num 3) (boolean nonstrict nonstrict))

)]

initial emptyexpr :== [ (empty) ]
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%initial status :== "Get-curr-sc-def"

initial status :== "Initial"

initial emptystack :== [()]

initial codelist :== [()]

initial emptycodelist :== [()]

initial currscdefaddr :== [start]

%initial tempstack :== [()]

% Start the compilation

if ( = (status, "Initial") &

(! isemptyscdefs(allscdefs)) );

%then

funcupdate mainscdefname:=getmainname(allscdefs)

funcupdate status:="Get-curr-sc-def"

endupdates

% Prepare for compilation of the supercombinator definition

if ( = (status, "Get-curr-sc-def") &

(! isemptyscdefs(allscdefs)) );

%then

extend

extenduniverse TADDR;

withupdates

funcupdate currscdefaddr:=temp(TADDR,1);

funcupdate getnamefromglobals(temp(TADDR,1)):=

getscdefname(getnextscdef(allscdefs));

funcupdate getaddrfromglobals(getscdefname(getnextscdef(allscdefs))):=

temp(TADDR,1);

funcupdate valueofaddr(temp(TADDR,1)):=getnextscdef(allscdefs);

endextend

funcupdate allscdefs:=tailscdefs(allscdefs);

funcupdate status:="Compile-sc-def";

endupdates

if ( = (status, "Get-curr-sc-def") &

isemptyscdefs(allscdefs) );

%then

funcupdate status:="Get-curr-prim-def";

endupdates

% Prepare for compilation of the primitive definition

if ( = (status, "Get-curr-prim-def") &

(! isemptyprimdefs(allprimdefs)) );

%then

extend

extenduniverse TADDR;
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withupdates

funcupdate currprimdefaddr:=temp(TADDR,1);

funcupdate getnamefromglobals(temp(TADDR,1)):=

getprimdefname(getnextprimdef(allprimdefs));

funcupdate getaddrfromglobals(getprimdefname

(getnextprimdef(allprimdefs))):=temp(TADDR,1);

funcupdate valueofaddr(temp(TADDR,1)):=getnextprimdef(allprimdefs);

endextend

funcupdate allprimdefs:=tailprimdefs(allprimdefs);

funcupdate status:="Compile-prim-def";

endupdates

% Primitive definition

if = (status, "Compile-prim-def");

%then

extend

extenduniverse TADDR # 2;

extenduniverse NODE;

extenduniverse INSTR # 2;

withupdates

funcupdate defarity(temp(NODE,1)):=

makeprimarity(valueofaddr(currprimdefaddr))

funcupdate graph(currprimdefaddr):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Global";

funcupdate primexprtype(temp(TADDR,2)):="NameParams";

funcupdate nameofprimitive(temp(TADDR,2)):=

getnamefromglobals(currprimdefaddr));

funcupdate getprimposparaminfolist(temp(TADDR,2)):=

makeprimparamposinfolist(valueofaddr(currprimdefaddr));

funcupdate defprimarity(temp(TADDR,2)):=

makeprimarity(valueofaddr(currprimdefaddr));

funcupdate hascode(temp(TADDR,2)):="False";

% Slide n + 1, Unwind

funcupdate getoperator(temp(INSTR,1)):="Slide";

funcupdate getoperand(1,temp(INSTR,1)):=

add(1,makeprimarity(valueofaddr(currprimdefaddr))));

funcupdate getoperator(temp(INSTR,2)):="Unwind";

funcupdate instructions(temp(TADDR,1)):=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

funcupdate hascode(temp(TADDR,1)):="True";

funcupdate tempstack:=pushstack(

pushstack(emptystack,temp(TADDR,1)),

temp(TADDR,2));

endextend

funcupdate status:="Compile-part-of-primdef";

endupdates
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% Primitive definition

if ( = (status, "Compile-part-of-primdef") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"False") &

= (primexprtype(topaddr(tempstack)),"NameParams") &

= (defprimarity(topaddr(tempstack)),1))

