
Video on the World Wide Web

Accessing Video from WWW Browsers

Sverre H. Huseby

February 2, 1997

Abstract

This report discusses inclusion of various kinds of video in browser
programs for the World Wide Web. It contains description of video rep-
resentation formats, video transfer on the Internet in general, and mech-
anisms for extending Web browsers to support initially unknown media
types.

A plug-in for Netscape Navigator, capable of displaying inline MPEG
movies, is implemented, along with a Java applet for displaying live video
captured from a camera connected to a remote computer. The plug-in and
the applet show that making video available from Web browsers is indeed
possible, and not considerably harder than making a stand-alone video
handling program.

Preface

This report documents my work on a master degree in computer science at Depart-
ment of Informatics (Ifi), University of Oslo (UiO) in 1996 and 1997. The work was
done at the University’s Center for Information Technology Services (USIT).

. . . and I wish to thank . . .

My internal supervisors have been Fritz Albregtsen and Per Grøttum. My external
supervisor, Ingvil Hovig, has not only been a clever advisor managing to make this
write-o-fobic finish his report, but she has also been a great friend. I owe her a lot.
Another great source of inspiration is Hanne S. Finstad, who has agreed to marry me
as soon as I finish this work. :–) Marius Midtvik at USIT has come up with pointers
to several relevant documents and Web sites. While I’m at it, I would also like to
say hello to Glenn Lines, and thank him for never saying “no” to another beer at the
campus pub.

At the contrary, I would never like to thank that infamous net-lag that every now and
then worked hard to drive me mad while I was searching the Web for information.

A postscript version, and a HTML version of this document, are available at

http://www.ifi.uio.no/~ftp/publications/cand-scient-theses/SHuseby/

The same location also contains source code to the implemented programs, along with
a pointer to a demonstration page for the Java video applet.

This document was written using GNU emacs,
and typeset at 11 pt. by LATEX.
Figures were created with xfig,

while xv captured the screenshots.
The HTML-version was created with LATEX2HTML.

— i —

Video on the World Wide Web

Contents

1 Introduction 1

2 Video Representation and Compression 5
2.1 Sampling . 5
2.2 Image and Video Compression . 6

2.2.1 Rate vs. Distortion . 6
2.3 Single Image Compression . 7

2.3.1 JPEG . 8
2.4 Exploiting Temporal Redundancy . 11

2.4.1 ITU-T Recommendations H.261 and H.263 12
2.4.2 MPEG . 13

2.5 Discussion . 14
2.6 Summary . 15

3 Transferring Video on the Internet 17
3.1 Introduction to TCP/IP Networking 17

3.1.1 Link Layer . 18
3.1.2 Network Layer . 18
3.1.3 Transport Layer . 19
3.1.4 Application Layer . 19
3.1.5 Bandwidth . 20
3.1.6 One-to-many and Many-to-many 21

3.2 Multicasting and the MBone . 22
3.2.1 Session Management . 23
3.2.2 Applications . 23

3.3 Methods for General Data Transfer . 25
3.3.1 File Transfer Protocol (FTP) 25
3.3.2 Hypertext Transfer Protocol (HTTP) 26

3.4 Methods Related to Video Transfer . 26
3.4.1 Real-Time Protocol (RTP) . 26
3.4.2 CU-SeeMe . 27

3.5 Summary . 28

4 Solutions for Embedding Video in WWW Browsers 29
4.1 Uniform Resource Locators (URLs) . 29
4.2 Browsers and Document Types . 30
4.3 Spawning External Applications . 30
4.4 Server Push and Client Pull . 31
4.5 Animated GIFs . 32

— ii —

4.6 Extending Browser Source Code . 32
4.7 Plug-ins . 33
4.8 Java Applets . 35

4.8.1 What is Java? . 35
4.8.2 Java Applets and Security . 37
4.8.3 Using Java for Video . 38

4.9 Discussion . 38
4.10 Summary . 38

5 MPEG Plug-in for Netscape Navigator 41
5.1 Netscape Plug-in API . 41
5.2 Choosing an MPEG Decoder . 43

5.2.1 mpeg play-2.3-patched . 43
5.2.2 mpeg2play-1.1b . 44
5.2.3 Benchmarks . 44
5.2.4 Results . 46

5.3 Tailoring mpeg play . 47
5.3.1 The Client — Server Approach 47
5.3.2 The mpeg play Library API . 49
5.3.3 Avoiding the Pitfalls of Parallel Processing 50
5.3.4 On X11 and Colors . 51

5.4 Discussion . 52
5.5 Summary . 53

6 Sending Camera Input to a Java Applet 55
6.1 Network Communication . 55
6.2 Video Handling . 56
6.3 Java Applet Implementation . 57
6.4 Discussion . 59
6.5 Summary . 60

7 Conclusion 61

A Introduction to Data Compression 63
A.1 Basic Information Theory . 63
A.2 Compression Algorithms . 64

A.2.1 Statistical Coding . 64
A.2.2 Dictionary Based Coding . 67

B SHHVid Java Applet Source Code 71

C SHHVid Grabber Source Code 77

D SHHVid Proxy Source Code 103

E Recoding MPEG to JPEG and GIF 119

F Internet Links 121

Bibliography 125

— iii —

Video on the World Wide Web

— iv —

Chapter 1: Introduction

Chapter 1

Introduction

Internet originated from a military research project sponsored by Department of
Defense’s (DoD) Advanced Research Projects Agency (ARPA) in the late 60s and
the 70s. The original ARPANET included military, university and research sites,
and a main goal of the project was to investigate how to build networks that would
withstand partial outages and still function [1] [2].

In the early 80s, a new set of protocols were developed for use on the ARPANET,
the TCP/IP protocol suite (as described in section 3.1 on page 17). The TCP/IP
protocol suite is not bound to any particular type of hardware, making it possible to
connect any computer to the network, as long as an implementation of the protocols
is available. Development of protocols and other standards for the Internet is an
open effort; people all over the world participate in extending the functionality of the
net, communicating using the Internet itself. Standards are published as “Request
for Comments” (RFC) -documents, where the somewhat misleading name is kept for
historical reasons [3].

During the last years, the Internet has grown rapidly. Since 1988, the number of hosts
connected has doubled each year [4]. In 1990, the first commercial provider of dial-up
Internet access got online, opening the network to the non-research community [5].

Over the years, information has been transferred across the Internet using a plethora
of different protocols, all requiring separate programs implementing the protocol in
question. Also, lots of information have been available as files in local filesystems.
Access to several computers, possibly running different operating systems, may have
been necessary to reach the information.

Making all available information more accessible has probably been in the minds of
several people, but in 1989 and 1990 Tom Berners-Lee1 of CERN2 proposed the initi-
ation of a project that would revolutionize the way we access the world of information
on the Internet [6]. The World Wide Web3 was born [7].

Hypertext documents play a central part in the World Wide Web concept. Aided by
a browser program, users may view documents (popularly named “pages”) in which

1http://www.w3.org/pub/WWW/People/Berners-Lee/
2http://www.cern.ch/
3World Wide Web: also known as WWW, the Web, or W3.

— 1 —

Video on the World Wide Web

highlighted parts “links” to other documents anywhere on the Internet. Pages may
contain various media types, most commonly text and images, but also sound, video
and 3D graphics, limited only by the capabilities of the browsers.

To many people, WWW is the Internet. Nowadays, Internet service providers (ISP)
typically equip their new users with a Web browser, and possibly a separate E-mail
program in addition to the dial-up software. Non-technical users will depend on these
programs, never exploring the parts of the Internet that cannot be reached by their
aid. Also Internet veterans now seem to find the WWW a valuable source of easily
searchable information, starting a Web browser along with other useful programs at
login time.

The increased use of Web browsing programs, makes it a goal to include more of the
Internet under the World Wide Web, making new services just a “mouseclick” or a
“keypress” away for both novice and advanced users.

Live4 video is an area that has begun emerging on the Web, and it is relatively
new on the Internet itself. An important reason for a late introduction, is that the
bandwidth of the lines connecting the Internet networks together, has been too low
for transferring video at acceptable rates. Today, aided by compression technologies
that preserve reasonable quality even at excessive levels of compression, combined
with higher available bandwidths, the Internet has become a promising ground for
transferring and sharing live images.

There are several applications for live video on the Internet. Much research is taking
place to develop software, hardware and standards for video conferencing, in which
two or more people may participate in a meeting or a class from possibly distant
locations on the globe. Members of a conference may be seated in front of worksta-
tions, or they may be located in special conference rooms, equipped with cameras and
microphones. In addition to video and audio, software exists to let the participants
use a shared whiteboard for illustrations.

An application similar to video conferencing, is video telephony, which has been avail-
able on the regular phone network for some years. Enabling telephony, with or without
video, on the Internet, will drastically reduce the costs of long distance calls for end
users, as the price will be limited by the connection to the local ISP.

Television and cinema play important roles in entertaining the 20th century human.
A drawback with these media, is that deciding when a certain movie or program is
viewed, is not left to the viewer, but rather to the provider. The idea behind video
on demand systems, is to hand this control to the viewer. In the future, the Internet
may be the transport medium of such services.

The aim of this report is to describe existing and evolving methods for transferring
miscellaneous kinds of video on the Internet, and outline ideas on how to incorporate
these methods into the World Wide Web, making the video accessible from current or
future Web browsers. Although a natural companion to video in the above mentioned

4In this document, “live” refers to representing real-world actions at approximately the same time
they occur, while “real-time” means playing at correct speed, either live or as playback.

— 2 —

Chapter 1: Introduction

applications is sound, this report does not focus on that topic.

Chapter 2 gives an overview of video representation; what a video stream is, and how
compression is done. The chapter includes an overview of the compression in JPEG,
a standard for still images, in addition to brief explanations of H.261 and MPEG, two
standards for video representation.

In chapter 3, methods for video transfer and synchronization on the Internet, in-
cluding multicasting and the MBone, is described. A short introduction to Internet
networking is given.

The next chapter describes the current possibilities and future extensions to allow
inclusion of video in Web browsers.

Chapter 5 documents the implementation of a simple program that allows playing
MPEG videos inside a popular browser.

Chapter 6 describes the implementation of a Java applet and accompaniment C-
programs for receiving video from a remote, computer-mounted camera.

The final chapter contains a discussion and a conclusion.

There are six appendixes: The first gives an introduction to general data compression,
to aid in the understanding of chapter 2. The three next contain the source code of
the Java applet and C-programs described in chapter 6. The next appendix describes
how to recode an MPEG-file to JPEG and GIF, while the last appendix contains a
collection of Internet resources with relevance in our context.

— 3 —

Video on the World Wide Web

— 4 —

Chapter 2: Video Representation and Compression

Chapter 2

Video Representation and
Compression

A few years ago, images and video were represented using “de facto” file formats,
typically developed by a single organization, with specifications released to the public.
Nowadays, international standardization organizations cooperate to come up with
international standards for the same purposes, building their decisions on years of
research. A couple of standards, such as JPEG for still images and MPEG for video,
are fully defined, while others are being worked upon.

This chapter will give an introduction to image and video representation, starting
with the sampling process. Compression plays an important role in modern schemes
for video representation, so the next two sections focus on image compression, includ-
ing describing the compression method used in JPEG. After discussing single image
compression, the following sections are dedicated to video compression, and how one
may exploit similarities in nearby frames of a video sequence. This section includes
brief descriptions of the standards H.261 and MPEG.

The reader may want a basic knowledge of data compression before reading this
chapter. Consult appendix A or any of it’s referenced papers for an introduction.

2.1 Sampling

A video stream, or video sequence, is generated by sampling fixed images of a scene
at certain time intervals — temporal1 sampling. If the sampling frequency is high
enough, typically between 20 and 30 images per second, a playback at the same speed
will make the eye and the brain see continuous motion pictures.

Each digital image, also called frame, is generated by spatial2 sampling. Using a
camera or a scanner, the continuous, real-life image is converted to a grid of pixels3,
each having a discrete value, or a set of discrete values, giving a measure for the
intensity or color of the small square it represents. For grayscale images, the pixel
value is typically represented using eight bits, giving possible values between 0 and

1temporal: from latin, tempus, “time”.
2spatial: from latin “space”. Having to do with space.
3pixel: short for “picture element”.

— 5 —

Video on the World Wide Web

255 inclusively. The value usually represents the amount of light within the pixel; 0
is black and 255 is white, while the values between give various shades of gray.

Pixels of color images normally consist of three values, describing a color in a certain
color model. Well known color models include RGB, where the three values represent
the red, green and blue color components, and YCbCr (the digital version of YUV
[8]), where one value is used for intensity, while the two others are used to repre-
sent chrominance. RGB representation is used by most (if not all) color monitors,
while YCbCr and other schemes, separating luminance and chrominance, are used in
several image representation schemes containing irreversible compression, along with
television sets. For more on color models, see for instance [9, chapter 13] or [10,
chapter 3].

To sum up, a raw video stream is a sequence of bytes in which a single or a triple of
bytes represent a pixel. A sequence of pixels represent a single image, and a sequence
of images make up the entire movie.

2.2 Image and Video Compression

A raw video stream tends to be quite demanding when it comes to storage require-
ments, and demand for network capacity when being transferred between computers.
Before being stored or transferred, the raw stream is usually transformed to a repre-
sentation using compression. When compressing an image sequence, one may consider
the sequence a series of independent images, and compress each frame using single
image compression methods, or one may use specialized video sequence compression
schemes, taking advantage of similarities in nearby frames. The latter will generally
compress better, but may complicate handling of variations in network transfer speed.

Compression algorithms may be classified into two main groups, reversible and irre-
versible. If the result of compression followed by decompression gives a bitwise exact
copy of the original for every compressed image, the method is reversible. This im-
plies that no quantizing is done, and that the transform is accurately invertible, i.e.
it does not introduce round-off errors.

When compressing general data, like an executable program file or an accounting
database, it is extremely important that the data can be reconstructed exactly. For
images and sound, it is often convenient, or even necessary to allow a certain degra-
dation, as long as it is not too noticeable by an observer.

2.2.1 Rate vs. Distortion

The reason to introduce loss of quality, is to reduce the bitrate. In general, a higher
allowable distortion gives lower bitrate. Often it may be interesting to have some kind
of measure for the degradation of the decompressed image compared to the original.
There are two classes of comparison measures, subjective and objective.

Subjective measures are performed by letting a group of people do a side by side
comparison of the decompressed and the original image. The comparison is done
using predefined quality classes, such as “excellent”, “fine”, “passable”, “marginal”,

— 6 —

Chapter 2: Video Representation and Compression

“inferior” and “unusable” [11].

Objective measures are mathematically or algorithmically oriented. One well known
measure, is Root Mean Squared Error (RMSE). Given an N ×M original image f ,
and a compressed and decompressed image f̂ , RMSE is calculated according to the
following formula [11, section 6.1.4]:

RMSE =

√√√√ 1

NM

N−1∑
x=0

M−1∑
y=0

[f(x, y)− f̂(x, y)]2

RMSE is 0 for identical images. Higher values denote higher deviation between the
images. Note that low RMSE not necessarily indicates high subjective quality.

Closely related to RMSE, is Peak Signal to Noise Ratio (PSNR), measured in dB.
For an eight bit image, with intensity values between 0 and 255, the PSNR is given
by [12, page 77]

PSNR = 20 log10
255

RMSE

The above objective measures build on differences between single pixels in the two im-
ages. This gives results not always comparable to subjective measures. Subjectively,
we appreciate removal of noise pixels, while smoothing of edges makes the image look
like it is out of focus. In the above functions, noise pixel removal and edge smoothing
is treated equally.

2.3 Single Image Compression

One of the more popular standards for reversible image compression, is Compuserve’s
Graphics Interchange Format (GIF) described in [13] for the original 1987-version, and
in [14] for the extended 1989-version. GIF compression is done using the Lempel-Ziv-
Welch (LZW) algorithm, based on LZ78. Using the term “reversible” when describing
GIF may, in some cases, be a misnomer, as images will have to be quantized to 256
colors before being coded. If the original image contains more than 256 colors, it
will not be fully reproducible after coding with GIF. Due to the dictionary based
coding, the compression performance of GIF is best when coding images containing
repeated patterns, as is often the case with computer generated images and simple
line drawings.

Most methods for irreversible, or “lossy” digital image compression, consist of three
main steps: Transform, quantizing and coding, as illustrated in figure 2.1.

101101...Transform Quantizer Coder

Figure 2.1: The three steps of digital image compression.

— 7 —

Video on the World Wide Web

The purpose of the transform is to reorganize the data, to make it possible for the
encoder to do a better job. For statistical coders, the transform can typically be to
give the data a representation featuring non-uniform probability distribution.

The quantizing step is used to remove or reject information that is regarded unin-
teresting. What is considered uninteresting, depends on how the image is supposed
to be used later. If the image is targeted at a human observer, which is the case for
the video images covered by this report, the quantizing will typically remove details
which are not registered by our visual system.

The final step, coding, produces the resulting bitstream using an appropriate, general
compression algorithm.

An irreversible method yields a result after decompression that, using an appropriate
quality measure, is close to the original.

2.3.1 JPEG

JPEG is an international standard for color image compression, created from a coop-
erative effort between the three major standardization organizations ISO4, CCITT5

and IEC6. The acronym JPEG is short for “Joint Photographic Experts Group”.
The book [15], written by two members of the standardization working group, is a
comprehensive guide to the inner workings of JPEG. It also features a copy of the
JPEG draft international standard as an appendix. A shorter introduction to JPEG
is given in a “classical” article [16] by Gregory K. Wallace, once chairman of JPEG.
A comparison between GIF and JPEG may be found in [17].

JPEG offers many modes of operation with variations in pixel depth, number of color
components, color component interleaving, pixel order, and coding algorithm. It even
offers a reversible mode. We focus on the way images are treated to make high levels
of irreversible compression possible. What is described here, is also relevant for the
video sequence compression described in later sections.

The heart of irreversible JPEG, is a 2D version of a mathematical transform known
as Discrete Cosine Transform (DCT). The goal of the transform is to decorrelate the
original signal, distributing the signal energy to only a small set of coefficients [12].
After the transform, many coefficients may be discarded without, or with little, loss
of visual quality.

4ISO: International Organization for Standardization.
5CCITT: International Telegraph and Telephone Consultative Committee, now named ITU-T.
6IEC: International Electrotechnical Commission.

— 8 —

Chapter 2: Video Representation and Compression

DCT

8x8-blocks

Input image

Forward
Quantizer

Entropy

coder

Table

specification

Table

specification

Compressed

stream

Figure 2.2: Pipeline for DCT-based coding (from the ISO JPEG draft standard [15, Appendix A]).

Figure 2.2 shows the main steps in converting a band (a color component) of an image
to a compressed bitstream using DCT-based schemes, such as JPEG. An image is
subdivided in blocks of 8× 8 pixels, each of which are handled independently.

In the JPEG standard, the forward transform (FDCT) and the corresponding inverse
transform (IDCT) to be performed on each block (matrix), are defined as

FDCT: Svu =
1

4
CuCv

7∑
x=0

7∑
y=0

syx cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16

IDCT: syx =
1

4

7∑
u=0

7∑
v=0

CuCvSvu cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16

where: Cz =


1√
2

for z = 0

1 for z 6= 0

When using FDCT, blocks are transformed, to 8× 8 matrixes of transform coefficients.
Figure 2.3 illustrates the naming conventions for transform coefficients.

DC

AC AC

ACAC01 07

7770

Figure 2.3: DC- and AC-coefficients.

The DC coefficient is proportional to the average pixel value in the original block.
AC-coefficients close to DC represent highly correlated pixel values (low frequency),

— 9 —

Video on the World Wide Web

while AC-coefficients towards the lower right corner represent rapidly changing pixel
values (high frequency), such as edges and noise. Using FDCT, most of the energy is
collected in the coefficients near DC, with decreasing energy levels towards the lower
right AC77-coefficient, i.e. the upper left coefficients are more important to visual
quality when restoring the image.

Quantization is done by dividing and truncating each of the transformed coefficients
by individual values. The values are given in a quantization matrix, which becomes
a part of the compressed stream7 (the leftmost “table specification” in figure 2.2).
Quantization is the greatest source to loss of information, as decimal digits are dis-
carded in the truncation. The quantization matrix typically contains higher values
towards the lower right, giving several of the less important coefficients a zero value.

Before coding, the quantized block is converted to a sequence of numbers by collecting
coefficients according to the zig-zag sequence in figure 2.4.

start

Figure 2.4: The zig-zag sequence.

The zig-zag sequence orders the coefficients in approximately decreasing importance,
collecting the more heavily quantized values towards the end. This ordering typically
gives runs of zero values, which are runlength encoded. Non-zero values are coded
using either Huffman or arithmetic coding. A Huffman code table or an arithmetic
coding decision table is sent as part of the compressed stream (the rightmost “table
specification” in figure 2.2).

Decompressing a JPEG stream to an image resembling the original, is done using the
pipeline in figure 2.5. The process is the reverse of coding.

7JPEG allows an “abbreviated format for compressed image data” in which no tables are coded.
This may be used between cooperating applications, where tables are predefined.

— 10 —

Chapter 2: Video Representation and Compression

DCT
Compressed

stream

decoder

Entropy
Dequantizer

Inverse

Table

specification

Table

specification
image

Reconstructed

Figure 2.5: Pipeline for DCT-based decoding (from the ISO JPEG draft standard [15, Appendix A]).

Tables for the Huffman or arithmetic decoder is read from the stream, along with
quantization matrixes for the dequantizer. After decoding, the dequantizer multiplies
the DCT coefficients with the values found in the quantization matrix, before sending
the matrix to the inverse DCT. Running IDCT results in an 8× 8 block, a part of
the reconstructed image.

The JPEG standard doesn’t specify how color images are supposed to be split in
components. An advisory part of the standard does, however, specify sample quan-
tization matrixes for intensity bands, and chrominance bands. As the human visual
system is more sensitive to intensity changes than variations in colors, chrominance
bands may be quantized more than intensity bands. JPEG File Interchange Format
(JFIF) [18] specifies the use of the YCbCr color model for coded images.

JPEG has been used for video compression, by individually compressing each frame
of the video stream. JPEG used for video sequences is often referred to as “motion
JPEG” or “M-JPEG”, but there is no agreed upon standard for this kind of compres-
sion. Different vendors have taken different approaches, with incompatible results
[19].

2.4 Exploiting Temporal Redundancy

Considering a movie as a sequence of single, independent images, leaves us without
the opportunity to exploit the temporal redundancy: Often there are small changes
from frame to frame within a video sequence. The background may be fixed while
an object is moving in front of it, or the camera may sweep over a scene, shifting the
entire view in one direction.

Standardized compression algorithms exists, taking advantage of similarities between
nearby frames. The algorithms typically divide a frame in blocks of 8× 8 pixels, and
encode each block using discrete cosine transform (DCT). To take advantage of the
temporal redundancy, the pixel values in a block may be predicted based on blocks
in nearby frames. When such prediction is used, the block is represented not by the
actual pixel values, but rather by the differences from the matching pixel values in
the frame used for prediction.

To make prediction better, motion compensation is often used: A displacement vector
may be associated with a block, describing how the block has moved relatively to
the frame used for prediction. The vector should point to the block giving optimal

— 11 —

Video on the World Wide Web

prediction. The task of finding the optimal block when coding, is computationally
expensive, and is typically left out when using software coders.

2.4.1 ITU-T Recommendations H.261 and H.263

ITU-T8, the Telecommunication Standardization Sector of International Telecom-
munication Union (ITU), defines two standards (called “recommendations” in ITU-
terminology) for transferring video and audio over digital lines. H.261 [20], finished
in 1990, is designed for ISDN-lines or other media with transfer rates being multiple
of 64 kbit per second. H.263 [21], currently a draft standard, is targeted at lines with
lower bitrates.

H.261

H.261 supports two resolutions: Common Interchange Format (CIF) at 352× 288
pixels, and Quarter CIF (QCIF) at 176× 144 pixels. The luminance color component
is coded at these sizes, while the chrominance components are reduced to half the
size in both directions.

Frames for the three components are partitioned in blocks of 8× 8 pixels, each of which
are transformed, quantized and Huffman-coded separately. A macroblock is defined
as four neighboring luminance blocks, and one block from each of the chrominance
components, making up a 16× 16 sub-image.

Two types of frames are defined, intra coded frames and inter coded frames. Intra
coded frames are coded as stand-alone frames, while inter coded frames use prediction
errors with respect to the previous frame. The coded blocks of inter coded frames
may include motion compensation, in which case a motion vector is associated with
each macroblock. The motion vector allows specification of a displacement of up to
15 pixels in all directions. The sender may decide not to send blocks that haven’t
changed since the previous frame.

H.263

H.263 works much like H.261, but there are several extensions, and some modifica-
tions. In addition to the two resolutions defined for H.261, H.263 allows the following:
16CIF at 1408× 1152, 4CIF at 704× 576, and sub-QCIF at 128× 96 pixels.

Extensions to H.261 include “PB-frames mode”, where two frames are coded as one
unit. The latter frame is coded as an intra frame, while the former frame is coded in
inter mode, possibly using bidirectional prediction between the previously seen frame,
and the intra coded frame of the same unit.

Another extension is the use of unrestricted motion vectors, where motion vectors
are allowed to point outside the frame. Edge pixels are used for prediction of the
non-existing pixels. In H.263, motion vectors use half pixel prediction, instead of
integer pixel prediction.

8ITU-T was until February 1993 known as CCITT.

— 12 —

Chapter 2: Video Representation and Compression

For the coding step, H.263 allows using arithmetic coding instead of the variable
length coding used in H.261.

2.4.2 MPEG

The MPEG (Moving Picture coding Experts Group) standards specify coding of video
and audio streams, and how synchronization between them is supposed to be done.
At 1.2 Mbits per second, 30 Hz and a resolution of 352× 240, the quality of an MPEG
stream is comparable to VHS video [22]. The standardization effort was initiated in
1988, run by “Joint ISO/IEC Technical Committee (JTC 1) on Information Technol-
ogy”. The standards are said to be generic, in that they specify the format of the
compressed stream, rather than the method by which the data are supposed to be
coded.

MPEG defines three different types of frames [23], as illustrated in figure 2.6. Note
that the standard does not specify the frame type sequence, it is left to the encoding
application.

B = Bidirectionally predicted frame

P = Predicted frame

I = Intraframe

Bidirectional prediction

Forward prediction

Figure 2.6: The relationship between frame types.

Intraframes, or I-frames, defines the start of a group of frames. I-frames are coded
as stand-alone images, using a method resembling the one described for JPEG in
section 2.3.1 on page 8.

A group of frames may contain predicted frames, called P-frames. These are predicted
from the closest, previous I- or P-frame, with the help of motion compensation vectors.
The motion vectors are associated with macroblocks of 16× 16 pixels.

Between the I- and P-frames, there may be zero or more bidirectionally interpolated
frames, or B-frames. These are interpolated between the nearest I- or P-frames.
Since the interpolation is bidirectional, the decoder needs to see into the future.
Macroblocks within a B-frame can be coded in several ways [22]:

• Intra coding: No motion compensation.

• Forward prediction: The previous I- or P-frame is used as a reference.

• Backward prediction: The next I- or P-frame is used as a reference.

• Bidirectional prediction: Two reference pictures are used, the previous and next
I- or P-frame.

— 13 —

Video on the World Wide Web

Originally, three versions of the standard were planned for different bitrates (1.5,
10 and 40 Mb/s). These were named MPEG-1, -2 and -3 accordingly [24]. Later
MPEG-4 was initiated for development, suitable for lower bitrates.

MPEG-1 defines a “Constrained Parameter Set”, describing the minimal require-
ments:

Parameter Value Comment

Horizontal resolution ≤ 768
Vertical resolution ≤ 576
Macroblocks per frame ≤ 396 = 288/16 × 352/16
Macroblocks per sec. ≤ 396 = 288/16 × 352/16
Frame rate ≤ 30Hz
Interpolated frames ≤ 2
Bitrate ≤ 1856kb/s

Table 2.1: The Constrained Parameter Set of MPEG-1.

The maximum frame size is 4096× 4096.

MPEG-2 offers extended audio-capabilities compared to MPEG-1, including more
audio channels, and more sample rates.

MPEG-3 no longer exists. It was developed in parallel with MPEG-2 to support
High Definition television (HDTV). As MPEG-2 came to cover what MPEG-3 was
supposed to cover, further development was shut down in 1992.

MPEG-4 is the “very low bitrate”-version of MPEG, suitable for bitrates lower than
64 kb/s. It is scheduled to result in a draft specification in 1997 [19].

2.5 Discussion

Table 2.2 illustrates the different sizes of video streams (MPEG) and the correspond-
ing single image streams (JPEG and GIF).

Three MPEG files were recoded to JPEG and GIF9; bart-temple.mpg, bjork.mpg
and enterprise.mpg. The movies contain 960, 231 and 400 frames respectively, with
sizes 192× 144, 160× 120 and 176× 144.

bits per pixel
Compression method bart-temple bjork enterprise

None 24 24 24
MPEG 0.84 0.97 0.58
JPEG 1.49 1.64 1.22
GIF 5.37 7.55 5.10

Table 2.2: Sizes of a sample video stream using different types of compression.

Compressing the stream using JPEG requires about twice the bandwidth of the orig-

9The recoding process is explained in appendix E on page 119.

— 14 —

Chapter 2: Video Representation and Compression

inal MPEG stream, while using GIF expands the size to between six and nine times
the original, sacrificing most of the colors in the process: GIF supports only 256
colors, while MPEG streams and JPEG images both may contain 16.7 million colors.

Note that the above results should be taken as an illustration of approximate interre-
lation between results from the different methods. A more serious comparison of the
three compression formats should include a measure of distortion from the original
images, and it should not use a decoded MPEG stream as the source, but rather the
original, uncompressed movies.

2.6 Summary

A video stream consists of bytes representing pixel values. For color movies, each
pixel is typically represented by three bytes. A collection of pixels make up a frame,
a still image of the scene at a certain time. A sequence of frames make up the video.

Digital images and video are resource demanding when it comes to storage or transfer
requirements. It is thus often necessary to compress the data by finding alternate
representations. One may take into account the way the human visual system works,
and remove certain information without making the loss too noticeable for human
spectators.

Single image compression consists of three steps: Transform, quantizing and coding.
The transform, typically DCT, reorganizes the pixel data. The quantizer removes
“unnecessary” information, while the coding step performs a general compression
scheme on the remaining data.

When compressing video, one may take advantage of similarities between nearby
frames. With motion compensation, the coder tries to find the most equal block
(small sub-image) in an already seen frame, by searching a small neighborhood of the
current block. The current block is then coded using the prediction error from the
matching block.

Two families of international video compression standards exist: The CCITT family,
including H.261 and H.263, and the MPEG family.

— 15 —

Video on the World Wide Web

— 16 —

Chapter 3: Transferring Video on the Internet

Chapter 3

Transferring Video on the
Internet

Since the World Wide Web can be seen as a “virtual network” on top of the Internet,
making video available on the Web will rely heavily on Internet protocols.

This chapter focuses on ways to transfer video on the Internet in general. It starts
with a short introduction to Internet networking, describing the basic protocols from
which specialized protocols are built. After that, the use of multicasting for video
conferencing is issued. Finally, methods for general data transfer, which may be used
for video, are explained, followed by a description of methods designed for video and
possibly sound.

3.1 Introduction to TCP/IP Networking

The Internet is a network of computer networks communicating with each other using
the TCP/IP protocol suite. Networking protocols are normally developed in layers,
with each layer responsible for a different part of the communication. A protocol suite
is a combination of protocols for different layers. TCP/IP is normally divided in the
four conceptual layers illustrated in figure 3.1.

Telnet, FTP, E-mail, HTTP, etc.

Device driver and interface card

details

Application

Communication

details

IP, ICMP, IGMP

Application

TCP, UDP

Link

Network

Transport

Figure 3.1: The four layers of the TCP/IP protocol suite (From [25, section 1.2]).

The International Organization for Standardization (ISO) has developed a reference
model for describing the structure of networks and networking applications, known as
the Open Systems Interconnection (OSI) model. This model consists of more layers
compared to figure 3.1, but the traditional four layer system should be sufficient to
give an overview of TCP/IP networking. For more on the OSI model, see for instance
[26].

— 17 —

Video on the World Wide Web

Data is moved across the network in units called packets. Each layer performs en-
capsulation by adding a header and possibly a trailer to the packets. Encapsulation
information may include source and destination identification, packet size, checksums,
and other controlling information.

The constructed layering offers the benefit of detail hiding: A layer provides a set of
well-defined services to the layers above, and relies on the services provided by the
layers below.

3.1.1 Link Layer

The link layer includes the networking card and the device driver within the operating
system kernel. The responsibility of this layer, is to handle the hardware details. At
this level, hosts are identified using addresses stored in the interface card, known as
MAC1-addresses in the OSI-model [26].

3.1.2 Network Layer

The network layer, sometimes called the internet layer, handles movement of packets
around and between networks, including routing. Most network layers have a maxi-
mum packet size, based on the characteristics of the underlaying link layer. This is
called the network’s maximum transmission unit (MTU). When transferring packets
exceeding the MTU, fragmentation may occur: The packet is split in two or more frag-
ments. The destination network layer is responsible for reassembly of the fragments
into the original packet [1].

IP addresses are introduced at the network layer, as an abstraction from the hardware
addresses used at the link layer. The latter are used within a single, physical network
only.

8 bits

1 1 0 netid

21 bits

hostidClass C

28 bits

multicast address1 1 1 0Class D

netid0 hostid

24 bits7 bits

Class A

0 netid hostid

16 bits14 bits

1Class B

Figure 3.2: IP address classes (From [1, section 5.2.4]).

Every host on the Internet must have a unique 32 bit IP address, encoding a network
ID and a host ID. An IP address is typically written in dotted decimal notation, where
the four bytes of the 32 bit number is written in decimal, separated by dots. To be
able to scale for different size networks, the single host address space is divided in
the three classes A to C for networks with varying numbers of hosts, according to
figure 3.2. In addition, a separate class is defined for multicast addresses, along with

1MAC (Medium Access Control): A sub-layer within the data link layer in the OSI model.

— 18 —

Chapter 3: Transferring Video on the Internet

a fifth class E (not in the figure) reserved for future use. The host part of the IP
address may be split in a subnet ID part, and a host ID part [27]. This subnetting
eases administration of physically separated networks within an organization.

Humans tend to prefer textual names to IP addresses, so a distributed database, the
Domain Name System (DNS) [28][29] exists, mapping between names and addresses.

3.1.3 Transport Layer

The transport layer provides a flow of data between two hosts, to be used at the
application layer above it. Two transport protocols exists in the TCP/IP protocol
suite:

TCP (Transmission Control Protocol) [30] provides a connection oriented, re-
liable stream of data between two hosts. Providing the data as a stream, hides
the fact that data is split in packets before being transferred across the network.
Making the stream reliable, includes checking that all packets arrive by the help
of acknowledgments, timeouts and retransmissions, and assembling them in cor-
rect order guided by sequence numbers within the packets. Packets may arrive
out of order if the routing mechanism decides to send them through different
network paths.

TCP is used by many applications, such as Telnet, Rlogin, FTP and electronic
mail (SMTP).

UDP (User Datagram Protocol) [31] on the other hand, just sends packets of
data, called datagrams, from one host to another. It is up to the application
to make sure that packets arrive at the other end, and to sort them in correct
order if desirable.

UDP is typically used for applications sending small amounts of independent
data, like clock synchronizers and hostname lookup services, and for programs
sending packets of full state info, like some networking games.

More than one process on a single host may use TCP or UDP at once. The operating
system thus needs a way to identify the source and destination processes of TCP
streams and UDP datagrams. A 16 bit port number, combined with the protocol
type, is used for this identification. Standardized protocols use well known port num-
bers, published in the “Assigned numbers” RFC [32] by Internet Assigned Numbers
Authority (IANA)2. As an example, a File Transfer Protocol (FTP) [33] client by
default connects to TCP port 21 on the server host, since port 21 is the well known
port number of FTP.

3.1.4 Application Layer

The application layer handles the application details, aided by the layers below. A
class of applications will typically have a commonly defined protocol, describing how
they are supposed to communicate. Examples include Simple Mail Transfer Protocol
(SMTP) [34], setting a standard for communication between mail transport agents
(MTA), and Hypertext Transfer Protocol (HTTP) [35] describing how a Web server
and a Web browser does information exchange.

2http://www.isi.edu/div7/iana/

— 19 —

Video on the World Wide Web

For a typical Unix system, the application layer will run as a user process, while the
other layers are handled by the operating system kernel.

HTTP protocol

TCP protocol

Ethernet

IP

Router

HTTP

TCP

IP

Ethernet

driver

server

Ethernet

Ethernet

IP

protocol protocol

protocolprotocol

Ethernet

client

TCP

IP

Ethernet

driver

IP

HTTP

Ethernet

driver

Ethernet

driver

Figure 3.3: HTTP-transfer between two hosts on different physical networks, connected using a router.
(Partially from [25, section 1.2]).

Figure 3.3 shows how the different layers of two hosts communicate with each other.
Although the data flows through the Ethernet cables, via the router and up or down
the layers on each host, we can imagine a peer-to-peer connection between the match-
ing layers on the two hosts, illustrated with stippled lines in the figure.

3.1.5 Bandwidth

Bandwidth denotes the data transfer rate of a network line; the number of data units
transferred in a given amount of time. The maximum bandwidth between two hosts,
is determined by the hardware and accompaniment protocols used to connect the
hosts in question. If data passes intermediate nodes, the maximum bandwidth is
constrained to the one in the bottleneck; the link with lowest maximum bandwidth.

It may be important to distinguish between maximum bandwidth and available band-
width. The available bandwidth depends on the number of connections sharing the
same line, routing decisions, and on overhead from higher level protocols. In general,
the available bandwidth on the Internet is unpredictable, as lines are shared between
many users on different hosts, and TCP/IP doesn’t support bandwidth reservations.
In addition, routers may choose different paths for the packets comprising a connec-
tion.

— 20 —

Chapter 3: Transferring Video on the Internet

0 20 40 60 80 100 120 140 160

Analog Modem

ISDN

Frame Relay

Cable TV

Ethernet

Token Ring

FDDI

ATM

0.03

0.13

2

10

16

100

155

3

Mb/s (megabit per second)

Figure 3.4: Maximum bandwidths for various types of connections to the Internet (From [36]).

Figure 3.4 illustrates the maximum bandwidth on various types of link schemes used
to connect nodes on the Internet. At present, analog modem and ISDN (Integrated
Services Digital Network) are the most likely connection types for home users. A
cable TV provider in Oslo has just recently announced that they will offer Internet
connections using their cable network, in cooperation with an ISP. Ethernet, Token
Ring and FDDI (Fiber Distributed Data Interface) are LANs, while Frame Relay and
ATM (Asynchronous Transfer Mode) are used in Wide Area Networks (WAN).

The problem of varying available bandwidth, plays an important role when transfer-
ring real-time video over networks. A decreasing bandwidth may have to be compen-
sated for by transferring less information, doing any combination of the following:

• More extensive compression, typically by increased quantizing.

• Reduce spatial resolution. If displaying at a particular size is important, the
receiver may simulate the original resolution by interpolating missing pixels.

• Reduce temporal resolution by lowering the frame rate.

It is important to realize that any reduction in amount of data by the methods
mentioned above, will lower the visual quality of the video.

Robust schemes for real-time video should allow a running negotiation between the
sender and the receiver about data transfer rate and video quality. The Real-Time
Protocol (RTP), introduced in section 3.4.1 on page 26, supports mechanisms for this
kind of negotiation.

3.1.6 One-to-many and Many-to-many

In the following, it is important to know that on a Local Area Network (LAN), packets
sent may normally be seen by all hosts. Packets not intended for the host in question,
are filtered out by the network adaptor, the link layer of the TCP/IP protocol suite.

Traditionally, communication at the application layer of a network has been done

— 21 —

Video on the World Wide Web

between two hosts only; packets sent have an explicit destination. This one-to-one
communication is called unicast.

Most LANs also provide some sort of broadcast, allowing sending frames3 simultane-
ously to all hosts on the network. [37] specifies how broadcast is extended to several
connected networks on the Internet. Broadcasts are typically used when converting
from IP to hardware addresses using ARP (Address Resolution Protocol) [38], or
from hardware addresses to IP addresses using RARP (Reverse Address Resolution
Protocol) [39].

Modern network interfaces also provide multicast [25]. With multicast, packets are
accepted by hosts that are members of addressed multicast groups. The filtering of
packets is done as a cooperation between the link layer and the IP layer [25]. Mul-
ticast is used for delivering packets to multiple destinations in applications for video
conferencing and radio and TV transmissions. Bandwidth savings can be achieved
compared to unicast, since each package is transmitted only once within LANs. Mul-
ticasting on the Internet is described in [40] and [41].

The various cast types are distinguished using hardware addresses on the link layer,
and IP addresses on higher layers. Separate sets of IP addresses are used for unicast
(classes A to C), multicast (class D) and broadcast. IANA describes the sets and
reserves some multicast addresses as “well known addresses” in [32].

3.2 Multicasting and the MBone

Multicast within a single physical network is simple [25]. Problems arise when one
wants to use multicast across physical network boundaries. How should a network
router decide which packets are to be transported to the outside world, and to what
destinations? The Internet Group Management Protocol (IGMP) [42], implemented
in the network layer, is used as a solution, aiding hosts and routers in maintaining
tables of which hosts belong to which multicast groups. Hosts send IGMP reports
when the first process enters a multicast group. Nothing is sent when processes leave
a group, but routers send queries periodically, to generate new reports from the hosts.

Hardware routers supporting multicasting are currently not widespread. Instead,
software routers, called tunnels, are used, encapsulating multicast packets inside reg-
ular IP packets. When enabling exchange of multicast packets between two physical
networks, a single host on both networks are typically set up to run mrouted, the mul-
ticast routing daemon. It is expected that commercial routers will support multicast
in the near future [43], removing the need for software routers.

A set of multicast capable networks, called islands, “connected” using tunneling mech-
anisms, makes up the MBone (the Multicast Backbone), a “virtual network running
on ‘top’ of the Internet” [44]. The MBone started out as an experiment during the
Internet Engineering Task Force (IETF)4 March-meeting in 1992, located in San
Diego. Live audio was sent using multicast transmission to participants at 20 sites

3Frame: A commonly used name for packets on the lowest level, for instance an Ethernet.
4http://www.ietf.org/

— 22 —

Chapter 3: Transferring Video on the Internet

on three continents [45]. Over the years, software have evolved enabling other me-
dia to be transferred in addition to sound. Today, the MBone is used not only for
teleconferencing: In 1993, the Woods Hole Oceanographic Institute used the MBone
for transmitting telemetry data from and undersea vessel. Satellite weather photos
are transferred as still images, and live activities from space shuttle missions are
transferred from NASA’s cable TV channel “Select” [46].

3.2.1 Session Management

Video conferences, lectures, and other transmissions of video and sound on the
MBone, are often announced to draw attention from the people interested in par-
ticipating. During the lifetime of a video conference, participants may arrive and
leave at various times. A need to invite new participants may also be present. If the
conference is encrypted, mechanisms must be available for distributing encryption
keys among the participants. Tasks like these are handled using session management
protocols.

Session management protocols are currently being specified by the Multiparty Mul-
timedia Session Control (mmusic)5 workgroup of the IETF. Draft documents are
available, and programs implementing the current state of some of the standards
exist. The draft standards include:

Session Description Protocol (SDP) [47] defines a session description protocol
for advertising multimedia conferences and communicating the conference ad-
dresses and conference tool-specific information necessary for participation.

Session Announcement Protocol (SAP) [48] gives description of the issues in-
volved in multicast announcement of session description packets as defined by
SDP, and defines a packet format to be used by session directory clients.

Session Invitation Protocol (SIP) [49] specifies how to invite new users to ses-
sions. This is targeted at users who have not joined the conference after seeing
it announced using the two above mentioned protocols.

3.2.2 Applications

This section shortly describes a few Unix conference utilities often used on the MBone.

sdr, shown in figure 3.5, is a session directory for announcing and scheduling multime-
dia conferences on the MBone. The program allows users to set up new conferences, or
to list and join existing conferences by launching helper applications handling video,
sound and shared workspaces. sdr uses the draft standards mentioned in section 3.2.1
to perform it’s tasks.