%then

extend

extenduniverse TADDR # 2;

withupdates

% First parameter

funcupdate primexprtype(temp(TADDR,2)):="Param";

funcupdate primposition(temp(TADDR,2)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),1)

funcupdate priminfoparam(temp(TADDR,2)):=

getpriminfoparam(getprimposparaminfolist

(topaddr(tempstack)),1)

funcupdate hascode(temp(TADDR,2)):="False";

% The build in function

funcupdate primexprtype(temp(TADDR,1)):="Priminstr";

funcupdate nameofprimitive(temp(TADDR,1)):=

nameofprimitive(topaddr(tempstack));

funcupdate hascode(temp(TADDR,1)):="False";

% Put adresses on the address stack

funcupdate tempstack:=pushstack(pushstack

(popstack(tempstack),temp(TADDR,1)),

temp(TADDR,2));

endextend

endupdates

if ( = (status, "Compile-part-of-primdef") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"False") &

= (primexprtype(topaddr(tempstack)),"NameParams") &

= (defprimarity(topaddr(tempstack)),2))

%then

extend

extenduniverse TADDR # 3;

withupdates

% Second parameter

funcupdate primexprtype(temp(TADDR,3)):="Param";

funcupdate primposition(temp(TADDR,3)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),2)

funcupdate priminfoparam(temp(TADDR,3)):=

getpriminfoparam(getprimposparaminfolist

(topaddr(tempstack)),2)
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funcupdate hascode(temp(TADDR,3)):="False";

% First parameter

funcupdate primexprtype(temp(TADDR,2)):="Param";

funcupdate primposition(temp(TADDR,2)):=

add(getprimposition(getprimposparaminfolist

(topaddr(tempstack)),1),1);

funcupdate priminfoparam(temp(TADDR,2)):=

getpriminfoparam(getprimposparaminfolist

(topaddr(tempstack)),1)

funcupdate hascode(temp(TADDR,2)):="False";

% The build in function

funcupdate primexprtype(temp(TADDR,1)):="Priminstr"

funcupdate nameofprimitive(temp(TADDR,1)):=

nameofprimitive(topaddr(tempstack));

funcupdate hascode(temp(TADDR,1)):="False";

% Put adresses on the address stack

funcupdate tempstack:=pushstack(pushstack(

pushstack(popstack(tempstack),temp(TADDR,1)),

temp(TADDR,2)),temp(TADDR,3));

endextend

endupdates

if ( = (status, "Compile-part-of-primdef") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"False") &

= (primexprtype(topaddr(tempstack)),"NameParams") &

= (defprimarity(topaddr(tempstack)),3) &

= (nameofprimitive(topaddr(tempstack)),"if") );

%then

extend

extenduniverse TADDR # 2;

withupdates

% First parameter

funcupdate primexprtype(temp(TADDR,2)):="Param";

funcupdate primposition(temp(TADDR,2)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),1)

funcupdate priminfoparam(temp(TADDR,2)):=

getpriminfoparam(getprimposparaminfolist

(topaddr(tempstack)),1)

funcupdate hascode(temp(TADDR,2)):="False";

% The build in function

funcupdate primexprtype(temp(TADDR,1)):="Priminstr"

funcupdate nameofprimitive(temp(TADDR,1)):=

nameofprimitive(topaddr(tempstack))

funcupdate secondprimpos(temp(TADDR,1)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),2)
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funcupdate thirdprimpos(temp(TADDR,1)):=

getprimposition(getprimposparaminfolist

(topaddr(tempstack)),3)

funcupdate hascode(temp(TADDR,1)):="False";

% Put adresses on the address stack

funcupdate tempstack:=pushstack(pushstack

(popstack(tempstack),temp(TADDR,1)),

temp(TADDR,2));

endextend

endupdates

if ( = (status, "Compile-part-of-primdef") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"False") &

= (primexprtype(topaddr(tempstack)),"Param") &

= (priminfoparam(topaddr(tempstack)),"strict"));

%then

extend

extenduniverse INSTR # 2;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Push";

funcupdate getoperand(1,temp(INSTR,1)):=

primposition(topaddr(tempstack));

funcupdate getoperator(temp(INSTR,2)):="Eval";

funcupdate instructions(topaddr(tempstack)):=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

if ( = (status, "Compile-part-of-primdef") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"False") &

= (primexprtype(topaddr(tempstack)),"Param") &

= (priminfoparam(topaddr(tempstack)),"nonstrict"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Push";

funcupdate getoperand(1,temp(INSTR,1)):=

primposition(topaddr(tempstack));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates
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% Addition

if ( = (status, "Compile-part-of-primdef") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"False") &

= (primexprtype(topaddr(tempstack)),"Priminstr") &

= (nameofprimitive(topaddr(tempstack)),"plus"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Add";

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

% Negation

if ( = (status, "Compile-part-of-primdef") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"False") &

= (primexprtype(topaddr(tempstack)),"Priminstr") &

= (nameofprimitive(topaddr(tempstack)),"negate"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Neg";

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

% Cond primitive

if ( = (status, "Compile-part-of-primdef") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"False") &

= (primexprtype(topaddr(tempstack)),"Priminstr") &

= (nameofprimitive(topaddr(tempstack)),"if"));

%then

extend

extenduniverse INSTR # 3;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Push";

funcupdate getoperand(1,temp(INSTR,1)):=

secondprimpos(topaddr(tempstack));

funcupdate getoperator(temp(INSTR,2)):="Push";
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funcupdate getoperand(1,temp(INSTR,2)):=

thirdprimpos(topaddr(tempstack));

funcupdate getoperator(temp(INSTR,3)):="Cond";

funcupdate getoperand(1,temp(INSTR,3)):=

makegcode(temp(INSTR,1));

funcupdate getoperand(2,temp(INSTR,3)):=

makegcode(temp(INSTR,2));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,3));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

% Traverse up

if ( = (status, "Compile-part-of-primdef") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"True"));

%then

% The instruction is always appendended at the end of

% the instruction list.

funcupdate codelist:=concatcode(codelist,

instructions(topaddr(tempstack)));

funcupdate tempstack:=popstack(tempstack);

endupdates;

% End of on supecombinator definition

if ( = (status, "Compile-part-of-primdef") &

isemptystack(tempstack));

%then

funcupdate status:="Get-curr-prim-def";

funcupdate finishedcode(graph(currprimdefaddr)):=codelist;

funcupdate codelist:=emptycodelist;

endupdates;

% Prepare for performing graph reductions

if ( = (status, "Get-curr-prim-def") &

isemptyprimdefs(allprimdefs) );

%then

extend

extenduniverse INSTR # 2;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Pushglobal";

funcupdate getoperand(1,temp(INSTR,1)):=mainscdefname;

funcupdate getoperator(temp(INSTR,2)):="Unwind";

funcupdate instrstack:=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

endextend

funcupdate status:="Exec-code";
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funcupdate leftbranch:=1

funcupdate rightbranch:=2

endupdates

% Supercombinator definition

if ( = (status, "Compile-sc-def") &

= (exprtype(valueofaddr(currscdefaddr)),"SDEFexpr"));

%then

extend

extenduniverse TADDR # 2;

extenduniverse NODE;

extenduniverse INSTR # 2;

withupdates

funcupdate graph(currscdefaddr):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Global";

funcupdate defarity(temp(NODE,1)):=

numberofparams(makeparams(valueofaddr(currscdefaddr)));

funcupdate valueofaddr(temp(TADDR,2)):=

srcbody(valueofaddr(currscdefaddr));

funcupdate getparamlist(temp(TADDR,2)):=

makeparamposlist(valueofaddr(currscdefaddr));

funcupdate hascode(temp(TADDR,2)):="False";

funcupdate getoperator(temp(INSTR,1)):="Slide";

funcupdate getoperand(1,temp(INSTR,1)):=

add(1,numberofparams(makeparams

(valueofaddr(currscdefaddr))));

funcupdate getoperator(temp(INSTR,2)):="Unwind";

funcupdate instructions(temp(TADDR,1)):=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

funcupdate hascode(temp(TADDR,1)):="True";