5http://www.ietf.org/html.charters/mmusic-charter.html

— 23 —

Video on the World Wide Web

Figure 3.5: sdr main and session information windows.

The left hand window in figure 3.5 shows the main window of sdr, containing the
dynamic listing of currently announced sessions on the MBone. The “New” button
on the main menu allows the user to announce a new session. When pressing the
button, a window (not shown) pops up, asking for information to be broadcasted
about the new session.

By clicking on a listed session, the right hand window pops up, giving detailed infor-
mation on the session in question, including transmission data formats. The window
allows users to join the session by launching programs to decode some or all of the
transmitted data.

The programs vic and vat, whose main windows are shown in figure 3.6, may be
started either by sdr, or as stand-alone programs to handle video and audio confer-
ences respectively.

Figure 3.6: vic (left) and vat main windows.

The vic window to the left in figure 3.6, shows one sender, with the transmitted
frames on the left, and information on the right. One may click on the frame window
for an enlarged view. The transmitting participants are shown in the main window,

— 24 —

Chapter 3: Transferring Video on the Internet

while a list of spectators are available under the “Menu”-button. By default, vic
doesn’t send video until told so by enabling “Transmit” under the “Menu”-button.
The program supports various video formats, including H.261 and MPEG.

The right hand vat window shows all participants, including those not transmitting.
As for vic, transmission is off by default. The one currently talking is highlighted.

Shared workspaces or whiteboards, are tools that may be used along with video and
audio for video conferencing or lecturing. Figure 3.7 shows the program wb in action.

Figure 3.7: wb main and whiteboard windows. (The whiteboard window is slightly shrinked.)

The main window on the left, shows the current participants. The right window is
the actual workspace, where users may write text and draw graphics.

3.3 Methods for General Data Transfer

Methods for transferring unspecified data files, may be usable for various kinds of
video applications. When transferring data using a method for general data transfer,
the server has no knowledge of the format of the files transferred; there is for instance
no way to tell the server to skip a few frames ahead. Possible uses are thus video on
demand systems with one of the following playback schemes:

• The entire movie is downloaded before being played.

• The playback speed of the movie is not critical, i.e. no real-time requirements,
so playback may be done while the movie is on it’s way across the network.

3.3.1 File Transfer Protocol (FTP)

A widely used protocol for transferring files on the Internet, is File Transfer Protocol
(FTP) [33]. An FTP client program, normally operated by a human user, connects
to a server using TCP. The user may send, receive and delete files, create and remove
directories, and perform other file operations across the network. Unrestricted use

— 25 —

Video on the World Wide Web

of FTP normally requires the user to have an account on the server host. The FTP
session is then initiated by the user providing a user name and a password. A popular
way of distributing publicly available files on the Internet, is using anonymous FTP
services, where the user may log in to a public area without having an account on the
server host. Users logging in anonymously, are normally restricted to doing downloads
only.

3.3.2 Hypertext Transfer Protocol (HTTP)

Even though the WWW is designed to envelope existing protocols, a new protocol
was defined for it. The Hypertext Transfer Protocol (HTTP) [35] allows the Web to
surmount the problems of different data types using negotiation of data representation
[50]. In contrast to FTP, which operates directly on the server file system using file-
and directory names, HTTP identifies documents using Uniform Resource Locators
(URLs, described in section 4.1 on page 29).

HTTP is a “one-shot” protocol: The client opens a TCP-connection to the server,
normally on port 80, and sends it’s request. The server in turn sends it’s response,
and closes the connection. Several requests to the same server, requires establishing
new connections. The repeated reconnectioning that frequently occurs when fetching
Web pages, puts an unnecessary load on both the client and the server host, along
with the network itself. New versions of HTTP will probably allow a connection to
be kept open as long as needed.

The data type negotiation is done using MIME-like headers in both the request and
the response (MIME [51] is briefly described in section 4.2 on page 30).

Although mainly being used for transferring data from the server to the client by
request, the HTTP standard also defines methods for sending data to the server,
used for instance in fill-out forms embedded in HTML-documents. Fill-out forms
are handled by special programs running on the server side, communicating with the
HTTP-server using the Common Gateway Interface (CGI) protocol [52].

3.4 Methods Related to Video Transfer

When live, or other real-time play is required, the client and server need to negoti-
ate the size of the data transferred, and thus the quality of the movie, to cope with
variations in available bandwidth on the network. Several ad hoc solutions are imple-
mented in various programs, but standards are beginning to emerge on the Internet,
most of them currently as drafts.

3.4.1 Real-Time Protocol (RTP)

RTP [53] defines functionality for use in applications transmitting real-time data, such
as audio and video, over multicast or unicast network services. The functionality
includes identification of media type, sequence numbering and timestamping. The
data transfer may be aided by a control protocol (RTCP), providing data delivery
monitoring, and participant identification for on-going sessions. RTP and RTCP are

— 26 —

Chapter 3: Transferring Video on the Internet

typically run on top of UDP, but other transport protocols, such as TCP, may also
be used.

Resource reservation and quality of service are not addressed by RTP, but are left
to lower layers. Likewise, RTP does not guarantee delivery or prevent out of order
delivery, but the sequence number provided by RTP allows the receiver to reconstruct
the sending order.

RTP is considered a framework for new protocols, and is thus not directly usable. A
header template is defined, but the format of the data to be transferred, the payload,
is undefined. Application developers will have to create profile specifications and
payload format specifications extending RTP to cope with the medium in question. A
profile specification defines payload type codes, and any extensions or modifications
to the original RTP. Profiles for audio and video are defined in [54]. The payload
format specification defines how the payload, in our case the video data, is to be
carried in RTP. Currently, payload formats for MPEG [55], H.261 [56] and JPEG [57]
are defined, while others are being developed.

3.4.2 CU-SeeMe

CU-SeeMe is a software package featuring it’s own, proprietary, and partly undoc-
umented6, compression scheme. The package may be used for video telephony and
conferencing on Macintoshes and PC’s, and has gained some popularity, since the
data transfer rate is suitable for modern modems, making the program usable for
most people with an Internet connection. The package was originally developed at
Cornell University, but a commercial version7 is also available.

In [58] Tim Dorcey, one of the developers, gives a quick overview of how CU-SeeMe
works: A frame is resampled to 160× 120 pixels, with each pixel quantized to 16 levels
of gray. Following that, the frame is subdivided in blocks of 8× 8 pixels. A block is
marked for transmission if it differs sufficiently from the previous transmitted block
at that location. The difference is measured as the sum of the absolute values of all
64 differences, with an extra multiplicative penalty for differences in nearby pixels.

Before transmitting a block, it is compressed using a simple, ad hoc reversible com-
pression scheme developed by the program authors. The goal of the scheme is to
be able to compress and decompress fast. To cite Tim Dorcey, “What it lacks in
mathematical elegance, it makes up for in quickness”. Compression builds on the as-
sumption that a row inside a block is often similar to the row above it. A 32 bit word
is created by combining the pixel values in a row, and the difference with the above
32 bit word is coded using 4, 12, 20 or 36 bits, including 4 bits giving further coding
details. The compression scheme is said to reduce the amount of data to transfer by
about 40%.

The program uses UDP at port 7648 for transferring image frames between two
participants [59].

6According to Tim Dorcey, CU-SeeMe is only documented by source code.
7http://goliath.wpine.com/cu-seeme.html

— 27 —

Video on the World Wide Web

In it’s original form, CU-SeeMe can be used for one-to-one communication only.
Using reflectors however, the usability may be extended to real, multi-participant
video conferencing. A reflector is a specialized program running on a Unix host,
capable of multicasting CU-SeeMe packets.

3.5 Summary

The TCP/IP protocol suite, which is used for communication on the Internet, contains
four abstraction layers: The hardware link layer, the routing network layer, the data
flow handling transport layer, and the program specific application layer.

Variations in available bandwidth between two communicating hosts on a network,
plays a role when transferring real-time information. The information quality may
have to be adjusted according to the available data transfer rate.

Packets sent may be intended for a single recipient (unicast), or several recipients
(multicast). Using multicast instead of sending the same packets to several hosts with
unicasting, may save bandwidth. Multicasting between physically separated networks
require special routers, most of which are currently implemented in software. The
MBone is a multicasting network on top of the Internet.

Video may be transferred using general data transfer protocols, such as FTP and
HTTP. To be able to play real-time while transferring, one needs protocols capable
of adjusting the data stream according to the available bandwidth. Most existing
protocols are currently not fully standardized.

— 28 —

Chapter 4: Solutions for Embedding Video in WWW Browsers

Chapter 4

Solutions for Embedding Video
in WWW Browsers

Berner-Lee’s proposal [6] for the project that resulted in the World Wide Web, de-
scribes two important building blocks of the Web, the browser and the server. The
browser is the program operated by the user. It’s job is to display whatever doc-
uments the user requests, in a format suitable for the machine configuration. The
server is the information storer and provider, delivering the documents requested by
the browser.

One of the basic goals of the World Wide Web was to provide hypertext documents,
enabling users to follow links to other documents on the Web. A suitable format was
defined, called Hypertext Markup Language (HTML) [60]. The format is evolving
to adapt to users’ needs, so a version 3.2 is under development by World Wide Web
Consortium1 in cooperation with browser vendors [61].

HTML describes the logical structure of a document rather than it’s formatting. This
allows different platforms and programs to display the contents according to their own
conventions, or the user’s preferences.

This chapter discusses various ways of including video in Web browsers. The first
section describes URLs, the addresses for documents on the Web. Following that
is a section on how Web browsers identify the content types of documents. The
sections describing viewing video from browsers, include executing external applica-
tions, server push and client pull, animated GIFs, browser source code modifications,
plug-ins, and Java programming.

4.1 Uniform Resource Locators (URLs)

On the Web, documents are identified using Uniform Resource Locators, or URLs
[62]. The fields of a URL describe the protocol, called scheme in URL terminology,
used to retrieve the document, in combination with a protocol specific part. For most
protocols, the specific part denote the host on which the document may be found, an
optional network port to connect to, and a path identifying the document.

1http://www.w3.org/pub/WWW/

— 29 —

Video on the World Wide Web

What follows is a couple of sample URLs:

http://www.whitehouse.gov:80/WH/Welcome.html

The above URL indicates a server on the host www.whitehouse.gov, listening on
port 80, and communicating using HTTP. The document is further identified with
the path WH/Welcome.html, indicating that this is a hypertext document. According
to [32], port 80 is the default for HTTP, so the :80 could have been omitted.

ftp://sunsite.unc.edu/pub/Linux/

This URL identifies the directory pub/Linux/ on the server sunsite.unc.edu, ac-
cessed using FTP [33].

mailto:sverrehu@ifi.uio.no

URLs need not necessarily reference existing documents, as illustrated by the above
example. The mailto-scheme specifies an electronic mail address. Most browsers will
pop up a window in which the user may compose an E-mail to the address given.

4.2 Browsers and Document Types

As mentioned above, the browser is responsible for fetching and displaying documents
from servers, as requested by users. Most browsers have built-in support for com-
municating with various types of information providers in addition to HTTP-talking
Web servers. The built-in support typically includes FTP (general file transfer [33]),
NNTP (news [63]), SMTP (mail [34]) and Gopher (a distributed document search
and retrieval protocol [64]).

Before displaying a document, the browser needs to decide the contents, to choose an
appropriate way of viewing. Documents are typically categorized using MIME-like
descriptors. MIME [51] is an Internet standard for identifying the contents of mail,
using a classification scheme built on types and subtypes. As an example, an MPEG
video stream would be classified as video/mpeg.

When transferring a document using HTTP, the HTTP header may, depending on
the server, include a Content-Type field giving the type and subtype of the document
in question. If no Content-Type field is present, or if another protocol than HTTP
is used to transfer the document, the browser will have to do a qualified guess on
the contents. This guessing is typically done by examining parts of the URL used
to reference the document, in particular by looking at the extension of the filename
part of the URL. Browsers may be configured to associate certain extensions with
MIME-types.

Once the type of the document is identified, the browser decides how to display
the contents. Widely used formats, such as HTML, plain text, GIF and JPEG,
are normally handled by the browser itself. Other formats may be sent to external
applications or plug-ins, as described below. Handling of initially unsupported MIME-
types, may normally be specified by the user.

4.3 Spawning External Applications

The simplest way to make a Web browser handle documents of types it normally
doesn’t know of, is to make it start an external program to view the document.

— 30 —

Chapter 4: Solutions for Embedding Video in WWW Browsers

There are a couple of drawbacks to this: First, the feeling of integration is lacking.
The helper program shows up in a window of it’s own, making it difficult to combine
the document contents with other information. Also, the look and feel of the separate
application may not match that of the browser. Secondly, the user will have to install
the helper application, including setting up the browser to call it for appropriate
document types. For novice users, this may incur problems, as may the task of
identifying and retrieving the application.

The problem of integration may be solved to a certain extent by specifying protocols
for how external applications may use a subwindow of the browser. Ideally, the
protocol should include some negotiation of the proper window size.

The benefit of using external helper applications, is that one may use highly special-
ized, already existing programs.

The rest of this chapter will discuss methods for integrating video within the browser
window.

4.4 Server Push and Client Pull

Early methods for displaying “animation” in Web pages, include server push and
client pull, both developed by Netscape Communications Corporation2. Server push
and client pull are described in [65].

When using server push, the connection between the browser and the server is kept
open. The server, or a CGI-program running at the server side, splits data in chunks,
and sends the chunks one by one in a multi-part MIME-message. The browser handles
each part as it arrives.

Client pull works by forcing the browser to reload a document, or load a new document
in a given amount of seconds. The delay is passed to the browser using the HTTP
response from the server, or as a special META-tag within the HTML-document being
passed.

To transfer video using any of these methods, the server will either have to decode
the video stream, and recode it as single images in a format the Web browser in the
other end can handle, or store the images pre-encoded.

There are several drawbacks making these methods inappropriate for transferring
video on the World Wide Web: First of all, they are not bandwidth friendly. Accord-
ing to table 2.2 in section 2.5 on page 14, GIF and JPEG requires several times the
bandwidth of the original MPEG stream.

In addition to requiring a high bandwidth, and thus putting a big load on the network,
the process of decoding and recoding images may take up most of the CPU time of
the server. If several people request movies at the same time, the server will have a
hard time serving them all. Decoding is better left off at the client side.

2http://home.netscape.com/

— 31 —

Video on the World Wide Web

The timing resolution using client pull is one second; the “next” image may be loaded
in any number of whole seconds, or immediately. For real-time video, this is not
accurate enough.

A semester project at the University of Illinois at Urbana-Champaign included testing
server push and client pull of MPEG streams recoded to GIF images [66]. The results
demonstrate that server push and client pull are not usable for transferring video.

Even if inappropriate for large scale video, server push and client pull have been used
extensively for highlighting Web pages by adding small, animated widgets drawing
the spectator’s attention. However, using server push or client pull for this purpose,
is currently being overtaken by animated GIFs.

4.5 Animated GIFs

Compuserve’s second version of GIF, known as GIF 89a [14], allows timed delays to
be inserted between images in a multi-image GIF file, making it possible to use GIF
for animations. The timing resolution is 1/100 second. One may also specify a count
of times to rerun the animation, or make it run infinitely.

Animated GIFs have gained popularity recently, being used for spicing up Web pages,
especially in commercial advertising. Several freely available tools for making ani-
mated GIFs from a sequence of single images has become available.

Compared to client pull, that was formerly used for the same purposes, animated
GIFs put less load on the network, since images are transferred only once. Since the
entire file is sent to the client, it may be cached locally, resulting in faster play, and
faster reload of the page including the animation.

4.6 Extending Browser Source Code

The most direct way to include video in a browser, is to extend an existing browser
by modifying it’s source code. For this to be possible, the browser source code must
be available, as is the case with for instance NCSA Mosaic3, the first widely known
browser.

[67] describes rewriting Mosaic to support real-time video and audio, to a browser
called Vosaic4. Vosaic accepts URLs of the form

mbone://224.2.252.51:4739:127:nv

referencing an MBone connection at address 224.2.252.51 at port 4739, having a Time
To Live (TTL) of 127, and using the nv transmission format.

Rewriting browser source code requires people to install the modified version of the
browser, which is not necessarily the browser of choice. In addition, when program-
mers around the world create their own versions of browsers, each extended to do
various useful things, it will be difficult to incorporate all wanted behavior into a

3http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/
4http://choices.cs.uiuc.edu/research/Vosaic/vosaic2.html

— 32 —

Chapter 4: Solutions for Embedding Video in WWW Browsers

single browser. This leads to a scenario in which people use different browsers for
different tasks, breaking with one of the basic goals of the WWW philosophy; incor-
porating all information into a single client program. Later sections describe ways to
extend browsers in somewhat standardized ways, making it possible to add indepen-
dent extensions to the same browser program without recompilations.

4.7 Plug-ins

Some browsers allow their functionality to be extended by third party plug-ins. A
plug-in is a dynamically loadable library specialized in interpreting and presenting a
certain data format. The plug-in will run as part of the browser process, and have
access to limited areas of the browser window, thus appearing to the user as part of
the browser.

A browser decides what plug-in to hand a document to by examining the extension
of the document “filename”. Extensions are bound to MIME-types describing the
expected data type in the document, and documents are handed to a plug-in that
has announced it can handle the MIME-type in question. The document retrieval
is done by the browser, so plug-ins may currently not be used to handle data sent
using protocols not supported by the browser. This limitation, which plays a role
when real-time negotiation is required between the plug-in and the server providing
the data, may be circumvented by letting the initial document contain information
necessary for the plug-in to set up it’s own connection. Future browsers should let
plug-ins not only specify what MIME-types they expect, but also protocols provided.

As of 1996-10-11, BrowserWatch [68] listed 53 known WWW browsers, of which
four was indicated as having plug-in support. Netscape Navigator, the most widely
used browser [68], was the first to allow third party plug-ins. Fortunately, the other
three browser developers have decided to stick to Netscape’s plug-in format5, making
available plug-ins sharable.

Like is the case with external applications, plug-ins will have to be installed before
being used. Netscape gives guidelines for how plug-in developers may simplify this
process for the user, and for how HTML documents requiring plug-ins for embedding
automatically may let the user download the plug-in if not already available [69].

In Netscape Navigator, plug-ins may be either embedded or full screen. An embedded
plug-in shows up along with other information elements, and require an EMBED-tag
inside a HTML-document. Figure 4.1 gives an example of a HTML-document with an
EMBED-tag. A plug-in is activated as full screen when a document with the MIME-type
of the plug-in is accessed directly. Full page plug-ins are typically used for document
viewers.

5More on Netscape plug-in API in section 5.1 on page 41

— 33 —

Video on the World Wide Web

<HTML>

<H1>The MPEG plugin</H1>

Displaying bart-temple.mpg after loading.

<P>

<EMBED

SRC="bart-temple.mpg"

WIDTH=300 HEIGHT=200

TransferMode=LocalFile>

</HTML>

Figure 4.1: Example of an EMBED-tag in a HTML-document.

Note the use of WIDTH and HEIGHT to set the size of the window in figure 4.1. Setting
the size of embedded windows is required in Netscape Navigator. The “correct”
size of the window is often not known until parsing of the video stream has started,
but Navigator doesn’t let a plug-in resize the window. For the convenience of both
users and programmers, future browsers could allow resizing of embedded windows,
followed by restructuring of the surrounding document contents.

Figure 4.2: A plug-in viewing MPEG movies in Netscape Navigator. On the left, the plug-in is
embedded in a HTML-document, while the right image shows a full screen plug-in.

Figure 4.2 shows the difference between an embedded and a full screen plug-in. Note
that other text of the HTML-document surrounds the embedded plug-in, which is
shown in a sub-window. The full screen plug-in occupies the entire view area of the
browser window.

The Plug-in Plaza of BrowserWatch [68], striving to list existing plug-ins, shows
several plug-ins for displaying video inside a browser. The plug-ins may be used to

— 34 —

Chapter 4: Solutions for Embedding Video in WWW Browsers

view MPEG or QuickTime movies on Macintosh and MS Windows based computers.
Plug-in Plaza lists no plug-ins capable of inline video conferencing or other two-way
communications.

Chapter 5 on page 41 describes the implementation of a Unix-plug-in capable of
displaying MPEG-movies inside Netscape Navigator, shown in figure 4.2.

4.8 Java Applets

The origins of Java go back to 1990, when Patrick Naughton announced that he would
leave Sun Microsystems in favor of NeXT Computer Inc. To keep him from leaving,
Sun gave him permission to work on anything he would like, with some of the best
programmers available at the site, one of which was James Gosling. The initial goal
of the project, was to create a device that could control everyday consumer appliances
through an animated, graphical interface. Gosling’s job was to define and implement
a programming language suitable for the task. The programming language was named
“Oak”.

When the device prototype was finally ready, Sun failed to convince potential cus-
tomers to incorporate the device in their products. In 1994, the project was closed.
It was then Bill Joy, a Sun co-founder, got the idea of bringing the programming
language to the Internet, by letting it extend the capabilities of the World Wide
Web. The language itself became the product, instead of just part of a device.
Gosling adapted the language, which was now renamed “Java”6, to the Internet,
and Naughton wrote “HotJava”, a Web browser supporting the language. In an at-
tempt to get a hold on the Internet market, Sun decided to give the products away
for free. It has later turned out to be a success [70][71].

4.8.1 What is Java?

Java is an object oriented programming language, highly inspired by C++. What
separates it from other popular programming languages, is that a program is normally
not compiled to machine code for a particular processor and operating system type,
but rather to a binary code interpreted by a “Java Virtual Machine” (JVM) [72]. This
way, a precompiled Java program may be distributed and run on any computer or
other device where a Java Virtual Machine is available. Currently, JVMs are typically
available as programs for various platforms, but Sun recently announced picoJava, a
microprocessor that executes Java byte code directly.

A Java program may be run either as a stand-alone application, or as an applet loaded
as Java byte code from some host on the Internet by a Web browser. Applets are
programs run by Java capable Web browsers, showing their output and accepting
user input from within the browser window. In effect, applets bring full interactivity
to the World Wide Web: An information provider may write a Java program that
visualizes the information in a suitable way, possibly guided by user input. The applet
concept is a major reason for Java’s popularity.

Using interpreted code may slow down execution compared to running pure machine

6http://www.javasoft.com/

— 35 —

Video on the World Wide Web

code. Java is normally shipped with an extensive class library, the Java Application
Programmer’s Interface (API) [73], compiled in the host’s native language. The class
library handles a great range of tasks, such as file and network I/O, user interfaces
and windowing, and image processing. If a Java program fully utilizes the library,
most of the execution time will be spent in the library code, thus minimizing the loss
of speed introduced by using interpreted code.

A programmer may combine Java code with methods7 and libraries written in C,
and compiled to machine language. Such methods and libraries are called native [74].
Native code may be used for speed critical parts of a program, but it’s use breaks one
of the main reasons to use Java in the first place; portability. In the future, JVMs
will probably translate the Java byte code to machine code, either before or while
running the program. Translating the entire program to machine code, will eliminate
the need for using native code to gain speed.

Java applets are embedded within HTML-documents using an APPLET-tag. Figure 4.3
gives a sample of an included Java applet.

<HTML>

<H1>Java Video Applet</H1>

<APPLET CODE="SHHVid.class" WIDTH=160 HEIGHT=120>

<PARAM NAME="port" VALUE=8195>

You’re supposed to see an applet here.

</APPLET>

</HTML>

Figure 4.3: Example of an APPLET-tag in a HTML-document.

As for plug-ins and EMBED-tags, WIDTH and HEIGHT -parameters are required for
APPLET-tags, setting the size of the subwindow in which the applet runs. Note the
use of a PARAM-tag in figure 4.3. Such tags are used to pass parameters to the applet.
Applet programmers specifies a set of parameters accepted by the applet, to let users
perform appropriate initialization. The “You’re supposed to see an applet here”-text
is displayed by browsers not supporting the APPLET-tag.

7In object oriented programming languages, methods are functions defined within a class.

— 36 —

Chapter 4: Solutions for Embedding Video in WWW Browsers

Figure 4.4: A sample Java applet displaying live video, run within Netscape Navigator.

Figure 4.4 shows an applet in action, embedded in a HTML-page viewed using the
browser Netscape Navigator. This real-time applet displays images received from a
remote camera. It’s implementation is described in chapter 6 on page 55.

4.8.2 Java Applets and Security

Downloading and automatically executing programs from anywhere on the Internet,
may be a major threat to the security and integrity of the local system. Java applets
are thus denied access to the local filesystem, or given access to a separate part where
no harm can be done. When creating network connections, applets are only allowed
to connect to the local host, or the remote host from which the applet was loaded.

The security restrictions are handled by a special SecurityManager-class, normally
subclassed by the browser. Before doing any possibly restricted actions, the methods
in the Java class library call the security manager, telling it about the intended action.
If the action is not allowed, the SecurityManager throws a SecurityException,
aborting the applet [73].

The prohibition to connect to any host on the Internet except the local host or the
host from which the applet was loaded, may be troublesome when using Java applets
for bringing video to Web pages. The remote Web server may not be the source of
the video. There are a couple of ways to circumvent the restriction:

1. Set up a Web server on the host providing the video, and let this server send
the applet.

2. Use a proxy (a program operating on behalf of another) on the Web server
host, and let this program redirect the communication to the host providing
the video.

The first alternative may be the simples to implement, but may not always be possible,
as the author of the Java applet may not have access to the video providing host.

— 37 —

Video on the World Wide Web

Chapter 6 gives an example of using a proxy as a gateway between a camera grab
server and a Java applet.

4.8.3 Using Java for Video

At present, no classes in the Java API handles coding or decoding of image streams.
There are no classes for discrete cosine transform, Huffman coding, bitstreams and
other tools for compression, so everything must be built from scratch. Likewise,
there is no support for fetching images from a camera connected to the computer.
Programming support for cameras using Java only may be tricky, if not impossible,
since access to hardware, special code libraries or a server program may be required.

At present, the solution must be to extend the Java library using native code, or to
let Java programs talk to external programs providing the lacking functionality. In
the future, video handling and communication with camera equipment may be part
of the ever growing standard Java library.

4.9 Discussion

Comparing external applications to plug-ins, we see that plug-ins solve the problem
of integration. To a user, the plug-in will appear as just a part of the browser. As will
be demonstrated later, it is possible, maybe with a little hassle, to create a plug-in
from an already existing application.

When comparing writing plug-ins to rewriting browser source code, it is clear that
plug-ins makes it possible to easily install several extensions to the same browser,
without requiring any programming knowledge from the user. As more browsers
support the same plug-in API, the user may depend on the browser of choice, instead
of switching to a different browser to get the wanted behavior. Rewriting the browser
gives one benefit over plug-ins: The programmer may incorporate features that are
not (currently) available using the plug-in API, such as directly handling protocols
not supported by the browser.

Java offers platform independency compared to plug-ins. In addition, a Java applet is
downloaded and compiled automatically at runtime, thus freeing the users from doing
manual installations. Also, the automatic download will guarantee that users always
run the latest, and hopefully better, release of the viewer. However, as Java programs
at the moment are run by interpreters, Java scores somewhat low when it comes to
speed of non-trivial programs, compared to plug-ins and external applications. As
on-the-fly Java byte code to machine code translators, and hardware Java Virtual
Machines become widely available, slowness will no longer be a reason to stay away
from Java.

4.10 Summary

On the Web, documents are identified using URLs, describing the transfer protocol,
and often the server host and file location. When viewing a document, the browser
identifies the document type either by examining parts of the URL, or, if the transfer
protocol is HTTP, by looking at headers sent by the HTTP-server.

— 38 —

Chapter 4: Solutions for Embedding Video in WWW Browsers

There are several ways to make a Web browser handle documents of which it has no
built in knowledge, in our case video. The browser may start a helper application, an
external program written to handle the video. For simple animations, server push,
client pull or animated GIFs may be used.

Full integration of video may be achieved in several way, including the brute force
method of rewriting the browser source code. Rewriting the source code makes it hard
to incorporate several extensions from various developers. Plug-ins allow browser code
extension without changing the code, using dynamically loaded libraries. Using plug-
ins, developers may distribute platform dependent, precompiled extensions to several
popular browser programs. Java applets are programs written in the Java language,
interpreted by Java Virtual Machines in several of the major browsers. The main
benefit of Java is portability, as Java programs are not compiled to machine code,
but rather to Java byte code. Currently, Java has little built-in support for video,
but the future will hopefully change this.

— 39 —

Video on the World Wide Web

— 40 —

Chapter 5: MPEG Plug-in for Netscape Navigator

Chapter 5

MPEG Plug-in for Netscape
Navigator

The most common way to view MPEG-movies from a browser on the Unix plat-
form, is to spawn an external application. This chapter describes the work spent
on programming an MPEG plug-in for Netscape Navigator, one of the most popular
browsers for the World Wide Web. The plug-in is implemented for Unix platforms
running the X11 Window System. Figure 4.2 on page 34 shows the plug-in in action.

The following sections will try to explain what a Netscape plug-in is, and briefly,
how to program one. The focus is then moved to the implementation of the plug-
in, including choosing an available MPEG decoder, and converting it into a library
suitable for use by the plug-in. The problems of multiprocess decoding, and viewing
colors under X11, are shortly issued.

5.1 Netscape Plug-in API

Netscape allows programmers to enhance the Navigator1 functionality by creating
dynamically loadable libraries, called plug-ins. When the Navigator starts up, it
queries available plug-ins for MIME-types [51] they can handle. Whenever a document
with any of those MIME-types is opened in the browser, the appropriate plug-in
is loaded. Navigator passes the document to the plug-in either as a stream while
loading, or as a file after loading. Whichever method is used, is controlled by the
plug-in. Netscape encourages plug-in developers to use the streamed transfer mode
whenever possible. Downloading to a local file before viewing, may take some time
for larger documents.

Netscape defines a Plug-in Application Programmer’s Interface (API) [69] giving
guidelines for plug-in developers. When calling a plug-in, Navigator expects cer-
tain functions to be defined, called “plug-in methods”. Also, Navigator provides a
set of functions for the plug-in to call, termed “Netscape methods”. Functions de-
fined by the plug-in have names starting with NPP, while function names provided by
Navigator start with NPN.

What follows is a short description of the most important of the above mentioned

1http://merchant.netscape.com/netstore/navigators/

— 41 —

Video on the World Wide Web

functions. Let’s start with the plug-in methods. The order of the functions resembles
the calling order.

The following functions are used when the plug-in is initiated.

NPP Initialize is called when the plug-in is loaded, before any streams are handed
to it. The function is supposed to do general plug-in initialization.

NPP GetMIMEDescription is used by Navigator to query the MIME-types this plug-in
supports.

For each new instance of the plug-in, Navigator calls the following functions:

NPP New Called when a new instance of the plug-in is wanted. This is typically when
the user enters a page containing data this plug-in gives support for. Among the
parameters to this function, is a pointer to an instance specific structure. The
plug-in should allocate and initialize a piece of memory to hold any instance data
required, and enter a pointer to this memory into the instance data structure.
The instance data structure is passed in every call to functions handling an
instance.

NPP SetWindow is used to give the plug-in a sub-window of the browser, or to indicate
that the window size has changed. The first time this function is called, the
plug-in normally sets up the layout of its window.

There are several functions used for stream handling:

NPP NewStream indicates that a new stream is available. By returning certain values,
the plug-in may request that data is passed either as a file, or in a streamed
manner.

NPP StreamAsFile passes a filename to the plug-in. This function is called when the
plug-in has requested the data as a file. The plug-in may open and process the
file as it wishes.

NPP WriteReady is used when data is transferred as a stream. Netscape Naviga-
tor calls NPP WriteReady whenever it has something to send to the plug-in, to
query the number of bytes it is able to handle. The number returned indicates
a promise rather than a limit; Navigator may send more (or less) bytes than
accepted by the plug-in, but the plug-in doesn’t have to read more than re-
turned by the last call to NPP WriteReady. The actual data transfer is done in
NPP Write, which is called afterwards.

NPP Write lets Navigator transfer a block of bytes from the stream to the plug-in.
The plug-in is supposed to accept at least as many bytes as it promised in the
last call to NPP WriteReady.

NPP DestroyStream is called to indicate that there are no more data available in the
stream. Among the possible reasons passed as a parameter, are: End of stream
reached, user break and network error. Note that the destruction of the stream
does not imply destruction of the instance. The instance is still supposed to be
around to repaint the window.

— 42 —

Chapter 5: MPEG Plug-in for Netscape Navigator

Finally, functions are called to tidy up when an instance, or the entire plug-in is no
longer needed.

NPP Destroy is called when an instance is no longer needed. This is typically when
the user leaves a page containing the window handled by this instance of the
plug-in.

NPP Shutdown is the opposite of NPP Initialize. It is called just before the plug-in
is unloaded.

Most functions provided by Navigator is of no interest to the MPEG plug-in, so only
a few are mentioned:

NPN MemAlloc may be used by plug-ins to allocate memory from Navigator’s memory
space.

NPN MemFree frees memory returned by NPN MemAlloc.

NPN GetURL requests that Navigator opens a new URL. The resulting stream may be
handled by Navigator itself, or by the plug-in, depending on parameters passed.

NPN Status enables displaying messages on Navigator’s status line.

5.2 Choosing an MPEG Decoder

To save a lot of time, an already existing MPEG decoder is used as a basis for the
plug-in. In deciding which decoder to use, the following properties were sought:

• Freely available source code.

• Freely redistributable, both in source and binary-only form, to let others con-
tinue working on the plug-in, possibly to make it fully usable.

• Tidy, commented and easily changed/ported code, since the code will have to
be changed to adapt it to the plug-in.

• Somewhat optimized for speed.

Two alternatives were found, both mentioned in the MPEG-FAQ [19].

5.2.1 mpeg play-2.3-patched

This source code package2 originated at University of California, Berkeley. It was
written by Lawrence A. Rowe, Ketan Patel, Brian Smith, Steve Smoot, and Eugene
Hung. According to the README-file, it implements the MPEG standard described in
the Committee Draft ISO/IEC CD 11172 dated December 6, 1991 which is sometimes
referred to as “Paris Format”. There is no support for real-time synchronization or
audio.

The decoder will display the movie in an X window on an 8, 24 or 32 bit display. When
counting variations over the same scheme, 18 dithering algorithms are implemented,
including Floyd-Steinberg, ordered dither, and halftoning.

2ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/mpeg/play/

— 43 —

Video on the World Wide Web

The source for this program contains 19 910 lines in 33 files named *.[ch]. It is
sparsely commented.

The program may be used, copied, modified and distributed freely, as long as a
copyright notice is not removed.

5.2.2 mpeg2play-1.1b

This program3 was written by Stefan Eckart, based on mpeg2decode by MPEG Soft-
ware Simulation Group. It is a player for MPEG-1 and MPEG-2 video-streams, with
no support for audio.

The video sequence is displayed in an X window on an 8 bit display, using ordered
dither.

Number of lines of code in *.[ch] (15 files) sums up to 7 355 for this program. The
comment-to-code ratio is about the same as for mpeg play, that is; the code is sparsely
commented.

The distribution policy of this program is not known, as the author did not answer a
mail regarding this question.

5.2.3 Benchmarks

The programs are compiled using gcc, optimized using -O2. Testing is performed on
a Silicon Graphics Indy, powered by a 100 MHz MIPS R4600 with 16 kb data- and
instruction cache, and 32 Mb RAM. The movie-files were stored on a local disk, to
avoid letting NFS slow things down. There were no other users on the computer.

Timing is done using GNU’s time-program. The numbers given are sums of user and
system time for the process in question, averaged from three runs with no major page
faults.

The Testfiles

Info on the MPEG-files used for testing, are collected using mpegstat4. Table 5.1
gives some characteristics for the files. Sizes are given in kilobytes (kb).

File Size (kb) Frames Dimen Sequence

enterprise.mpg 723 400 176× 144 IBBPBB
bart-temple.mpg 2 706 960 192× 144 IBBPBB
bjork.mpg 523 231 160× 120 IBBPBB

Table 5.1: MPEG-files used for testing.

enterprise.mpg Raytraced movie of “Starship Enterprise” flying into sunset. Small
movements, smoothly scrolling background.

3ftp://ftp.netcom.com/pub/cf/cfogg/mpeg2/
4ftp://ftp.crs4.it/mpeg/programs/

— 44 —

Chapter 5: MPEG Plug-in for Netscape Navigator

bart-temple.mpg A cut from “The Simpsons”. Contains both static and rapidly
changing backgrounds.

bjork.mpg From Björk’s music video “Human Behavior”. Lots of rapidly changing
scenes.

mpeg play-2.3

The first test examines the speed of MPEG decoding only, skipping dithering and
X11 display output. The following command was used:

mpeg play -framerate 0 -no display -dither none -quiet file.mpg

The results are as follows from table 5.2.

File Time (sec) FPS RAM (kb)

enterprise.mpg 6.28 63.7 3808
bart-temple.mpg 23.13 41.5 3840
bjork.mpg 4.34 53.2 3712

Table 5.2: mpeg play with no display and no dithering.

The following tests regard the speed of miscellaneous interesting dither options. First
the ordered2 dither, which is the default dither for mpeg play. ordered2 dithers to
eight bitplanes. The following command was used:

mpeg play -framerate 0 -no display -dither ordered2 -quiet file.mpg

Table 5.3 shows the performance of decoding and dithering using ordered2 dither.
Compared to table 5.2, the dithering requires approximately 30% of the time spent.

File Time (sec) FPS RAM (kb)

enterprise.mpg 9.09 44.0 4560
bart-temple.mpg 33.38 28.8 4640
bjork.mpg 5.77 40.0 4432

Table 5.3: mpeg play with no display and ordered2 dither.

Full color dither may be used on displays with more than eight bitplanes, and will
thus give high quality results. For testing this dither, the following command was
issued:

mpeg play -framerate 0 -no display -dither color -quiet file.mpg

As table 5.4 shows, full color dither is slower than ordered2, taking approximately
40% of the total decoding time.

File Time (sec) FPS RAM (kb)

enterprise.mpg 11.46 34.9 3952
bart-temple.mpg 37.08 25.9 4048
bjork.mpg 6.86 33.7 3824

Table 5.4: mpeg play with no display and full color dithering.

— 45 —

Video on the World Wide Web

Finally, we look at the time used to display the movie. mpeg play uses shared memory
images when possible, giving high throughput. The following command was executed,
using ordered2 dither5:

mpeg play -framerate 0 -dither ordered2 -quiet file.mpg

Table 5.5 gives the results. Comparing this table to table 5.3, shows that the time
used for displaying the movie is quite small, about 4% of the total time.

File Time (sec) FPS RAM (kb)

enterprise.mpg 9.51 42.1 5008
bart-temple.mpg 34.60 27.7 4992
bjork.mpg 6.09 37.9 4848

Table 5.5: mpeg play with display and ordered2 dither.

mpeg2play-1.1b

As for mpeg play, the first test was on decoding only, avoiding dithering and image
output. The following command was used:

mpeg2play -o1 -q file.mpg

Table 5.6 shows the times used for pure MPEG frame decoding.

File Time (sec) FPS RAM (kb)

enterprise.mpg 7.35 54.4 2656
bart-temple.mpg 26.88 35.7 2688
bjork.mpg 4.99 46.3 2560

Table 5.6: mpeg2play with no display and no dithering.

The program mpeg2play has no options for doing dithering without displaying the
results, so we have to test dithering and displaying at the same time. The dither-
ing done in mpeg2play matches the ordered2 dither in mpeg play. The following
command was used:

mpeg2play -q file.mpg

Table 5.7 shows that dithering and displaying the images of the movie, takes 25–30%
of the total execution time.

File Time (sec) FPS RAM (kb)

enterprise.mpg 10.50 38.1 4112
bart-temple.mpg 35.42 27.1 4176
bjork.mpg 6.69 34.5 4080

Table 5.7: mpeg2play with display and dithering.

5.2.4 Results

Table 5.8 is a short summary of features provided by the two packages.

5The program was modified to quit at the end of the movie

— 46 —

Chapter 5: MPEG Plug-in for Netscape Navigator

mpeg play-2.3 mpeg2play-1.1b

Number of files 33 15
Lines of code 19 910 7 355
Bitplanes supported 8, 24, 32 8
Number of dithering algorithms 18 1
Avg. FPS, no dither 52.8 46.47

Table 5.8: Summary of features for the two MPEG-players.

The code of mpeg play is more than twice as big as that of mpeg2play, which might
fit with the fact that mpeg play provides more dithering options, and support for
more bitplanes. The higher speed of mpeg play, combined with the support for more
than eight bitplanes, makes it the packet of choice for further work.

5.3 Tailoring mpeg play

A decision was made to use mpeg play-2.3-patched as the origin for an MPEG
playing code library. As an initial attempt to simplify the code, several of the available
dithers were removed. Some of them didn’t seem to work, while others failed to
provide excessive features compared to the other dither algorithms. Several #ifdef’s
that were not used, or that were used for testing, were removed, along with program
options and features that were of no or little interest when using this program inside
a Web browser, like the stand-alone control bar. The cleanup reduced the code size
by several thousand lines.

Then came the time to extend the library. First of all, mpeg play was written to read
data from a file at it’s own pace, that is; “pulling” data from the source. The input
routines had to be rewritten to let Navigator “push” the data as it gets available.
Secondly, mpeg play spends some time decoding the data, especially if the flowing
of the MPEG stream is slow. Since Navigator executes plug-ins in it’s own thread,
this could cause unfortunate “hangs”, where user input is not responded to. This
problem calls for a separate thread, and with separate threads come the problems of
parallelism.

5.3.1 The Client — Server Approach

One of the two threads handles decoding of an MPEG stream to produce video output.
This thread may be classified as an MPEG decoding server. The original thread,
running inside Netscape Navigator, may be viewed as a client, feeding commands
and MPEG data to the server.

Real multi-threading, that is; several processes running in the same address space, is
currently not supported by all Unix-systems, so from a portability point of view, it
is safer to rely on old-fashioned separate processes. This also gives another benefit:
The mpeg play source code pays little attention to freeing memory. For each movie
it allocates lots of memory, but the chunks are never freed. When using a separate
process for each film, the memory will automatically be released when the process
terminates. Solving the problem by using separate processes is much easier than
tracking every point of memory leakage in the code.

— 47 —

Video on the World Wide Web

In Unix, the system call fork is used for creating a new process. The new (child)
process is an exact copy of the calling (parent) process. Both processes continue
running after the call to fork. The return value from forkmakes it possible to identify
which process is the parent, and which is the child, to let the two processes perform
different tasks. The plug-in will fork off a child to handle the MPEG decoding, while
the parent, running in Navigator’s address space, will handle user input.

Interprocess Communication

The separate processes are supposed to cooperate, so we need a way to make them
talk to each other through interprocess communication (IPC). The MPEG decoding
process plays the role of a server, waiting for commands and data from the client
process. The commands are initiated by user action, such as pressing buttons to start
and stop the playback. Commands are also initiated by Navigator; for instance to
quit the server when the user leaves a page, and when more MPEG data are available.
All this traffic moves from the client to the server. We also need some information to
go in the other direction: When Navigator works in a streamed manner, it will query
the plug-in how many bytes it will accept (see NPP WriteReady in section 5.1). The
reception and buffering of incoming MPEG data is handled by the server, so we need
to return that information through IPC.

Unix provides several methods for doing IPC (For an overview of all these methods
and more, see [1] and [75].)

Shared files are regular files on disk. One process writes to the file, while the other
reads. Obviously, this is quite slow, since it includes disk access.

Pipes are one way channels maintained by the operating system kernel. The pro-
cesses use pipes via file handles obtained from the pipe system call. Pipes are
read and written as regular files, but no disk access is involved. This kind of IPC
is supported by all Unix systems, and it is the only one required by POSIX.1,
an ISO standard operating system interface and environment to support appli-
cation portability at the source code level.

Named pipes works like pipes, except that the entry point is a filename in the
filesystem. This way processes that do not have the same ancestor may share
the pipe.

Stream pipes are full duplex versions of pipes.

System V IPC has, as the name implies, it’s origin on Unix System V, but are
now available on most modern Unixes. Includes shared memory, semaphores,
and message queues. Shared memory is the fastest way to transfer data be-
tween processes, since no copying is necessary. Unfortunately System V IPC
resources are scarce; a limited number of shared memory segments, semaphores
and message queues can exist at any given time on the system.