% Make the testpredicates below happy.

funcupdate valueofaddr(temp(TADDR,1)):=valueofaddr(currscdefaddr);

funcupdate tempstack:=pushstack(

pushstack(emptystack,temp(TADDR,1)),

temp(TADDR,2));

endextend

funcupdate status:="Compile-the-body";

endupdates

% Application

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"APexpr") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse TADDR # 2;
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extenduniverse INSTR;

withupdates

% First AP expression underneath the second on the

% instruction stack (and on top of address stack).

funcupdate valueofaddr(temp(TADDR,1)):=

firstappexpr(valueofaddr(topaddr(tempstack)));

funcupdate hascode(temp(TADDR,1)):="False"

funcupdate getparamlist(temp(TADDR,1)):=

incrementposlist(1,getparamlist(topaddr(tempstack)));

% Second AP expression on top of the instruction stack

% (and second on address stack).

funcupdate valueofaddr(temp(TADDR,2)):=

secondappexpr(valueofaddr(topaddr(tempstack)));

funcupdate hascode(temp(TADDR,2)):="False";

funcupdate getparamlist(temp(TADDR,2)):=

getparamlist(topaddr(tempstack));

% Make the AP instruction

funcupdate getoperator(temp(INSTR,1)):="MKap";

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

funcupdate tempstack:=pushstack(

pushstack(tempstack,temp(TADDR,1)),

temp(TADDR,2));

endextend

endupdates

% Number expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"NUMexpr") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Pushint";

funcupdate getoperand(1,temp(INSTR,1)):=

makenum(valueofaddr(topaddr(tempstack)));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

% Boolean expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &
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= (exprtype(valueofaddr(topaddr(tempstack))),"BOOLexpr") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Pushbool";

funcupdate getoperand(1,temp(INSTR,1)):=

makebool(valueofaddr(topaddr(tempstack)));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

% Number expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"DATAexpr") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Pushdata";

funcupdate getoperand(1,temp(INSTR,1)):=

makedata(valueofaddr(topaddr(tempstack)));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates

% Name expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"SCname") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Pushglobal";

funcupdate getoperand(1,temp(INSTR,1)):=

makescname(valueofaddr(topaddr(tempstack)));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";
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endextend

endupdates;

% Primitive name expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"PrimName") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Pushprimglobal";

funcupdate getoperand(1,temp(INSTR,1)):=

makeprimname(valueofaddr(topaddr(tempstack)));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates;

% Strict variable expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"VARname") &

= (getparaminfo(getparamlist(topaddr(tempstack)),

makevarname(valueofaddr(topaddr(tempstack)))),"strict") &

= (hascode(topaddr(tempstack)),"False"));

%then

extend

extenduniverse INSTR # 2;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Push";

funcupdate getoperand(1,temp(INSTR,1)):=

getposition(getparamlist(topaddr(tempstack)),

makevarname(valueofaddr(topaddr(tempstack))));

funcupdate getoperator(temp(INSTR,2)):="Eval";

funcupdate instructions(topaddr(tempstack)):=

makegcodetwo(temp(INSTR,1),temp(INSTR,2));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates;

% Variable expression

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (exprtype(valueofaddr(topaddr(tempstack))),"VARname") &

= (getparaminfo(getparamlist(topaddr(tempstack)),
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makevarname(valueofaddr(topaddr(tempstack)))),

"nonstrict") &

= (hascode(topaddr(tempstack)),"False") );

%then

extend

extenduniverse INSTR;

withupdates

funcupdate getoperator(temp(INSTR,1)):="Push";

funcupdate getoperand(1,temp(INSTR,1)):=

getposition(getparamlist(topaddr(tempstack)),

makevarname(valueofaddr(topaddr(tempstack))));

funcupdate instructions(topaddr(tempstack)):=

makegcode(temp(INSTR,1));

funcupdate hascode(topaddr(tempstack)):="True";

endextend

endupdates;