Ideally one would have used shared memory to transfer MPEG data, but since System
V IPC may well not be available, the decision was made not to do so. Needless to
say, shared files would be too slow, so the pipes were chosen. Since data is supposed
to flow in both directions, two pipes are needed. Stream pipes were also an option,
but it would give little benefit over “normal” pipes.

— 48 —

Chapter 5: MPEG Plug-in for Netscape Navigator

Navigator

MPEG plug-in

Navigator

MPEG plug-in

Original Netscape

Navigator process Pipes Forked child process

Commands / data

Status / replies

Figure 5.1: The two processes involved in the MPEG plug-in.

Figure 5.1 illustrates the two processes cooperating in decoding and viewing an MPEG
stream. The process on the left is the original Netscape Navigator process with the
plug-in dynamically loaded. When the plug-in starts receiving a stream, it forks,
creating an identical process. The Navigator part of the new process is never run,
and in modern operating systems it doesn’t even take up valuable memory. Two
pipes are created, one for sending commands and data from the client to the server,
and one for giving feedback from the server to the client. When the client receives
parts of the MPEG stream from Netscape Navigator, it passes it on to the server,
and receives a status reply in return. The server handles all decoding, and displays
the result in a subwindow of the browser.

5.3.2 The mpeg play Library API

This section describes the API that was written for the extended mpeg play library
to hide the details of parallelism and IPC, and thus simplify it’s use. The user of the
library, in our case the MPEG plug-in, calls normal functions, of which two fork a
new process, while others perform the IPC. The two fork’ing functions are the main
entrypoints to the library. They differ in the way they set up the handling of the
MPEG stream.

mpNewStreamFromFile takes a filename parameter, and is thus used when a local file
containing the MPEG data is available.

mpNewStreamPushed initiates a pushed stream. The data transfer is controlled by
the three functions mpQueryWantedBytes, mpSendBytes and mpEndOfStream,
as described below.

After fork’ing, the child initializes the MPEG decoder. This includes setting up
dithering, and creating a window in which to display the movie. It then enters the
main loop of the program. This loop is responsible for fetching commands from the
client, and do timing according to the pace of which the film is playing.

Among the commands accepted, are the ones used to push the MPEG stream to the
decoder.

mpQueryWantedBytes is used to request the maximum number of bytes the library
is able to receive at the time the call is issued.

— 49 —

Video on the World Wide Web

mpSendBytes does the actual data transfer. Attempting to send more bytes than
indicated by mpQueryWantedBytes, will result in an error.

mpEndOfStream tells the library that no more data will be sent for this stream.

Another set of functions is involved with direct user action. In the plug-in, these are
called whenever the user presses buttons like “Play”, “Rewind”, “Stop”, etc.

mpSetLoop sets or clears the internal loop flag. If the loop flag is set, the movie is
automatically rewinded and restarted when the end is reached. Note that this
is only possible if the MPEG stream is available to the library as a file.

mpPlay starts playing, or resumes playing from the current position.

mpNextFrame displays the next frame of the movie. Note that this is supposed to be
used when the film is paused. When in play mode, the frames are advanced
automatically.

mpRewind restarts the current stream. This is only possible when the library has
access to the stream as a file.

mpStop will pause the playing.

mpQuit shuts down the server process. After this is called, no other functions should
be used, since the child process is no longer available.

The last functions deal with the window in which the movie is shown. They are
typically called when the client receives certain events from the window system.

mpRepaint should be called when it’s time to redraw the contents of the window,
typically when the parent window receives an ExposureEvent.

mpParentResize handles positioning of the video window within the parent. Should
be called when the size of the parent is changed.

5.3.3 Avoiding the Pitfalls of Parallel Processing

The original mpeg play was written to read the MPEG stream from a file. To simplify
conversion to a more “event-driven” approach, a new set of functions were written,
resembling the original fread- and fgetc-functions that were used formerly. The
new functions work against a buffer that is filled when the client sends MPEG data
using mpSendBytes. If the buffer is empty when any of these functions are called, a
tight loop similar to the main loop is entered, waiting for more data from the client.
The call to the reading function is not returned until more data is available, or an
mpEndOfStream is issued.

The main goal of the tight loop, is to receive MPEG data for further decoding. What
if the client sends other commands? Handling them may work for some, but fail for
others. An example: The server is running out of data while decoding a frame, so
it enters the loop to wait for more. The client sends a command ordering the server
to skip to the next frame. The server obeys this command, calling the function to
decode a frame a second time recursively, messing everything up. To get around this
problem, queuing of commands was introduced. Every command that is not related to

— 50 —

Chapter 5: MPEG Plug-in for Netscape Navigator

sending MPEG data or quitting, are entered in a queue. This queue is later processed
in the main loop of the server, before reading any further commands from the client.

Note that mpQueryWantedBytes must be responded to immediately, that is; not
through the queue. Failure to do so would introduce a deadlock (more on dead-
locks in [76]): The server is waiting for the client to send data. The client calls
mpQueryWantedBytes, and waits for a reply. The reply will never come, since the
server just queues the command.

5.3.4 On X11 and Colors

The X Window System6 is designed to be portable across a wide range of platforms,
with an even wider range of supported displays. Unfortunately, displays differ too
much in their characteristics to make this transparent to programmers.

The display hardware offers one or more bitplanes. The combination of corresponding
bits from each plane yields a pixel value, controlling a single pixel on the screen by
indexing into a colormap. The number of simultaneous colors or grayscales, is thus
given by the formula 2n, where n is the number of bitplanes. Monochrome displays
have a single bitplane. Color or grayscale displays typically have between 8 and 24
bitplanes.

Display hardware is typically capable of generating a much larger number of colors
than may be displayed at once. To control which colors are currently displayable,
colormaps are used. For color displays, a colormap entry describes the mixture of
red, green and blue light used to produce the color in question. The pixel value from
the bitplanes is used as an index into the current colormap.

Depending on the hardware, a colormap may be writable, or read-only. Writable
colormaps let programs change the red, green and blue component to fit their needs.
Read-only colormaps have preset values that may not be changed.

In X11, the characteristics of a colormap is described using a visual. The visual
describes, among other things, the number of bitplanes, the size of the colormap, and
a visual class. The visual class describes the features of the colormap; is it writable,
or read-only? Is it color, grayscale or monochrome? Is the index into the colormap
decomposed into separate indexes for the three color components? Table 5.9 sums
this up for the six available visual classes:

Colormap type Read/Write Read-only

Monochrome/gray GrayScale StaticGray

Single index for R G & B PseudoColor StaticColor

Decomposed index for R G & B DirectColor TrueColor

Table 5.9: Comparison of Visual Classes. (From [77, section 7.3.4])

The books [77] and [78] gives thorough information on X11 and colors.

6http://www.x.org/

— 51 —

Video on the World Wide Web

MPEG Plug-in and Colormaps

The MPEG plug-in has two approaches to the use of colors. Which one to use is
decided by the user. If the hardware supports multiple colormaps, the plug-in may
create it’s own map, coexisting with the one used by Navigator. The switching of
colormaps is done by the window manager, so applications using multiple colormaps
have to inform the window manager about this. The information is passed using
window manager hints on the toplevel window of the application. When the plug-in
is set up to use its own map, it searches its ancestors until the main window is found,
and adds the appropriate hints to that window.

A problem may arise when only one hardware colormap is available. In that case
the plug-in has to share the colormap with Navigator. For displays with more than
eight bitplanes, the numbers of available colors suffice. When only eight bitplanes
are available, which is the case for many X Window workstations, only a few colors
are available to the plug-in, as Navigator allocates most to itself. In our implemen-
tation, the plug-in allocates as many colors as it can. When further allocation fails,
it starts matching against the existing entries in the colormap, to find close colors.
Unfortunately, this yields unacceptable results.

5.4 Discussion

To be fully utilizable for end users, the MPEG plug-in still needs some fixing, but
it is quite acceptable as a demonstration version. Most important, it fails on some
MPEG-2 streams. This is true only when the mpeg play library is used as a plug-in,
not when running in a stand-alone test program. The cause for this problem is not
known. The plug-in also lacks features expected in a high end commercial MPEG
player, most notably sound. On Unix platforms, implementing portable audio is
harder than implementing video, as there is no widely agreed upon interface to sound
hardware. Also, sound handling must be implemented from scratch, as the original
mpeg play program had no support for it.

Another feature worth implementing, is the option to save the MPEG stream to a local
file while playing, to enable rewinding, looping and faster playback. At the moment
we can get around this by ordering Navigator to download the file before handing it
to the plug-in, but it is impossible to play it at the same time it is downloaded to a
file.

When sharing Navigator’s colormap, the coloring of the movie is quite unacceptable.
This could be fixed by implementing a smarter color allocation algorithm, and by
making the dithering functions aware that the colors are not exactly matched. A
better approach is to make Netscape extend their API to let plug-ins cooperate with
Navigator on color allocation.

The performance seems to be more depending on the network connection than on the
power of the CPU. For local files, the Navigator plug-in is approximately as fast as
the mpeg play program that it originated from.

— 52 —

Chapter 5: MPEG Plug-in for Netscape Navigator

5.5 Summary

The plug-in API defined by Netscape, defines two sets of functions: One residing
within the browser, to be called by the plug-in, and one inside the plug-in to be called
by the browser. The functions are used for communication between the browser and
the plug-in.

An already existing MPEG decoder was chosen to do the MPEG decoding part of the
plug-in. The choice was between two freely available coders, and after some testing,
the decision fell on mpeg play. Unnecessary code was removed, and the input routines
were rewritten to allow a separate process to feed the data through pipes, instead of
reading it from a file. A small API was defined for the MPEG decoder, to simplify
connecting it to the plug-in code.

Due to the way Netscape Navigator reserves colors from the X Window System,
the colors in the plug-in subwindow were not very good when the display hardware
supported only one colormap.

— 53 —

Video on the World Wide Web

— 54 —

Chapter 6: Sending Camera Input to a Java Applet

Chapter 6

Sending Camera Input to a Java
Applet

The implementation of a Java applet and accompaniment C-programs for receiving
video from a remote camera, is described in this chapter. Due to time constraints,
the main focus of the experiment was on Java programming and setting up and
maintaining necessary connections, rather than doing a clever compressed transfer of
image data. For a snapshot of the applet in action, see figure 4.4 on page 37. The
source code1 of all programs is available from WWW, and in appendixes. Appendix B
on page 71 lists the Java applet source code of SHHVid.class, appendix C on page 77
shows the video grabber (vidgrabber) source, while appendix D on page 103 gives
the proxy (vidproxy) listing.

The first section describes the communication across the network between the in-
volved programs. Following that is a description of the simple video data transfer
method used. The next section gives a few implementation details, while the final
part presents some closing thoughts.

6.1 Network Communication

Figure 6.1 illustrates the use of three different programs to circumvent the security
restrictions put on Java applets by their browsers.

Since the applet is not allowed to connect directly to the host providing the camera
(as described in section 4.8.2 on page 37), a proxy is needed on the Web server from
which the applet was loaded. The proxy functions as a gateway, redirecting packets
from the camera server to any applets having announced their interest in the video
feed.

1http://www.ifi.uio.no/˜ftp/publications/cand-scient-theses/SHuseby/src/

— 55 —

Video on the World Wide Web

TCP

Camera host Web server host

TCP

UDP

TCP

UDP

UDP

Video
grabber

Browser host

Browser host

vidgrabber vidproxy

Proxy

Java
applet

Java
applet

SHHVid

SHHVid

Figure 6.1: Three different programs running at three different hosts: The workaround for Java applet
security.

The programs communicate using both TCP and UDP. The reliable, bidirectional
TCP connections are used for passing control messages, like setting up and taking
down the connection. The UDP “connection” is unidirectional. It is used for sending
blocks of the image from the producer to the consumer. UDP was chosen for the
image blocks to avoid the reliability overhead in TCP. Loosing a few packets is not
critical, as the image is continuously updated.

The proxy running on the Web server is the program first started. It waits for
incoming TCP connections from a video stream provider, and one or more viewers.
When the grabber program is started on the host equipped with the camera, it
connects to the proxy using TCP. If the proxy already has a camera feed, it responds
with an error code, and shuts down the connection. Otherwise, it binds a local UDP
port, and sends the port number to the grabber. Both programs wait, doing nothing
until a viewer Java applet connects to the proxy.

When a viewer connects to the proxy using TCP, it may either receive an error code,
or a welcome code. In the latter case, it binds a local UDP port, and sends the port
number to the proxy. If the applet is the first to connect, the proxy tells the grabber
to start the feed by sending a control code using TCP. The grabber sends datagrams
containing image blocks to the proxy using the UDP port number received at startup,
and the proxy resends all incoming datagrams to all viewers, using their respective
UDP port numbers.

6.2 Video Handling

As was mentioned in the chapter introduction, the quality and size of the video trans-
fer was not given priority. No standardized compression scheme was implemented.
The following steps were taken to somewhat reduce the bandwidth requirements:

Quantization from eight to four bit grayscale, giving only 16 levels of gray. This
way two pixels fit within a single byte. As no dithering is implemented to

— 56 —

Chapter 6: Sending Camera Input to a Java Applet

compensate for this quantization, the visual quality of the video is rather low.

Spatial resolution reduction from 640× 480, as sent from the video camera, to
160× 120. The size is barely acceptable when used for viewing a closeup of a
talking head.

Partitioning into blocks of 8× 8 pixels, only sending blocks identified as changed.
A very simple change detection scheme is implemented: A block is said to
have changed if the maximum absolute single pixel difference compared to the
previous block sent for the same image location exceeds some threshold value.
This scheme is far from perfect, but it is easily implementable.

Ten times a second, the grabber program gets a frame from an IndyCam connected to
a Silicon Graphics Indy, aided by the Video Library [79] shipped with the computer.
As described above, the frame is analyzed for changed blocks, and chosen blocks are
sent across the network, packed in UDP datagrams of at most 1400 bytes. Since some
blocks may never or seldom change, every block that has not been sent in 5 seconds
are resent, even if no change is measured. This is to make sure every viewer shows
the entire picture.

The bandwidth requirements depends on the dynamics of the scene grabbed, and the
sensibility of the camera. The worst case occurs when all blocks need to be resent ten
times a second: A block occupies 35 bytes, including position within the image, and
a block identifier. An image contains 20× 15 blocks, giving a total of 10 500 bytes for
a single frame. Ten frames per second thus requires a 0.8 Mbps line, not including
overhead introduced by network packet encapsulation. According to figure 3.4 on
page 21, neither analog modems nor ISDN, the two most likely connection types for
home users, can cope with this. No negotiation of data transfer rate is implemented,
the sender simply assumes that the network connection is capable of delivering the
packets at the rate they are sent. Trying to send packets across a slow link, may fill
the operating system’s send queue, and temporarily stop the sending application.

6.3 Java Applet Implementation

On some browsers, a Java applet runs in the same thread as the browser itself. A
CPU intensive applet will thus slow down the browser, giving delayed responses to user
input in other parts of the program. The solution to this problem, is to let the main
part of the applet run in a separate thread. The separate thread scenario is common
enough that a special interface, called Runnable, is defined. Classes implementing
this interface, must define a run-method that is called automatically when the thread
is started.

To be able to support various kinds of image handling, Java defines the two interfaces
ImageProducer and ImageConsumer. Classes implementing ImageProducermay gen-
erate images from different kinds of sources, and send them to classes implementing
ImageConsumer for handling. The applet described in this chapter builds the image
in an internal memory buffer as blocks are received from the network. The Java
class MemoryImageSource, implementing an ImageProducer, is used to encapsulate
the buffer in an ImageProducer, to be able to create a Java Image from it using the
createImage-function. The Image representation is needed when ordering Java to

— 57 —

Video on the World Wide Web

draw the image in a window. Note that createImage copies the buffer, so a new
image must be created each time the internal buffer is changed.

Java supports various image color models by using subclasses of ColorModel. In
our case, where only 16 levels of gray are needed, and indexed color model serves
our needs. Java defines the class IndexColorModel, giving up to 256 simultaneous
colors by using one byte pixel values for indexing. When initiating an instance of
IndexColorModel, one has to specify the red, green and blue color component of
each indexed color, along with an alpha value providing transparency. Our applet
initiates the first 16 pixel values to represents shades of gray from black (pixel value
0) to white (pixel value 15). Once the IndexColorModel is set up and tied to the
MemoryImageSource, the Java library silently handles all color mapping details behind
the scene.

class: IndexColorModel
instance: colorModel

R G B a
0
1

14
15

0 0 0 255
255

255
255255255255

17 17 17

238 238 238

class: MemoryImageSource
instance: pixelSource

colorModel pixels

byte pixelBuff[]

0 19199

createImage

g.drawImage

class: Image
instance: img

Figure 6.2: Conceptual representation of the interworking of image related classes in the video applet.

Figure 6.2 shows the connections between image handling classes in the applet. In-
stance names refers to the variable names used in the implementation. The pixelBuff
array is the internal pixel buffer, in which updates to the image is made. Calls to
createImage combines the values in the pixel buffer with the color values in the color
model lookup table, creating a fully colored (or rather grayscaled for our purpose)
representation of the image. Passing the image to the drawImage method of the
Graphics context, results in the image being drawn on the screen.

Networking is done using BSD sockets [1] encapsulated in classes in the package (class
collection) java.net. Every method working on sockets throw exceptions on error,
so networking code must be embedded in try–catch-blocks to compile cleanly, even
if handling some of the errors is not critical.

In this implementation, reading from and writing to a TCP connection is handled
by the Java classes InputStream and OutputStream respectively, both instantiated
inside the Socket class.

— 58 —

Chapter 6: Sending Camera Input to a Java Applet

A separate Java class, DatagramSocket, is used for sockets referencing UDP “con-
nections”. This class provides the method receive, which is used to read a data-
gram into an instance of the Java class DatagramPacket. When creating instances of
DatagramPacket classes, one has to provide a byte array to be used as a buffer, the
size of which sets the maximum packet size to receive. When a package is received
from the network, JDK shrinks the size of the buffer to match the packet read. This
shrinking makes it impossible to reuse the DatagramPacket — a new one must be
created with the correct buffer size.

6.4 Discussion

For some reason, the UDP-code in the applet causes a SecurityException when
run within Netscape Navigator on a Silicon Graphics Indy equipped with the Irix
operating system. No problems are encountered when using Navigator on Solaris,
or Navigator and Microsoft Internet Explorer on Windows 95 and Windows NT. A
bug in the Java library on Irix may be the cause to this problem. People at USIT
reported similar behavior with their own Java UDP-code on HP-UX.

The Java applet had no problems receiving and decoding the image stream at the
current rate and size. The inner loop in the decoding process is quite simple, do-
ing three additions, three bitwise operations, two type casts, and two array element
assignments. An interesting project for further study, would be to implement more
advanced image representation schemes, and do performance tests on new implemen-
tations. If better compression is added, the size or number of packets transferred
would be reduced, requiring less time to be spent in the network related code. It
would be interesting to compare the time released by reducing the data size, to the
time required to do more advanced decoding.

Moving this implementation from the experimental to the useful state, requires sev-
eral enhancements. First of all, a standardized video compression scheme should be
implemented, to allow higher visual quality and lower bandwidth requirements. Sec-
ondly, to be able to do more than wave and smile to the spectators, sound should be
possibly transferred along with the video. Unfortunately, Java’s sound capabilities
are rather limited. Currently, the only sound support is the ability to play AU sound
files, suitable for low quality, prerecorded clips.

Another important step is to take into account a possible limitation or variation in
available bandwidth, by allowing negotiation of transfer speed. This greatly compli-
cates the handling of viewer clients in the proxy and the grabber, since clients can
no longer be handled equally. To cope with variations in bandwidth between viewer
clients, some clients should get a reduced frame rate or a reduced quality compared to
the others. In the current setup, the proxy just distributes datagrams to all viewers,
with no knowledge of the contents. The grabber program handles all video details, but
knows nothing about the various viewer clients. The easiest approach will probably
be to extend the grabber to handle all viewer clients, and create adapted datagrams.
This will however, greatly increase the network traffic between the grabber and the
proxy.

— 59 —

Video on the World Wide Web

6.5 Summary

Due to security constraints on Java applets, the network setup for delivery of camera
output to an applet contains three programs on three different hosts: The video
grabber running on the host with the camera sends it’s data to a proxy running on
the host providing the Web server. The proxy in turn hands the video data to the
Java applet on the browser host.

Since no “real” compression was implemented, the size of the data was reduced by
limiting the size of the image frames, and the number of colors (grayscales). In
addition, care was taken not to send entire frames, but only parts that had changed
since the previous frame.

Displaying images was left to instances of predefined classes in the Java library. A
class providing an indexed color model removed the need to convert a single grayscale
value to RGB values for each pixel.

— 60 —

Chapter 7: Conclusion

Chapter 7

Conclusion

There are two groups of internationally accepted standards for video representation,
the ITU-T recommendations H.261 and H.263, and the MPEG series. Both groups
are represented on the Internet today: The ITU-T standards are implemented in
video conferencing software along with “moving JPEG” and proprietary formats,
while the two first MPEG standards, MPEG-1 and MPEG-2, typically are used for
storing prerecorded video sequences. Freely available software encoders and decoders
are available for both H.261 and MPEG, making it unnecessary to start entirely from
scratch when implementing Web based services featuring these standards.

General data transfer methods may be used for video on demand systems when real-
time play during transfer is not critical, that is, when the entire movie is downloaded
to the local system before being played. General methods may also be used when the
available bandwidth is sufficient to play the stream at real-time without modifying
the quality of the movie.

Methods specialized in negotiating transfer options to cope with varying bandwidth
exists, but most of them are either proprietary, or not through the entire standard-
ization process. When using the Internet for video conferences, one also needs a set
of protocols not directly related to video; protocols for session management.

Several mechanisms are available for extending Web browsers to support initially
unsupported media types in general, and video in particular. The more promising
methods seem to be plug-ins and Java applets, both supporting full integration within
the browser window, and both being available in the more widely used browsers.
A plug-in and a Java applet for video were implemented. The plug-in is capable
of playing MPEG movies embedded in Netscape Navigator, while the Java applet
receives and displays live video from a remote camera. The plug-in and the applet
show that making video available from Web browsers is indeed possible, and not
considerably harder than making a stand-alone video handling program.

A natural starting point for further work, is to extend the two programs implemented
to make them fully usable. One of the main features lacking from both programs, is
the ability to play audio along with the video. When combining video and audio, one
has to take care of proper synchronization. For MPEG, synchronization issues are
addressed in a separate part of the standard. For H.261/H.263, who are concerned
with video only, audio and synchronization are specified in separate recommendations.

— 61 —

Video on the World Wide Web

For full integration of various kinds of video inside Web browsers, some work will
have to be left to the browser developers. The current plug-in model is built on the
thought that what is transferred comes from a file on the remote end. The browser
takes care of the transfer protocol details, and hands a stream of bytes to the plug-in
that has announced it’s capability of displaying the file type in question. Live video
is typically not streamed, and real-time play requires continuous negotiation between
the sender and the receiver, requiring other protocols than those used for regular file
transfer. An extended plug-in model should not only allow plug-ins to announce what
file types they can handle, but also any built in protocol support. Instead of sending
a stream of bytes to such a plug-in, the browser would pass the URL, and leave it to
the plug-in to parse it and take care of the communication.

Some extensions to the current Java API could simplify implementing video receivers.
Writing decoders in Java is possible, but it is unclear how fast a pure Java implemen-
tation will be for the relatively advanced algorithms needed for H.261 and MPEG.
Standardized class libraries for H.261 and MPEG would be very helpful, and could
make access to hardware coders/decoders transparent to the user. Another useful
approach would be to define classes for the CPU intensive tasks, such as the DCT
transforms, motion compensation and statistical coding, and build coders and de-
coders using these tools. In addition, being able to grab video using Java without
any user installed native code libraries, requires definition of classes for handling video
camera input.

— 62 —

Appendix A: Introduction to Data Compression

Appendix A

Introduction to Data
Compression

This appendix is a short introduction to elementary and “well known” methods for
compressing (coding) data. The goal of compression is to find a compact representa-
tion of information, by throwing away redundancy1.

To have the necessary basement, we start by looking at some basic information theory.
Following that is a description of statistical coding and dictionary based coding, two
main categories for data compression methods.

This short survey is meant as a rough introduction only. More thorough information
is found in the documents referenced in the text.

A.1 Basic Information Theory

An information source yields symbols from a finite alphabet. A sequence of symbols are
commonly referenced as a text. An example of an information source is a dice that is
thrown repeatedly. This source will generate a text from the alphabet {1, 2, 3, 4, 5, 6}.

To be able to measure information in one or more symbols from a source, we must
know what is meant by information. Intuitively, a seldom occurring symbol will
deliver more information than one seen often. A measure for the information found
by the occurrence of a given symbol, must be the inverse of the probability of the
occurrence.

Shannon defined the information from the occurrence of symbol si as

I(si) = log
1

p(si)
= − log p(si)

where p(si) is the probability that the symbol si occurs.

In [80], the logarithm is explained by a wish that multiplied probability gives summed
information, and a supporting example is given.

1redundancy: From latin. Exceeding what is necessary or normal.

— 63 —

Video on the World Wide Web

Going one step further, we may talk about average information in a text, or entropy.
Entropy is defined as

H =
n∑
i=1

p(si)I(si)

If we use a base two logarithm, the entropy is a theoretical lower limit for the average
number of bits per symbol that is required to encode the stream of symbols.

In the above formulas, each occurrence of a symbol is taken as a statistically indepen-
dent event. In reality, the probability of the occurrence of one symbol often depends
on the occurrence of another. These so called Markov sources, require extended for-
mulas for entropy, [12]. Markov models and general data compression are treated
thoroughly in [81].

A.2 Compression Algorithms

The following sections are meant to give a quick introduction to basic compression
algorithms. Algorithms for decompression are left out. For every algorithm, pointers
to literature that further enlighten the topic are given.

A.2.1 Statistical Coding

A number of compression or coding algorithms assign codes of variable length to
symbols, or groups of symbols depending on probability distribution. Examples of
such algorithms include Huffman and Shannon-Fano coding. Implementations of
these algorithms are called statistical coders. A non-uniform probability distribution
is required for these coders to have any effect.

See [82] for complete explanation, and details of implementation of statistical coders.
Also, the Frequently Asked Questions (FAQ) [83] from the comp.compression news-
group may be helpful.

Statistical coders build code tables that are used for mapping between symbols and
codes. Coders are often categorized by how this table is built2.

Static coders use the same code table for everything that is to be coded. The table
is generated once and for all, typically from representative samples of the data
the coder is to be used on. The drawback of this approach is that all data
differ from the representative data in varying degree, resulting in a non-optimal
compression. The advantage is that no table needs to be bundled with each
compressed stream. An example of a static code, is Morse code.

Semi-adaptive coders read the entire input stream to build the code table. Coding
is done afterwards, requiring a second pass through the stream.

Dynamic or adaptive coders go one step further compared to the semi-adaptive
coders. Code tables are built simultaneously with compression (and decom-
pression). The advantages are that one doesn’t need to transfer a separate code
table, that the compression is adapted to local changes in the stream, and that

2Unfortunately, there is no “standard” for naming these categories.

— 64 —

Appendix A: Introduction to Data Compression

the input stream is read only once. The drawbacks are that dynamic versions
of the algorithms tend to be complicated, and that coders often are slower than
the non-dynamic versions.

Huffman Coding

In Huffman coding, codes are generated with the aid of a binary tree according to
the following algorithm:

1. Create a leaf node for every symbol, and let every node contain the probability
of the occurrence of the symbol. The list of nodes is sorted on decreasing
probability.

2. Create a new node based on the two orphan nodes with lowest probability, and
make it the parent of the two nodes. The content of the new node is the sum
of probabilities for the previously orphan nodes.

3. Repeat step 2 until only one orphan node exists. This node is the root of the
tree.

4. Assign digits 0 and 1 to every left and right (or upper and lower, depending on
the orientation of the tree) edge respectively.

5. To find the code of a symbol, follow each edge from the root node to the leaf
node of the symbol, combining the digits on edges passed.

An important property of this method, is that codes are instantaneously decodable.
This implies that the code for one symbol never occurs as a prefix of another, i.e. as
soon as the decoder recognizes a code, it can convert it to a symbol.

Example We wish to code the text “abracadabra”. To code this without compres-
sion, we need three bits for each symbol, since the alphabet contains 5 symbols3. The
uncompressed text will thus occupy 11 × 3 = 33 bits.

Let’s see how much we can hope to achieve by calculating the entropy of the text.
To do this, we first calculate the information of each symbol, and sum this up in
table A.1.

Symbol si Count Prob p(si) I(si)

a 5 0.455 1.138
b 2 0.182 2.459
r 2 0.182 2.459
d 1 0.091 3.459
c 1 0.091 3.459

Table A.1: Statistics for the text “abracadabra”

According to the formula in section A.1, the entropy thus becomes 2.040. Following
the algorithm above, we build the tree in figure A.1

3Two bits would let us code four symbols, which doesn’t suffice. Three bits let us code up to eight
symbols, giving three unused code values. The codes we never use, show up as redundancy in our
example

— 65 —

Video on the World Wide Web

a

b

r

d

0

11

11
4

2

c

1

0

0

0

1

1

1

11
2

11

11

11
2

5

1

11
11

11
1

11
6

Figure A.1: An example Huffman tree for coding “abracadabra”.

The algorithm states that one is to combine nodes containing the lowest probability.
When several nodes with equal probability exists, one will have multiple choices. In
figure A.1 the combinations is done as high in the tree as possible, to reduce the
variance in the code length.

By traversing the tree, we end up with the codes in table A.2:

Symbol Code

a 0
b 100
r 101
d 110
c 111

Table A.2: Huffman-codes for “abracadabra”

The text is coded to the sequence 01001010111011001001010, containing 23 bits.
On average, we have used 2.091 bits per symbol, quite close to the entropy. Compare
this to the three bits used when coding directly without compression.

Arithmetic Coding

The drawback with Huffman coding, is that we assign an integer number of bits as the
code for each symbol. The code is thus optimal when each symbol has an occurrence
probability of 2−x [12].

Arithmetic coding takes another approach. Instead of assigning a code for each
symbol in the stream, the entire stream is given a single code. The code is a number
in the interval [0, 1), possibly containing a large number of digits. The coding is done
by, for each symbol, shrinking the interval according to the following algorithm4:

1. Let the current interval be [0, 1).

2. Go to step 5 if there are no more symbols in the input stream.

4Note that this is a simplification compared to a practical implementation

— 66 —

Appendix A: Introduction to Data Compression

3. Split the current interval in subintervals, one for each symbol in the alphabet.
Each subinterval should have a size reflecting the probability of occurrence of
the symbol it represents.

4. Fetch the next symbol from the input stream, and shrink the current interval
to the subinterval for the symbol read, then go to step 2.

5. Chose some number within the current interval to represent the entire stream.

Example Again, we wish to code the text “abracadabra”. The initial interval must
thus be divided in the subintervals given in table A.3:

Symbol Count Lower Upper

a 5 0 5
11

b 2 5
11

7
11

r 2 7
11

9
11

d 1 9
11

9
11

c 1 10
11

11
11

Table A.3: Subintervals for arithmetic coding of “abracadabra”

When coding, the first symbol shrinks the current interval to [0, 5
11). This interval

is split in five new subintervals, one for each symbol in the alphabet. Further coding
shrinks the interval more, finally giving us [0.279383914419962, 0.279384089666912).
The final code is some number within this interval. Optimally, we choose the num-
ber that can be coded with less binary digits. For our example this is the number
0.27938402, yielding the sequence 01000111100001011011011, 23 bits. This gives no
gain compared to the Huffman coding example. The reason for this is that the text is
relatively short, and that the probability distribution is close to optimal for Huffman
coding.

A.2.2 Dictionary Based Coding

Most variations on these dynamic coding algorithms, stem from one of two methods
known as LZ77 and LZ78, which were published by Jacob Ziv and Abraham Lempel
in IEEE Transactions on Information Theory [84] [85].

LZ77

Variations on LZ77 use previously seen text as a dictionary. The main structure in
the original LZ77 is a two-part sliding window. The larger part of the window is text
that is already coded, while the smaller part, called the look-ahead buffer, contains
text that is to be coded. Incoming text is coded by tuples of the form (index, length,
successor symbol). Index points to a location within the window on which a match
with some of the to-be-encoded text is found. The number of matching symbols is
given by length, and successor symbol is the first symbol in the look-ahead buffer that
doesn’t match.

The algorithm resembles the following:

— 67 —

Video on the World Wide Web

1. Fill the look-ahead buffer with symbols from the input stream.

2. Find the longest match between the (start of the) look-ahead buffer and the
already seen text.

3. Output a tuple as described above to the output stream.

4. Shift the contents of the window length + 1 symbols to the left, and fill empty
bytes in the look-ahead buffer from the input stream.

5. Go to step 2 if the look-ahead buffer is not empty.

Example Figure A.2 shows the contents of the window during the last phase of the
coding.

3210

r aa
look-ahead

4 115

c
encoded text

106 7 8 9

br a a da b

Figure A.2: The contents of the window at the final step of LZ77-coding of the text “abracadabra”.

The first seven symbols are already coded and sent to the output stream, while the last
four characters remain to be coded. By inspection, we see that the entire look-ahead
buffer match text that is already seen. The final step of the coding thus yields the
tuple (1, 4, EOF), where EOF is a special symbol indicating the end of the stream.
Since the window is 12 bytes long, we need four bits to encode an index (leaving four
possible indexes unused). The look-ahead buffer is four bytes long, so we need two
bits to represent the length if we allow zero lengths to be encoded using one of the
unused index codes. The input alphabet contains five symbols plus the special EOF
symbol, so three bits will suffice for this. Adding it all up, each tuple occupies nine
bits.

When coding, the first three symbols each yield one tuple, while the next two pairs
each give one tuple since a is found in the window. The four last symbols yield one
tuple, giving a total of six tuples, and 54 bits.

Consult [82] for a number of different LZ77 variants, and what to do to increase the
performance.

LZ78

Coders based on LZ78 takes another approach. Instead of using a window of previ-
ously seen text, they dynamically build a dictionary of previously seen phrases. New
phrases are created by taking a previously stored phrase, and extending it with a sin-
gle symbol. Initially, there is only one phrase with zero length, the nil-phrase. Like
was the case with LZ77, output from an LZ78 coder consists of tuples. The tuples
have the form (phrase index, successor symbol). Coding is performed according to
the following recipe:

1. Initiate the dictionary with a nil-phrase.

— 68 —

Appendix A: Introduction to Data Compression

2. Let the nil-phrase be the current phrase.

3. Go to step 8 if there are no more symbols in the input stream.

4. Let the current symbol be the next symbol from the input stream.

5. If an existing phrase matches the current phrase extended with the current
symbol, let the current phrase refer to this one in the dictionary, and go to
step 3.

6. Send the tuple (index to current phrase, current symbol) to the output stream.

7. Create a new phrase in the dictionary containing the current phrase extended
with the current symbol, and go to step 2.

8. Send the tuple (index to current phrase, EOF) to the output stream.

Example Once again, we code the text “abracadabra”. Table A.4 illustrates both
output from, and dictionary build-up in the coder:

New phrases
In Out Index Phrase

0 “”
a (0, a) 1 “a”
b (0, b) 2 “b”
r (0, r) 3 “r”
a
c (1, k) 4 “ac”
a
d (1, d) 5 “ad”
a
b (1, b) 6 “ab”
r
a (3, a) 7 “ra”

(0, EOF)

Table A.4: Output from and dictionary generation for LZ78.

In this setup we need three bits to code the eight dictionary indexes, and three bits
for the five symbols and the EOF special symbol. Each tuple thus gives six bits,
making a total output of 48 bits.

Index encoding is done differently in the various LZ78 coders. It is possible to let the
number of bits output from each tuple vary with the length of the dictionary [82].

— 69 —

Video on the World Wide Web

— 70 —

Appendix B: SHHVid Java Applet Source Code

Appendix B

SHHVid Java Applet Source
Code

What follows is the source code to the Java video applet described in chapter 6.

1 import java.util.*;

2 import java.awt.*;

3 import java.awt.image.*;

4 import java.applet.*;

5 import java.io.*;

6 import java.net.*;

7
8 public class SHHVid extends Applet implements Runnable {

9 final int BLOCK_WIDTH = 8, BLOCK_HEIGHT = 8;

10 final int IMAGE_WIDTH = 160, IMAGE_HEIGHT = 120;

11 final int GRAY_BITS = 4, NUM_GRAY = 1 << GRAY_BITS;

12
13 /// error messages ///

14 String errMessage = null;

15
16 private void errSetMessage(String s)

17 {

18 errMessage = s;

19 if (s != null)

20 System.err.println(s);

21 repaint();

22 }

23
24 /// image methods //

25 byte pixelBuff[] = new byte[IMAGE_WIDTH * IMAGE_HEIGHT];

26 MemoryImageSource pixelSource;

27 Image img;

28 IndexColorModel colorModel;

29
30 private void imgInit()

31 {

32 byte r[] = new byte[NUM_GRAY];

33 byte g[] = new byte[NUM_GRAY];

34 byte b[] = new byte[NUM_GRAY];

35 int q;

36
37 for (q = 0; q < NUM_GRAY; q++)

38 r[q] = g[q] = b[q] = (byte) ((q * 255) / (NUM_GRAY - 1));

— 71 —

Video on the World Wide Web

39 colorModel = new IndexColorModel(8, NUM_GRAY, r, g, b);

40 for (q = 0; q < IMAGE_WIDTH * IMAGE_HEIGHT; q++)

41 pixelBuff[q] = 0;

42 pixelSource

43 = new MemoryImageSource(IMAGE_WIDTH, IMAGE_HEIGHT, colorModel,

44 pixelBuff, 0, IMAGE_WIDTH);

45 img = createImage(pixelSource);

46 }

47
48 private int imgSetBlock(int x, int y, byte buff[], int idx)

49 {

50 int xx, yy, imgIdx, lum;

51
52 imgIdx = (y * BLOCK_HEIGHT) * IMAGE_WIDTH + (x * BLOCK_WIDTH);

53 for (yy = BLOCK_HEIGHT; yy > 0; yy--) {

54 for (xx = BLOCK_WIDTH / 2; xx > 0; xx--) {

55 pixelBuff[imgIdx++] = (byte) ((buff[idx] >> 4) & 0x0F);

56 pixelBuff[imgIdx++] = (byte) (buff[idx++] & 0x0F);

57 }

58 imgIdx += (IMAGE_WIDTH - BLOCK_WIDTH);

59 }

60 return (BLOCK_WIDTH * BLOCK_HEIGHT) / 2;

61 }

62
63 /// networking methods ///

64 String remoteHost;

65 int remoteTcpPort = 8193;

66 Socket tcpSock = null;

67 DatagramSocket udpSock = null;

68 final byte PACK_NO_CAM = 0, PACK_BUSY = 1, PACK_SEND_PORT = 2;

69 final byte PACK_WELCOME = 3, PACK_GO_AWAY = 4;

70 final byte PACK_PORT = 10, PACK_HANGUP = 11;

71 final byte PACK_BLOCK = 20;

72 byte tcpPacketBuff[] = new byte[1400];

73 byte udpPacketBuff[] = new byte[1400];

74 // long packetsReceived = 0;

75 DatagramPacket udpPacket;

76
77 private void netCloseConnection(boolean doHangup)

78 {

79 if (tcpSock == null)

80 return;

81 if (doHangup) {

82 System.err.println("sending hangup");

83 try {

84 tcpPacketBuff[0] = PACK_HANGUP;

85 tcpSock.getOutputStream().write(tcpPacketBuff, 0, 1);

86 } catch (IOException e) {

87 errSetMessage("error sending data to server");

88 }

89 }

90 try {

91 tcpSock.close();

92 tcpSock = null;

93 if (udpSock != null) {

94 udpSock.close();

95 udpSock = null;

96 }

97 } catch (IOException e) {

98 System.err.println("error closing socket");

— 72 —

Appendix B: SHHVid Java Applet Source Code

99 }

100 }

101
102 private boolean netOpenConnection()

103 {

104 byte packType = PACK_BUSY;

105 int port;

106
107 // get name of remote host

108 if ((remoteHost = getDocumentBase().getHost()).equals(""))

109 remoteHost = "www";

110 // remoteHost = "localhost";

111 try {

112 errSetMessage("connecting to " + remoteHost

113 + ":" + remoteTcpPort);

114 tcpSock = new Socket(remoteHost, remoteTcpPort);

115 } catch (UnknownHostException e) {

116 errSetMessage("unknown host: " + remoteHost);

117 return false;

118 } catch (IOException e) {

119 errSetMessage("unable to connect to " + remoteHost);

120 return false;

121 }

122 try {

123 tcpSock.getInputStream().read(tcpPacketBuff);

124 packType = tcpPacketBuff[0];

125 } catch (IOException e) {

126 errSetMessage("unable to read from server");

127 netCloseConnection(false);

128 return false;

129 }

130 if (packType == PACK_NO_CAM) {

131 errSetMessage("no camera available");

132 netCloseConnection(false);

133 return false;

134 } else if (packType == PACK_BUSY) {

135 errSetMessage("server is busy");

136 netCloseConnection(false);

137 return false;

138 } else if (packType == PACK_SEND_PORT) {

139 try {

140 udpSock = new DatagramSocket();

141 port = udpSock.getLocalPort();

142 System.out.println("local udp port is " + port);

143 tcpPacketBuff[0] = PACK_PORT;

144 tcpPacketBuff[1] = (byte) ((port >> 8) & 0xFF);

145 tcpPacketBuff[2] = (byte) (port & 0xFF);

146 tcpSock.getOutputStream().write(tcpPacketBuff, 0, 3);

147 tcpSock.getInputStream().read(tcpPacketBuff);

148 packType = tcpPacketBuff[0];

149 if (packType == PACK_WELCOME) {

150 System.out.println("we’re connected");

151 errSetMessage(null);

152 } else if (packType == PACK_GO_AWAY) {

153 errSetMessage("server doesn’t want us.");

154 netCloseConnection(false);

155 return false;

156 }

157 } catch (SocketException e) {

158 errSetMessage("unable to set up local udp socket");

— 73 —

Video on the World Wide Web

159 netCloseConnection(false);

160 return false;

161 } catch (IOException e) {

162 errSetMessage("error sending data to server");

163 netCloseConnection(false);

164 return false;

165 }

166 } else {

167 errSetMessage("got unknown packet -- closing");

168 netCloseConnection(false);

169 return false;

170 }

171 return true;

172 }

173
174 private void netUdpInput()

175 {

176 int n, idx, x, y;

177 byte type;

178
179 try {

180 // the length of the buffer was shrinked by Java

181 // to match each packet received, so it must be reset for

182 // each read operation.

183 udpPacket = new DatagramPacket(udpPacketBuff,

184 udpPacketBuff.length);

185 udpSock.receive(udpPacket);

186 } catch (IOException e) {

187 if (runner != null) {

188 errSetMessage("error receiving packet");

189 netCloseConnection(true);

190 }

191 return;

192 }

193 // if (++packetsReceived % 50 == 0)

194 // System.out.println("received " + packetsReceived + " packets");

195 n = udpPacket.getLength();

196 idx = 0;

197 while (idx < n) {

198 type = udpPacketBuff[idx++];

199 if (type == PACK_BLOCK) {

200 x = udpPacketBuff[idx++];

201 y = udpPacketBuff[idx++];

202 idx += imgSetBlock(x, y, udpPacketBuff, idx);

203 } else {

204 errSetMessage("unknown packet received");

205 netCloseConnection(true);

206 return;

207 }

208 }

209 // for some reason, the createImage function must be called

210 // whenever a change is done. i assume there is another

211 // way to do this.