% Traverse up

if ( = (status, "Compile-the-body") &

(! isemptystack(tempstack)) &

= (hascode(topaddr(tempstack)),"True") );

%then

% The instruction is always appendended at the end of

% the instruction list.

funcupdate codelist:=concatcode(codelist,

instructions(topaddr(tempstack)));

funcupdate tempstack:=popstack(tempstack);

endupdates;

% End of on supecombinator definition

if ( = (status, "Compile-the-body") &

isemptystack(tempstack));

%then

funcupdate status:="Get-curr-sc-def";

funcupdate finishedcode(graph(currscdefaddr)):=codelist;

funcupdate codelist:=emptycodelist;

endupdates;

% Loads part two

loadalg "Graf-red-source/gmaskin-prim-red.src";

A.4.2 Speci�cation of the Reduction Process

The speci�cation to execute the G-machine instructions is shown below:

% To be loaded into the evolving algebra interpret

% after supercomb-comp.src

% More signatures.
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%

signature topinstr: ((INSTR *) --> INSTR)

signature popinstr: ((INSTR *) --> (INSTR *))

signature addrstack: (TADDR *)

signature currglobdefaddr: TADDR

signature getnthaddr: ((NUMBER x (TADDR *)) --> TADDR)

signature popnaddrs: ((NUMBER x (TADDR *)) --> (TADDR *))

signature lengthas: ((TADDR *) --> NUMBER)

% To be used by the reduction part of Graph Machine

signature nodechild: ((NUMBER x NODE) --> [TADDR + {Empty}])

signature nodeparams: (NODE --> (VARNAME *))

signature nodenum: (NODE --> NUMBER)

signature nodescname: (NODE --> SCNAME)

signature nodeprimname: (NODE --> PRIMNAME)

signature nodevarname: (NODE --> VARNAME)

signature nodevalue: (NODE --> [NUMBER + BOOLDATA + DATA])

signature iswhnftype: (NTYPE --> BOOL)

signature result: NUMBER

% Primitives

signature applyprimitive: ((PRIMNAME x PRIMARGS) --> PRIMRESULT)

signature getresultvalue: (PRIMRESULT --> [NUMBER + BOOLDATA + DATA + INSTRS])

signature resultvalue: [NUMBER + BOOLDATA + DATA + INSTRS]

signature makenumarglist: ((NUMBER x NUMBER) --> PRIMARGS)

signature makecondarglist: ((BOOLDATA x (INSTR *) x (INSTR *))

--> PRIMARGS)

signature concatcondcode: ((INSTRS x (INSTR *)) --> (INSTR *))

% The dump stack

signature dumpstack: (DUMP *)

signature emptydumpstack: ((DUMP *) --> BOOL)

signature pushdump: (((DUMP *) x DUMP) --> DUMP)

signature popdump: ((DUMP *) --> (DUMP *))

signature topdump: ((DUMP *) --> DUMP)

% Operation on the dump stack

signature addrstackdump: (DUMP --> (TADDR *))

signature instrstackdump: (DUMP --> (INSTR *))

% More assignments

assignfunc topinstr, first-from-list, dummy-func, upd-not-perm;

assignfunc popinstr, tail-from-list, dummy-func, upd-not-perm;

assignfunc addrstack, constant-std-lookup-data,

user-update-constant, std-const-dta;
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assignfunc currglobdefaddr, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc popnaddrs, take-nth-first-from-list, dummy-func, upd-not-perm;

assignfunc getnthaddr, pick-elem-from-list, dummy-func, upd-not-perm;

assignfunc lengthas, length-of-the-list, dummy-func, upd-not-perm;

assignfunc nodechild, table-std-lookup,

user-update-function, std-table;

assignfunc nodeparams, table-std-lookup,

user-update-function, std-table;

assignfunc nodenum, table-std-lookup,

user-update-function, std-table;

assignfunc nodescname, table-std-lookup,

user-update-function, std-table;