212 img = createImage(pixelSource);

213 repaint();

214 }

215
216 /// "ordinary" applet methods //

217 Thread runner = null;

218

— 74 —

Appendix B: SHHVid Java Applet Source Code

219 public String getAppletInfo() {

220 return "SHHVid by Sverre H. Huseby";

221 }

222
223 private int getIntParam(String name, int dflt) {

224 String param = getParameter(name);

225 if (param == null) {

226 System.out.println("port set to default");

227 return dflt;

228 } else

229 System.out.println("port set to " + param);

230 return Integer.parseInt(param);

231 }

232
233 public void init()

234 {

235 remoteTcpPort = getIntParam("port", remoteTcpPort);

236 imgInit();

237 }

238
239 public void start() {

240 errSetMessage(null);

241 netOpenConnection();

242 if (runner == null) {

243 runner = new Thread(this);

244 runner.start();

245 }

246 }

247
248 public void stop() {

249 if (runner != null)

250 runner.stop();

251 runner = null;

252 netCloseConnection(true);

253 }

254
255 public void run()

256 {

257 while(runner != null && tcpSock != null) {

258 netUdpInput();

259 // Thread.yield();

260 }

261 }

262
263 public void paint(Graphics g)

264 {

265 g.drawImage(img, 0, 0, this);

266 if (errMessage != null) {

267 g.setColor(Color.red);

268 g.drawString(errMessage, 10, 14);

269 }

270 }

271
272 public void update(Graphics g)

273 {

274 paint(g);

275 }

276
277 public boolean mouseDown(Event e, int x, int y)

278 {

— 75 —

Video on the World Wide Web

279 if (runner == null)

280 start();

281 else

282 stop();

283 return true;

284 }

285 }

286

— 76 —

Appendix C: SHHVid Grabber Source Code

Appendix C

SHHVid Grabber Source Code

This appendix contains the source code to the camera grabber used in conjunction
with the Java video applet described in chapter 6. Note that the program uses general
purpose libraries developed by the author of this report. The source code to these
libraries are not included. All source code may be found at
http://www.ifi.uio.no/~ftp/publications/cand-scient-theses/SHuseby/src/

The following files are listed.

• Makefile

• vidgrabber.h and vidgrabber.c

• camera.h and camera.c

• blockimg.h and blockimg.c

• network.h and network.c

• shhsched.h and shhsched.c

Makefile

1 # Id

2 PROG = vidgrabber

3 DIST = $(PROG)

4 VERMAJ = 0

5 VERMIN = 1

6 VERPAT = 0

7 VERSION = $(VERMAJ).$(VERMIN).$(VERPAT)

8 COMPILED_DATE = ‘date ’+%Y-%m-%d %H:%M:%S’‘

9 COMPILED_BY = ‘whoami‘

10
11 ###

12
13 # where are shhmsg and shhopt?

14 INCDIR = -I/hom/sverrehu/c/net/shhnet \

15 -I/usr/local/include -I$$HOME/include

16
17 LIBDIR = -L/hom/sverrehu/c/net/shhnet \

18 -L/usr/local/lib -L$$HOME/lib/$$HOSTTYPE

19
20

— 77 —

Video on the World Wide Web

21 INSTBASEDIR = /usr/local

22 INSTBINDIR = $(INSTBASEDIR)/bin

23 INSTMANDIR = $(INSTBASEDIR)/man/man1

24 INSTALL = install -m 644

25 INSTALLPROG = install -s -m 755

26 MKDIRP = install -d -m 755

27
28 DEFINES = -DVERSION=\"$(VERSION)\" \

29 "-DCOMPILED_DATE=\"$(COMPILED_DATE)\"" \

30 "-DCOMPILED_BY=\"$(COMPILED_BY)\""

31
32 ###

33
34 CC = gcc

35
36 OPTIM = -O2

37 CCOPT = -s -Wall $(OPTIM) $(INCDIR) $(DEFINES) $(CFLAGS)

38 LDOPT = -s $(LIBDIR) $(LDFLAGS)

39
40 LIBS = -lshhmsg -lshhopt -lshhnet -lvl

41 OBJS = blockimg.o camera.o network.o shhsched.o vidgrabber.o

42
43 ###

44
45 all: $(PROG)

46
47 $(PROG): $(OBJS)

48
49 .o: $(OBJS)

50 $(CC) $(CCOPT) -o $@ $(OBJS) $(LDOPT) $(LIBS)

51
52 .c.o:

53 $(CC) -o $@ -c $(CCOPT) $<

54
55 clean:

56 rm -f *.o core depend *~

57
58 install: $(PROG)

59 $(MKDIRP) $(INSTBINDIR) $(INSTMANDIR)

60 $(INSTALLPROG) $(PROG) $(INSTBINDIR)

61 $(INSTALL) $(PROG).1 $(INSTMANDIR)

62
63 depend dep:

64 $(CC) $(INCDIR) -MM *.c >depend

65
66 ###

67
68 # To let the author make a distribution. The rest of the Makefile

69 # should be used by the author only.

70 DISTDIR = $(DIST)-$(VERSION)

71 DISTFILE = $(DIST)-$(VERSION).tar.gz

72 DISTFILES = Makefile \

73 blockimg.c camera.c network.c shhsched.c vidgrabber.c \

74 blockimg.h camera.h network.h shhsched.h vidgrabber.h

75
76 chmod:

77 chmod -R a+rX *

78
79 veryclean: clean

80 rm -f $(PROG) $(DIST)-$(VERSION).tar.gz gmon.out

— 78 —

Appendix C: SHHVid Grabber Source Code

81
82 dist: chmod

83 mkdir $(DISTDIR)

84 chmod a+rx $(DISTDIR)

85 for q in $(DISTFILES); do \

86 if test -r $$q; then \

87 ln -s ../$$q $(DISTDIR); \

88 else echo "warning: no file $$q"; fi; \

89 done

90 tar -cvhzf $(DISTFILE) $(DISTDIR)

91 chmod a+r $(DISTFILE)

92 rm -rf $(DISTDIR)

93
94 ifeq (depend,$(wildcard depend))

95 include depend

96 endif

— 79 —

Video on the World Wide Web

vidgrabber.h

1 /* Id */

2 #ifndef VIDGRABBER_H

3 #define VIDGRABBER_H

4
5 /* milliseconds between each */

6 #define SEND_DELAY 100

7
8 void vidStartGrab(void);

9 void vidStopGrab(void);

10
11 #endif

vidgrabber.c

1 /* Id */

2 /**

3 *

4 * FILE vidgrabber.c

5 * MODULE OF vidgrabber

6 *

7 * DESCRIPTION

8 *

9 * WRITTEN BY Sverre H. Huseby <sverrehu@ifi.uio.no>

10 *

11 **/

12
13 #include <stdlib.h>

14 #include <stdio.h>

15
16 #include <shhmsg.h>

17 #include <shhopt.h>

18 #include <shhnet.h>

19
20 #include "camera.h"

21 #include "shhsched.h"

22 #include "network.h"

23 #include "blockimg.h"

24 #include "vidgrabber.h"

25
26 /**

27 * *

28 * P R I V A T E D A T A *

29 * *

30 **/

31
32 static BlockImage blkImgOut;

33 static SchedId grabSchedId;

34
35
36
37 /**

38 * *

39 * P R I V A T E F U N C T I O N S *

40 * *

41 **/

42
43 static void

— 80 —

Appendix C: SHHVid Grabber Source Code

44 vidGrabAndSend(void *clientData)

45 {

46 grabSchedId = schedAddTime(SEND_DELAY, vidGrabAndSend, NULL);

47 camGetFrame(&blkImgOut);

48 netSendImage(&blkImgOut);

49 }

50
51 static void

52 version(void)

53 {

54 printf(

55 "%s " VERSION ", by Sverre H. Huseby "

56 "(compiled " COMPILED_DATE " by " COMPILED_BY ")\n",

57 msgGetName()

58);

59 exit(0);

60 }

61
62 static void

63 usage(void)

64 {

65 printf(

66 "usage: %s [options] remote-host[:remote-port]\n"

67 "\n"

68 " -h, --help display this help and exit\n"

69 " -V, --version output version information and exit\n"

70 "\n",

71 msgGetName()

72);

73 exit(0);

74 }

75
76
77
78 /**

79 * *

80 * P U B L I C F U N C T I O N S *

81 * *

82 **/

83
84 void

85 vidStartGrab(void)

86 {

87 grabSchedId = schedAddTime(SEND_DELAY, vidGrabAndSend, NULL);

88 }

89
90 void

91 vidStopGrab(void)

92 {

93 schedRemoveTime(grabSchedId);

94 }

95
96 int

97 main(int argc, char *argv[])

98 {

99 optStruct opt[] = {

100 /* short long type var/func special */

101 { ’h’, "help", OPT_FLAG, usage, OPT_CALLFUNC },

102 { ’V’, "version", OPT_FLAG, version, OPT_CALLFUNC },

103 { 0, 0, OPT_END, 0, 0 } /* no more options */

— 81 —

Video on the World Wide Web

104 };

105
106 msgSetName(argv[0]);

107 snSetErrorHandling(SN_REPORT_ERROR_AND_EXIT, msgFatal);

108
109 optParseOptions(&argc, argv, opt, 0);

110 if (argc != 2)

111 usage();

112
113 netSetRemoteSystem(argv[1]);

114
115 schedInit();

116 camInit();

117 netInit();

118
119 schedLoop();

120
121 netFinish();

122 camFinish();

123 schedFinish();

124 return 0;

125 }

— 82 —

Appendix C: SHHVid Grabber Source Code

camera.h

1 /* Id */

2 #ifndef CAMERA_H

3 #define CAMERA_H

4
5 #include "blockimg.h"

6
7 void camInit(void);

8 void camFinish(void);

9
10 void camGetFrame(BlockImage *blockImage);

11
12 #endif

camera.c

1 /* Id */

2 /**

3 *

4 * FILE camera.c

5 * MODULE OF vidgrabber

6 *

7 * DESCRIPTION

8 *

9 * WRITTEN BY Sverre H. Huseby <sverrehu@ifi.uio.no>

10 *

11 **/

12
13 #include <stdio.h>

14 #include <string.h>

15 #if defined(sgi)

16 #include <vl/vl.h>

17 #endif

18
19 #include <shhmsg.h>

20
21 #include "blockimg.h"

22 #include "camera.h"

23
24 #undef SAVEFILE "save.img"

25 #if !defined(sgi)

26 #define LOADFILE "capture.img"

27 #endif

28
29 /**

30 * *

31 * P R I V A T E D A T A *

32 * *

33 **/

34
35 #if defined(LOADFILE)

36 static FILE *camFile;

37 static int camWidth = IMAGE_WIDTH;

38 #elif defined(sgi)

39 static char *camDisplayName = "";

40 static VLServer camServer;

41 static VLNode camSource, camDrain;

42 static VLPath camPath;

— 83 —

Video on the World Wide Web

43 static VLBuffer camBuffer;

44 static int camWidth, camHeight;

45 #ifdef SAVEFILE

46 static FILE *camFile;

47 #endif

48 #endif

49
50
51
52 /**

53 * *

54 * P R I V A T E F U N C T I O N S *

55 * *

56 **/

57
58 static void

59 camFatal(void)

60 {

61 #if defined(sgi)

62 msgFatal("camera error: %s\n", vlStrError(vlErrno));

63 #endif

64 }

65
66
67
68 /**

69 * *

70 * P U B L I C F U N C T I O N S *

71 * *

72 **/

73
74 void

75 camInit(void)

76 {

77 #if defined(sgi)

78 VLControlValue cv;

79 #endif

80
81 #if defined(LOADFILE)

82 if ((camFile = fopen(LOADFILE, "rb")) == NULL)

83 msgFatalPerror(LOADFILE);

84 #elif defined(sgi)

85 if ((camServer = vlOpenVideo(camDisplayName)) == NULL)

86 camFatal();

87 if ((camSource = vlGetNode(camServer, VL_SRC, VL_VIDEO, VL_ANY)) < 0)

88 camFatal();

89 if ((camDrain = vlGetNode(camServer, VL_DRN, VL_MEM, VL_ANY)) < 0)

90 camFatal();

91 if ((camPath = vlCreatePath(camServer, VL_ANY, camSource, camDrain)) < 0)

92 camFatal();

93 if (vlSetupPaths(camServer, (VLPathList) &camPath,

94 1, VL_LOCK, VL_LOCK) < 0)

95 camFatal();

96 cv.intVal = VL_PACKING_Y_8_P;

97 if (vlSetControl(camServer, camPath, camDrain, VL_PACKING, &cv) < 0)

98 camFatal();

99 cv.fractVal.numerator = 1;

100 cv.fractVal.denominator = 4;

101 if (vlSetControl(camServer, camPath, camDrain, VL_ZOOM, &cv) < 0)

102 camFatal();

— 84 —

Appendix C: SHHVid Grabber Source Code

103 cv.xyVal.x = IMAGE_WIDTH;

104 cv.xyVal.y = IMAGE_HEIGHT;

105 if (vlSetControl(camServer, camPath, camDrain, VL_SIZE, &cv) < 0)

106 camFatal();

107 if ((camBuffer = vlCreateBuffer(camServer, camPath, camDrain, 1)) == NULL)

108 camFatal();

109 if (vlRegisterBuffer(camServer, camPath, camDrain, camBuffer) < 0)

110 camFatal();

111 vlGetControl(camServer, camPath, camDrain, VL_SIZE, &cv);

112 camWidth = cv.xyVal.x;

113 camHeight = cv.xyVal.y;

114 #ifdef SAVEFILE

115 if ((camFile = fopen(SAVEFILE, "wb")) == NULL)

116 msgFatalPerror(SAVEFILE);

117 #endif

118 #endif

119 }

120
121 void

122 camFinish(void)

123 {

124 #if defined(LOADFILE)

125 fclose(camFile);

126 #elif defined(sgi)

127 vlDeregisterBuffer(camServer, camPath, camDrain, camBuffer);

128 vlDestroyBuffer(camServer, camBuffer);

129 vlDestroyPath(camServer, camPath);

130 vlCloseVideo(camServer);

131 #ifdef SAVEFILE

132 fclose(camFile);

133 #endif

134 #endif

135 }

136
137 void

138 camGetFrame(BlockImage *blockImage)

139 {

140 #if defined(LOADFILE) || defined(sgi)

141 int x, y, yb;

142 register int xb;

143 register unsigned char *d, *s;

144 unsigned char tmpbuff[BLOCK_WIDTH * BLOCK_HEIGHT];

145 #endif

146 #if defined(LOADFILE)

147 static unsigned char buffer[IMAGE_WIDTH * IMAGE_HEIGHT];

148 #elif defined(sgi)

149 unsigned char *buffer;

150 VLInfoPtr info;

151 VLTransferDescriptor xferDesc;

152 #endif

153
154 #if defined(LOADFILE)

155 if (fread(buffer, IMAGE_WIDTH * IMAGE_HEIGHT, 1, camFile) < 1) {

156 rewind(camFile);

157 fread(buffer, IMAGE_WIDTH * IMAGE_HEIGHT, 1, camFile);

158 }

159 #elif defined(sgi)

160 vlPutFree(camServer, camBuffer);

161 xferDesc.mode = VL_TRANSFER_MODE_DISCRETE;

162 xferDesc.count = 1;

— 85 —

Video on the World Wide Web

163 xferDesc.delay = 0;

164 xferDesc.trigger = VLTriggerImmediate;

165 if (vlBeginTransfer(camServer, camPath, 1, &xferDesc) == -1)

166 camFatal();

167 while ((info = vlGetLatestValid(camServer, camBuffer)) == NULL) {

168 if (vlGetErrno())

169 camFatal();

170 }

171 vlEndTransfer(camServer, camPath);

172 buffer = vlGetActiveRegion(camServer, camBuffer, info);

173 #ifdef SAVEFILE

174 fwrite(buffer, IMAGE_WIDTH * IMAGE_HEIGHT, 1, camFile);

175 #endif

176 #endif

177 #if defined(LOADFILE) || defined(sgi)

178 for (y = 0; y < VER_BLOCKS; y++)

179 for (x = 0; x < HOR_BLOCKS; x++) {

180 d = tmpbuff;

181 for (yb = 0; yb < BLOCK_HEIGHT; yb++) {

182 s = buffer + camWidth * (y * BLOCK_HEIGHT + yb)

183 + x * BLOCK_WIDTH;

184 for (xb = BLOCK_WIDTH; xb; xb--)

185 #if 0

186 *d++ = (*s++ & 0xFF) >> (8 - GRAY_BITS);

187 #else

188 *d++ = *s++;

189 #endif

190 }

191 blkCalcMeasure(&(blockImage->block[x][y]), tmpbuff);

192 memcpy(blockImage->block[x][y].data, tmpbuff, sizeof(tmpbuff));

193 }

194 #endif

195 }

— 86 —

Appendix C: SHHVid Grabber Source Code

blockimg.h

1 /* Id */

2 #ifndef BLOCKIMG_H

3 #define BLOCKIMG_H

4
5 #define GRAY_BITS 4

6 #define NUM_GRAY (1 << GRAY_BITS)

7 /* block size must be dividable by two */

8 #define BLOCK_WIDTH 8

9 #define BLOCK_HEIGHT 8

10
11 /* the image sizes must be multipla of block sizes */

12 #define IMAGE_WIDTH 160

13 #define IMAGE_HEIGHT 120

14
15 #define HOR_BLOCKS (IMAGE_WIDTH / BLOCK_WIDTH)

16 #define VER_BLOCKS (IMAGE_HEIGHT / BLOCK_HEIGHT)

17
18 #define MEASURE_MAX_DELTA 5

19 #define RESEND_FREQUENCY 50

20
21 typedef struct {

22 int measure;

23 int measureLastSend;

24 int lastImageNumber;

25 unsigned char data[BLOCK_WIDTH * BLOCK_HEIGHT];

26 } Block;

27
28 typedef struct {

29 Block block[HOR_BLOCKS][VER_BLOCKS];

30 } BlockImage;

31
32 void blkCalcMeasure(Block *block, unsigned char *data);

33
34 #endif

blockimg.c

1 /* Id */

2 /**

3 *

4 * FILE blockimg.c

5 * MODULE OF

6 *

7 * DESCRIPTION

8 *

9 * WRITTEN BY Sverre H. Huseby <sverrehu@ifi.uio.no>

10 *

11 **/

12
13 #include <stdlib.h>

14
15 #include "blockimg.h"

16
17 /**

18 * *

19 * P U B L I C F U N C T I O N S *

20 * *

— 87 —

Video on the World Wide Web

21 **/

22
23 void

24 blkCalcMeasure(Block *block, unsigned char *data)

25 {

26 #if 1

27 register unsigned char *p1, *p2;

28 register int diff;

29 int q, maxdiff = 0;

30
31 p1 = block->data;

32 p2 = data;

33 for (q = BLOCK_WIDTH * BLOCK_HEIGHT; q; q--) {

34 diff = *p1++ - *p2++;

35 if (diff < 0)

36 diff = -diff;

37 if (diff > maxdiff)

38 maxdiff = diff;

39 }

40 block->measure = maxdiff;

41 #else

42 register unsigned char *p1, *p2;

43 register int diff;

44 int q, totdiff = 0;

45
46 p1 = block->data;

47 p2 = data;

48 for (q = BLOCK_WIDTH * BLOCK_HEIGHT; q; q--) {

49 diff = *p1++ - *p2++;

50 if (diff < 0)

51 diff = -diff;

52 totdiff += diff;

53 }

54 block->measure = totdiff / (BLOCK_WIDTH * BLOCK_HEIGHT);

55 #endif

56 }

— 88 —

Appendix C: SHHVid Grabber Source Code

network.h

1 /* Id */

2 #ifndef NETWORK_H

3 #define NETWORK_H

4
5 #include "blockimg.h"

6
7 #define DEFAULT_CAMERA_PORT 8194

8
9 #define MAX_PACKET 1400

10
11 /* packet types */

12 enum {

13 /* tcp server */

14 PACK_HAVE_FEED = 30, /* already have video feed */

15 PACK_WELCOME_PORT, /* call accepted, port number included */

16 PACK_START_GRAB, /* start grabbing and sending frames */

17 PACK_STOP_GRAB, /* stop grabbing and sending frames */

18 /* tcp client */

19 PACK_QUIT = 40, /* end of call */

20 /* udp */

21 PACK_BLOCK = 20, /* a block of an image */

22 };

23
24 void netSetRemoteSystem(const char *system);

25
26 void netInit(void);

27 void netFinish(void);

28
29 void netSendImage(BlockImage *blockImage);

30
31 #endif

network.c

1 /* Id */

2 /**

3 *

4 * FILE network.c

5 * MODULE OF vidgrabber

6 *

7 * DESCRIPTION

8 *

9 * WRITTEN BY Sverre H. Huseby <sverrehu@ifi.uio.no>

10 *

11 **/

12
13 #include <stdlib.h>

14 #include <stdio.h>

15 #include <string.h>

16 #include <unistd.h>

17
18 #include <shhmsg.h>

19 #include <shhnet.h>

20
21 #include "blockimg.h"

22 #include "camera.h"

23 #include "shhsched.h"

— 89 —

Video on the World Wide Web

24 #include "vidgrabber.h"

25 #include "network.h"

26
27 /**

28 * *

29 * P R I V A T E D A T A *

30 * *

31 **/

32
33 /* need some extra space */

34 static unsigned char netOutPacket[MAX_PACKET + BLOCK_WIDTH * BLOCK_HEIGHT];

35 static int netOutIndex;

36 static int netOutImageNumber;

37
38 static char netRemoteSystem[81] = "";

39 static char netRemoteHost[81];

40 static char netRemoteTcpPort[81];

41 static int netRemoteTcp = -1;

42
43 static SNAddr netRemoteUdpAddr;

44 static SNPort netRemoteUdpPort;

45 static int netRemoteUdp = -1;

46
47 SchedId netTcpReadyId;

48
49
50
51 /**

52 * *

53 * P R I V A T E F U N C T I O N S *

54 * *

55 **/

56
57 static void

58 netTcpInput(void *clientData, int fd)

59 {

60 unsigned char buff[128];

61 char name[100];

62 int n, type;

63 SNPort dummy;

64
65 if (tcpRead(fd, buff, sizeof(buff), &n) != SN_OK || n == 0)

66 msgFatal("got error or empty packet, assuming broken connection\n");

67
68 type = buff[0];

69 switch (type) {

70 case PACK_HAVE_FEED:

71 msgFatal("another camera provider running\n");

72 break;

73 case PACK_WELCOME_PORT:

74 inGetPeerAddrPort(fd, &netRemoteUdpAddr, &dummy);

75 inHostAddrToName(netRemoteUdpAddr, name, sizeof(name));

76 netRemoteUdpPort = ((int) buff[1] << 8) | buff[2];

77 udpClientSock(&netRemoteUdp);

78 msgMessage("connected to %s, sending UDP data to port %u\n",

79 name, (unsigned) netRemoteUdpPort);

80 break;

81 case PACK_START_GRAB:

82 msgMessage("starting grab on request\n");

83 vidStartGrab();