assignfunc nodeprimname, table-std-lookup,

user-update-function, std-table;

assignfunc nodevarname, table-std-lookup,

user-update-function, std-table;

assignfunc nodevalue, table-std-lookup,

user-update-function, std-table;

assignfunc applyprimitive, apply-primitive, dummy-func, upd-not-perm;

assignfunc getresultvalue, get-result-value, dummy-func, upd-not-perm;

assignfunc makenumarglist, make-list, dummy-func, upd-not-perm;

assignfunc makecondarglist, make-list, dummy-func, upd-not-perm;

assignfunc concatcondcode, concat-lists, dummy-func, upd-not-perm;

assignfunc resultvalue, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc result, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc dumpstack, constant-std-lookup-data,

user-update-constant, std-const-dta;

assignfunc emptydumpstack, empty-list, dummy-func, upd-not-perm;

assignfunc pushdump, add-to-list, dummy-func, upd-not-perm;

assignfunc popdump, tail-from-list, dummy-func, upd-not-perm;

assignfunc topdump, first-from-list, dummy-func, upd-not-perm;

assignfunc addrstackdump, table-std-lookup,

user-update-function, std-table;

assignfunc instrstackdump, table-std-lookup,

user-update-function, std-table;

assignfunc iswhnftype, is-whnf-node-type, dummy-func, upd-not-perm;

% Assign to universe

assignuniverse DUMP, std-ext-collection, newsymbol;
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% Initial values

initial addrstack:== [()]

initial dumpstack:== [()]

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Pushglobal") );

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="SCname";

funcupdate nodescname(temp(NODE,1)):=

getoperand(1,topinstr(instrstack));

funcupdate addrstack:=pushstack(addrstack,temp(TADDR,1));

endextend

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Pushprimglobal") );

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="PRIMName";

funcupdate nodeprimname(temp(NODE,1)):=

getoperand(1,topinstr(instrstack));

funcupdate addrstack:=pushstack(addrstack,temp(TADDR,1));

endextend

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Pushint") );

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Num";

funcupdate nodevalue(temp(NODE,1)):=

getoperand(1,topinstr(instrstack));
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funcupdate addrstack:=pushstack(addrstack,temp(TADDR,1));

endextend

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Pushbool") );

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Bool";

funcupdate nodevalue(temp(NODE,1)):=

getoperand(1,topinstr(instrstack));

funcupdate addrstack:=pushstack(addrstack,temp(TADDR,1));

endextend

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Pushdata") );

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Data";

funcupdate nodevalue(temp(NODE,1)):=

getoperand(1,topinstr(instrstack));

funcupdate addrstack:=pushstack(addrstack,temp(TADDR,1));

endextend

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Push") );

%then

funcupdate addrstack:=

pushstack(addrstack,nodechild(rightbranch,

graph(getnthaddr

(add(getoperand(1,topinstr(instrstack)),2),

addrstack)) ));

funcupdate instrstack:=popinstr(instrstack);

endupdates;
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% Tha Add primitive

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Add") );

%then

funcupdate resultvalue:=getresultvalue(applyprimitive("plus",

makenumarglist(

nodevalue(graph(topaddr(popstack(addrstack)))),

nodevalue(graph(topaddr(addrstack))) )));

funcupdate status:="Make-num-node";

endupdates;

% Processing numeric result

if = (status, "Make-num-node");

%then

extend

extenduniverse NODE;

extenduniverse TADDR;

withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="Num";

funcupdate nodevalue(temp(NODE,1)):=resultvalue;

funcupdate addrstack:=pushstack(popstack(popstack(addrstack)),

temp(TADDR,1));

endextend;

funcupdate instrstack:=popinstr(instrstack);

funcupdate status:="Exec-code";

endupdates;

% The Cond Primitive

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Cond") );

%then

funcupdate instrstack:=concatcondcode(

getresultvalue(applyprimitive("if",

makecondarglist(getoperand(2,topinstr(instrstack)),

getoperand(1,topinstr(instrstack)),

nodevalue(graph(topaddr(addrstack))) ))),

popinstr(instrstack));

funcupdate addrstack:=popstack(addrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Eval") &

(! iswhnftype(nodetype(graph(topaddr(addrstack))))) );

%then

extend

extenduniverse DUMP;
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extenduniverse INSTR;

withupdates

funcupdate addrstackdump(temp(DUMP,1)):=addrstack;

funcupdate instrstackdump(temp(DUMP,1)):=popinstr(instrstack);

funcupdate dumpstack:=pushdump(dumpstack,temp(DUMP,1));

funcupdate addrstack:=pushstack(emptystack,topaddr(addrstack));

funcupdate getoperator(temp(INSTR,1)):="Unwind";

funcupdate instrstack:=makegcode(temp(INSTR,1));

endextend;

endupdates;

% The node is already in whnf form, so we do not make any dump.

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Eval") &

iswhnftype(nodetype(graph(topaddr(addrstack)))) );

%then

funcupdate instrstack:=popinstr(instrstack);

endupdates

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "MKap") );

%then

extend

extenduniverse TADDR;

extenduniverse NODE;

withupdates

funcupdate graph(temp(TADDR,1)):=temp(NODE,1);

funcupdate nodetype(temp(NODE,1)):="APnode";

funcupdate nodechild(leftbranch,temp(NODE,1)):=

getnthaddr(1,addrstack);

funcupdate nodechild(rightbranch,temp(NODE,1)):=

getnthaddr(2,addrstack);

funcupdate addrstack:=pushstack(popnaddrs(2,addrstack),temp(TADDR,1));

endextend

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Slide") );

%then

funcupdate addrstack:=

pushstack(popnaddrs(add(getoperand(1,topinstr(instrstack)),1)

,addrstack)

,topaddr(addrstack))

funcupdate instrstack:=popinstr(instrstack);

endupdates;

% The unwind instructions.
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if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "APnode") );

%then

funcupdate addrstack:=

pushstack(addrstack,nodechild(leftbranch,graph(topaddr(addrstack))));

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Unwind") &

iswhnftype(nodetype(graph(topaddr(addrstack)))) &

emptydumpstack(dumpstack) );

%then

funcupdate status:="Weak-Head-Normal-form";

funcupdate result:=nodevalue(graph(topaddr(addrstack)));

funcupdate instrstack:=popinstr(instrstack);

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Unwind") &

iswhnftype(nodetype(graph(topaddr(addrstack)))) &

(! emptydumpstack(dumpstack)) );

%then

% Set the address to the evaluated node on the top of the addrstack

funcupdate addrstack:=pushstack(popstack(addrstackdump

(topdump(dumpstack))),topaddr(addrstack));

funcupdate instrstack:=instrstackdump(topdump(dumpstack));

funcupdate dumpstack:=popdump(dumpstack);

endupdates

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "SCname") );

%then

funcupdate currglobdefaddr:=

getaddrfromglobals(nodescname(graph(topaddr(addrstack))));

funcupdate instrstack:=popinstr(instrstack);

funcupdate status:="Exec-sc-def";

endupdates;

if ( = (status, "Exec-code") &

= (getoperator(topinstr(instrstack)), "Unwind") &

= (nodetype(graph(topaddr(addrstack))), "PRIMName") );

%then

funcupdate currglobdefaddr:=

getaddrfromglobals(nodeprimname(graph(topaddr(addrstack))));

funcupdate instrstack:=popinstr(instrstack);

funcupdate status:="Exec-sc-def";
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endupdates;

if ( = (status, "Exec-sc-def") &

= (nodetype(graph(currglobdefaddr)), "Global") &

> (lengthas(addrstack),defarity(graph(currglobdefaddr)))) );

%then

funcupdate instrstack:=

concatcode(finishedcode(graph(currglobdefaddr)),instrstack);

funcupdate status:="Exec-code";

endupdates;
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Appendix B

The Evolving Algebra

Interpret

The system description of the Evolving Algebra interpret is enclosed here
as a separate report.
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