— 90 —

Appendix C: SHHVid Grabber Source Code

84 break;

85 case PACK_STOP_GRAB:

86 msgMessage("stopping grab on request\n");

87 vidStopGrab();

88 break;

89 default:

90 msgError("unknown packet received (%u)\n", (unsigned) type);

91 }

92 }

93
94 static void

95 netFlush(void)

96 {

97 int n;

98
99 if (!netOutIndex)

100 return;

101 if (netRemoteUdp >= 0) {

102 udpWriteTo(netRemoteUdp, netOutPacket, netOutIndex,

103 netRemoteUdpAddr, netRemoteUdpPort, &n);

104 if (n < netOutIndex)

105 msgError("partial packet sent\n");

106 }

107 netOutIndex = 0;

108 }

109
110 static void

111 netSendBlock(Block *block, int x, int y)

112 {

113 #if GRAY_BITS == 4

114 unsigned char pix;

115 #endif

116 int n, origOutIndex, nBytes;

117 unsigned char buff[BLOCK_WIDTH * BLOCK_HEIGHT];

118 register unsigned char *s, *d;

119
120 s = block->data;

121 d = buff;

122 #if GRAY_BITS == 4

123 nBytes = (BLOCK_WIDTH * BLOCK_HEIGHT) / 2;

124 for (n = nBytes; n; n--) {

125 pix = *s++ & 0xF0;

126 *d++ = pix | (*s++ >> 4);

127 }

128 #else

129 nBytes = BLOCK_WIDTH * BLOCK_HEIGHT;

130 for (n = nBytes; n; n--)

131 *d++ = *s++ >> (8 - GRAY_BITS);

132 #endif

133
134 if (netOutIndex + 3 + BLOCK_WIDTH * BLOCK_HEIGHT > MAX_PACKET)

135 netFlush();

136 origOutIndex = netOutIndex;

137 for (;;) {

138 netOutPacket[netOutIndex++] = PACK_BLOCK;

139 netOutPacket[netOutIndex++] = (unsigned char) x;

140 netOutPacket[netOutIndex++] = (unsigned char) y;

141 memcpy(netOutPacket + netOutIndex, buff, nBytes);

142 netOutIndex += nBytes;

143 if (netOutIndex > MAX_PACKET) {

— 91 —

Video on the World Wide Web

144 netOutIndex = origOutIndex;

145 netFlush();

146 origOutIndex = netOutIndex;

147 } else

148 break;

149 }

150 block->measureLastSend = block->measure;

151 block->lastImageNumber = netOutImageNumber;

152 }

153
154 static void

155 netCallRemote(void)

156 {

157 msgMessage("calling proxy at %s:%s\n", netRemoteHost, netRemoteTcpPort);

158 tcpClientOpen(netRemoteHost, netRemoteTcpPort, &netRemoteTcp);

159 netTcpReadyId

160 = schedAddDesc(SCHED_READ_READY, netRemoteTcp, netTcpInput, NULL);

161 }

162
163 static void

164 netGetHostAndPort(const char *system, char *host, char *port)

165 {

166 const char *p;

167
168 if ((p = strchr(system, ’:’)) == NULL) {

169 strcpy(host, system);

170 sprintf(port, "%d", DEFAULT_CAMERA_PORT);

171 } else {

172 if (p == system)

173 strcpy(host, "localhost");

174 else

175 strncpy(host, system, p - system);

176 strcpy(port, p + 1);

177 if (!strlen(port))

178 sprintf(port, "%d", DEFAULT_CAMERA_PORT);

179 }

180 }

181
182
183
184 /**

185 * *

186 * P U B L I C F U N C T I O N S *

187 * *

188 **/

189
190 void

191 netSetRemoteSystem(const char *system)

192 {

193 strcpy(netRemoteSystem, system);

194 }

195
196 void

197 netInit(void)

198 {

199 netOutIndex = 0;

200 netOutImageNumber = RESEND_FREQUENCY;

201
202 netGetHostAndPort(netRemoteSystem, netRemoteHost, netRemoteTcpPort);

203 netCallRemote();

— 92 —

Appendix C: SHHVid Grabber Source Code

204 }

205
206 void

207 netFinish(void)

208 {

209 if (netRemoteTcp >= 0) {

210 tcpClose(netRemoteTcp);

211 netRemoteTcp = -1;

212 }

213 if (netRemoteUdp >= 0) {

214 tcpClose(netRemoteUdp);

215 netRemoteUdp = -1;

216 }

217 schedRemoveDesc(netTcpReadyId);

218 }

219
220 void

221 netSendImage(BlockImage *blockImage)

222 {

223 int x, y, diff;

224 Block *block;

225
226 for (y = 0; y < VER_BLOCKS; y++)

227 for (x = 0; x < HOR_BLOCKS; x++) {

228 block = &(blockImage->block[x][y]);

229 if (netOutImageNumber - block->lastImageNumber

230 >= RESEND_FREQUENCY) {

231 netSendBlock(block, x, y);

232 } else {

233 diff = block->measure - block->measureLastSend;

234 if (diff < 0)

235 diff = -diff;

236 if (diff > MEASURE_MAX_DELTA)

237 netSendBlock(block, x, y);

238 }

239 }

240 netFlush();

241 ++netOutImageNumber;

242 }

— 93 —

Video on the World Wide Web

shhsched.h

1 /* Id */

2 #ifndef SHHSCHED_H

3 #define SHHSCHED_H

4
5 #include <sys/time.h> /* struct timeval */

6
7 #ifdef __cplusplus

8 extern "C" {

9 #endif

10
11 typedef unsigned long SchedId;

12
13 /*

14 * function calls at given times

15 */

16 typedef void (*SchedTimeFunc)(void *clientData);

17 typedef unsigned long SchedTime; /* milliseconds */

18
19 SchedId schedAddTimeAt(struct timeval *when, SchedTimeFunc func,

20 void *clientData);

21 SchedId schedAddTime(SchedTime delay, SchedTimeFunc func, void *clientData);

22 void schedRemoveTime(SchedId id);

23 void schedRemoveTimeAll(void);

24
25
26 /*

27 * function calls when file descriptors are ready

28 */

29 typedef void (*SchedDescFunc)(void *clientData, int fd);

30 typedef enum {

31 SCHED_READ_READY, /* file descriptor ready for reading */

32 SCHED_WRITE_READY, /* file descriptor ready for writing */

33 SCHED_EXCEPTION_READY /* exception waiting on file descriptor */

34 } SchedDescAction;

35
36 SchedId schedAddDesc(SchedDescAction action, int fd,

37 SchedDescFunc func, void *clientData);

38 void schedRemoveDesc(SchedId id);

39 void schedRemoveDescAll(void);

40
41
42 /*

43 * main loop, and setting up.

44 */

45 void schedInit(void);

46 void schedFinish(void);

47 void schedEndLoop(void);

48 void schedLoop(void);

49
50
51 #ifdef __cplusplus

52 }

53 #endif

54
55 #endif

— 94 —

Appendix C: SHHVid Grabber Source Code

shhsched.c

1 /* Id */

2 /**

3 *

4 * FILE shhsched.c

5 *

6 * DESCRIPTION

7 *

8 * WRITTEN BY Sverre H. Huseby <sverrehu@ifi.uio.no>

9 *

10 **/

11
12 #include <stdlib.h>

13 #include <stdio.h>

14 #include <errno.h>

15 #include <sys/time.h>

16 #include <sys/types.h>

17 #include <unistd.h>

18 #if defined(sgi)

19 #include <bstring.h>

20 #endif

21
22 #include <shhmsg.h>

23
24 #include "shhsched.h"

25
26 /* the following should be changed to a dynamic scheme later */

27 #define MAX_SCHED_TIME_FUNCS 20

28 #define MAX_SCHED_DESC_FUNCS FD_SETSIZE

29
30 /**

31 * *

32 * P R I V A T E D A T A *

33 * *

34 **/

35
36 typedef struct _SchedTimeItem {

37 SchedId id;

38 SchedTimeFunc func;

39 void *clientData;

40 struct timeval when;

41 struct _SchedTimeItem *next;

42 } SchedTimeItem;

43
44 typedef struct _SchedDescItem {

45 SchedId id;

46 SchedDescFunc func;

47 void *clientData;

48 int fd;

49 SchedDescAction action;

50 struct _SchedDescItem *next;

51 } SchedDescItem;

52
53 static SchedTimeItem schedTimePool[MAX_SCHED_TIME_FUNCS];

54 static SchedTimeItem *schedTimeFree;

55 static SchedTimeItem *schedTimeNext;

56
57 static SchedDescItem schedDescReadPool[MAX_SCHED_DESC_FUNCS];

58 static SchedDescItem *schedDescReadFree;

— 95 —

Video on the World Wide Web

59 static SchedDescItem *schedDescReadNext;

60 static SchedDescItem schedDescWritePool[MAX_SCHED_DESC_FUNCS];

61 static SchedDescItem *schedDescWriteFree;

62 static SchedDescItem *schedDescWriteNext;

63 static SchedDescItem schedDescExceptPool[MAX_SCHED_DESC_FUNCS];

64 static SchedDescItem *schedDescExceptFree;

65 static SchedDescItem *schedDescExceptNext;

66 static fd_set schedDescReadSet;

67 static fd_set schedDescWriteSet;

68 static fd_set schedDescExceptSet;

69
70 static SchedId schedLastId;

71
72 static int schedKeepLooping;

73
74
75
76 /**

77 * *

78 * P U B L I C F U N C T I O N S *

79 * *

80 **/

81
82 SchedId

83 schedAddTimeAt(struct timeval *when, SchedTimeFunc func, void *clientData)

84 {

85 register SchedTimeItem *ti, *ti2;

86
87 if ((ti = schedTimeFree) == NULL)

88 msgFatal("too many functions scheduled for later calls\n");

89 schedTimeFree = ti->next;

90 ti->id = ++schedLastId;

91 ti->func = func;

92 ti->clientData = clientData;

93 ti->when = *when;

94 /* insert at correct location. assumes that tv_usec < 1 second */

95 if ((ti2 = schedTimeNext) == NULL

96 || ti2->when.tv_sec > ti->when.tv_sec

97 || (ti2->when.tv_sec == ti->when.tv_sec

98 && ti2->when.tv_usec > ti->when.tv_usec)) {

99 ti->next = schedTimeNext;

100 schedTimeNext = ti;

101 } else {

102 while (ti2->next) {

103 if (ti2->next->when.tv_sec > ti->when.tv_sec

104 || (ti2->next->when.tv_sec == ti->when.tv_sec

105 && ti2->next->when.tv_usec > ti->when.tv_usec))

106 break;

107 ti2 = ti2->next;

108 }

109 ti->next = ti2->next;

110 ti2->next = ti;

111 }

112 return ti->id;

113 }

114
115 SchedId

116 schedAddTime(SchedTime delay, SchedTimeFunc func, void *clientData)

117 {

118 struct timeval when;

— 96 —

Appendix C: SHHVid Grabber Source Code

119
120 /* calculate the time to call this function */

121 gettimeofday(&when, NULL);

122 when.tv_sec += delay / 1000L;

123 when.tv_usec += ((delay % 1000L) * 1000L);

124 if (when.tv_usec >= 1000000L) {

125 when.tv_usec -= 1000000L;

126 ++when.tv_sec;

127 }

128 return schedAddTimeAt(&when, func, clientData);

129 }

130
131 void

132 schedRemoveTime(SchedId id)

133 {

134 SchedTimeItem *ti, **prev;

135
136 if ((ti = schedTimeNext) == NULL)

137 return;

138 prev = &schedTimeNext;

139 do {

140 if (ti->id == id) {

141 *prev = ti->next;

142 ti->next = schedTimeFree;

143 schedTimeFree = ti;

144 break;

145 }

146 prev = &ti->next;

147 } while ((ti = ti->next) != NULL);

148 }

149
150 void

151 schedRemoveTimeAll(void)

152 {

153 int q;

154
155 schedTimeNext = NULL;

156 schedTimeFree = &schedTimePool[0];

157 for (q = 0; q < MAX_SCHED_TIME_FUNCS - 1; q++)

158 schedTimePool[q].next = &schedTimePool[q + 1];

159 schedTimePool[q].next = NULL;

160 }

161
162 SchedId

163 schedAddDesc(SchedDescAction action, int fd,

164 SchedDescFunc func, void *clientData)

165 {

166 SchedDescItem *di = NULL, **nextp = NULL, **freep = NULL;

167 fd_set *fds = NULL;

168
169 switch (action) {

170 case SCHED_READ_READY:

171 fds = &schedDescReadSet;

172 freep = &schedDescReadFree;

173 nextp = &schedDescReadNext;

174 break;

175 case SCHED_WRITE_READY:

176 fds = &schedDescWriteSet;

177 freep = &schedDescWriteFree;

178 nextp = &schedDescWriteNext;

— 97 —

Video on the World Wide Web

179 break;

180 case SCHED_EXCEPTION_READY:

181 fds = &schedDescExceptSet;

182 freep = &schedDescExceptFree;

183 nextp = &schedDescExceptNext;

184 break;

185 default:

186 msgFatal("illegal action in schedAddDesc\n");

187 }

188 if ((di = *freep) == NULL)

189 msgFatal("too many descriptor functions scheduled\n");

190 *freep = di->next;

191 di->id = ++schedLastId;

192 di->func = func;

193 di->clientData = clientData;

194 di->fd = fd;

195 di->action = action;

196 di->next = *nextp;

197 *nextp = di;

198 FD_SET(fd, fds);

199 return di->id;

200 }

201
202 void

203 schedRemoveDesc(SchedId id)

204 {

205 int q;

206 SchedDescItem *di = NULL, **prev = NULL, **freep = NULL;

207 fd_set *fds = NULL;

208
209 for (q = 0; q < 3; q++) {

210 switch (q) {

211 case 0:

212 di = schedDescReadNext;

213 prev = &schedDescReadNext;

214 freep = &schedDescReadFree;

215 fds = &schedDescReadSet;

216 break;

217 case 1:

218 di = schedDescWriteNext;

219 prev = &schedDescWriteNext;

220 freep = &schedDescWriteFree;

221 fds = &schedDescWriteSet;

222 break;

223 case 2:

224 di = schedDescExceptNext;

225 prev = &schedDescExceptNext;

226 freep = &schedDescExceptFree;

227 fds = &schedDescExceptSet;

228 break;

229 }

230 if (di == NULL)

231 continue;

232 do {

233 if (di->id == id) {

234 FD_CLR(di->fd, fds);

235 *prev = di->next;

236 di->next = *freep;

237 *freep = di;

238 goto finish;

— 98 —

Appendix C: SHHVid Grabber Source Code

239 }

240 prev = &di->next;

241 } while ((di = di->next) != NULL);

242 }

243 finish:

244 }

245
246 void

247 schedRemoveDescAll(void)

248 {

249 int q;

250
251 schedDescReadNext = NULL;

252 schedDescReadFree = &schedDescReadPool[0];

253 for (q = 0; q < MAX_SCHED_DESC_FUNCS - 1; q++)

254 schedDescReadPool[q].next = &schedDescReadPool[q + 1];

255 schedDescReadPool[q].next = NULL;

256 FD_ZERO(&schedDescReadSet);

257
258 schedDescWriteNext = NULL;

259 schedDescWriteFree = &schedDescWritePool[0];

260 for (q = 0; q < MAX_SCHED_DESC_FUNCS - 1; q++)

261 schedDescWritePool[q].next = &schedDescWritePool[q + 1];

262 schedDescWritePool[q].next = NULL;

263 FD_ZERO(&schedDescWriteSet);

264
265 schedDescExceptNext = NULL;

266 schedDescExceptFree = &schedDescExceptPool[0];

267 for (q = 0; q < MAX_SCHED_DESC_FUNCS - 1; q++)

268 schedDescExceptPool[q].next = &schedDescExceptPool[q + 1];

269 schedDescExceptPool[q].next = NULL;

270 FD_ZERO(&schedDescExceptSet);

271 }

272
273 void

274 schedInit(void)

275 {

276 schedRemoveTimeAll();

277 schedRemoveDescAll();

278 schedLastId = 0;

279 }

280
281 void

282 schedFinish(void)

283 {

284 }

285
286 void

287 schedEndLoop(void)

288 {

289 schedKeepLooping = 0;

290 }

291
292 /*---

293 *

294 * NAME schedLoop

295 *

296 * FUNCTION The main loop of the scheduler.

297 *

298 * SYNOPSIS #include "shhsched.h"

— 99 —

Video on the World Wide Web

299 * void (void);

300 *

301 * INPUT

302 *

303 * OUTPUT

304 *

305 * RETURNS

306 *

307 * DESCRIPTION

308 */

309 void

310 schedLoop(void)

311 {

312 int ret;

313 /* the reason for using 0,1 instead of 0,0 for timeoutnow, is that

314 * SGI select didn’t return > 0 for 0,0. */

315 struct timeval now, timeout, *tvp, timeoutnow = { 0, 0 };

316 fd_set fdsr, fdsw, fdse;

317 SchedTimeItem *ti;

318 SchedDescItem *di;

319
320 schedKeepLooping = 1;

321 while (schedKeepLooping) {

322 /* need a loop to restart the select if interrupted by a signal. */

323 do {

324 /* find next time function to call. */

325 if ((ti = schedTimeNext) == NULL)

326 tvp = NULL; /* no function registered, sleep ‘forever’ */

327 else {

328 gettimeofday(&now, NULL);

329 /* calculate timeout value */

330 timeout.tv_sec = ti->when.tv_sec - now.tv_sec;

331 if ((timeout.tv_usec = ti->when.tv_usec - now.tv_usec) < 0L) {

332 timeout.tv_usec += 1000000L;

333 --timeout.tv_sec;

334 }

335 /* check if already expired */

336 if (timeout.tv_sec < 0 || timeout.tv_usec < 0)

337 tvp = &timeoutnow;

338 else

339 tvp = &timeout;

340 }

341 fdsr = schedDescReadSet;

342 fdsw = schedDescWriteSet;

343 fdse = schedDescExceptSet;

344 ret = select(FD_SETSIZE, &fdsr, &fdsw, &fdse, tvp);

345 if (ret == 0) {

346 /* timeout */

347 /* call function */

348 ti->func(ti->clientData);

349 /* remove function from list */

350 schedTimeNext = ti->next;

351 ti->next = schedTimeFree;

352 schedTimeFree = ti;

353 } else if (ret > 0) {

354 /* some descriptor ready */

355 /* first check the read set */

356 di = schedDescReadNext;

357 while (di) {

358 if (FD_ISSET(di->fd, &fdsr)) {

— 100 —

Appendix C: SHHVid Grabber Source Code

359 di->func(di->clientData, di->fd);

360 if (--ret == 0)

361 goto all_called;

362 }

363 di = di->next;

364 }

365 /* then check the write set */

366 di = schedDescWriteNext;

367 while (di) {

368 if (FD_ISSET(di->fd, &fdsw)) {

369 di->func(di->clientData, di->fd);

370 if (--ret == 0)

371 goto all_called;

372 }

373 di = di->next;

374 }

375 /* and finally check the exception set */

376 di = schedDescExceptNext;

377 while (di) {

378 if (FD_ISSET(di->fd, &fdse)) {

379 di->func(di->clientData, di->fd);

380 if (--ret == 0)

381 goto all_called;

382 }

383 di = di->next;

384 }

385 all_called:

386 }

387 } while (ret < 0 && errno == EINTR);

388 }

389 }

— 101 —

Video on the World Wide Web

— 102 —

Appendix D: SHHVid Proxy Source Code

Appendix D

SHHVid Proxy Source Code

This appendix contains the source code to the video proxy used in conjunction with
the Java video applet described in chapter 6. Note that the program uses general
purpose libraries developed by the author of this report. The source code to these
libraries are not included. All source code may be found at
http://www.ifi.uio.no/~ftp/publications/cand-scient-theses/SHuseby/src/

The following files are listed.

• Makefile

• network.h and vidproxy.c

• netcamera.h and netcamera.c

• netviewer.h and netviewer.c

• shhsched.h and shhsched.c

Makefile

1 # Id

2 PROG = vidproxy

3 DIST = $(PROG)

4 VERMAJ = 0

5 VERMIN = 1

6 VERPAT = 0

7 VERSION = $(VERMAJ).$(VERMIN).$(VERPAT)

8 COMPILED_DATE = ‘date ’+%Y-%m-%d %H:%M:%S’‘

9 COMPILED_BY = ‘whoami‘

10
11 ###

12
13 # where are shhmsg and shhopt?

14 INCDIR = -I/hom/sverrehu/c/net/shhnet \

15 -I/usr/local/include -I$$HOME/include

16
17 LIBDIR = -L/hom/sverrehu/c/net/shhnet \

18 -L/usr/local/lib -L$$HOME/lib/$$HOSTTYPE

19
20
21 INSTBASEDIR = /usr/local

22 INSTBINDIR = $(INSTBASEDIR)/bin

— 103 —

Video on the World Wide Web

23 INSTMANDIR = $(INSTBASEDIR)/man/man1

24 INSTALL = install -m 644

25 INSTALLPROG = install -s -m 755

26 MKDIRP = install -d -m 755

27
28 DEFINES = -DVERSION=\"$(VERSION)\" \

29 "-DCOMPILED_DATE=\"$(COMPILED_DATE)\"" \

30 "-DCOMPILED_BY=\"$(COMPILED_BY)\""

31
32 ###

33
34 CC = gcc

35
36 OPTIM = -O2

37 CCOPT = -s -Wall $(OPTIM) $(INCDIR) $(DEFINES) $(CFLAGS)

38 LDOPT = -s $(LIBDIR) $(LDFLAGS)

39
40 LIBS = -lshhmsg -lshhopt -lshhnet

41 OBJS = netcamera.o netviewer.o shhsched.o vidproxy.o

42
43 ###

44
45 all: $(PROG)

46
47 $(PROG): $(OBJS)

48
49 .o: $(OBJS)

50 $(CC) $(CCOPT) -o $@ $(OBJS) $(LDOPT) $(LIBS)

51
52 .c.o:

53 $(CC) -o $@ -c $(CCOPT) $<

54
55 clean:

56 rm -f *.o core depend *~

57
58 install: $(PROG)

59 $(MKDIRP) $(INSTBINDIR) $(INSTMANDIR)

60 $(INSTALLPROG) $(PROG) $(INSTBINDIR)

61 $(INSTALL) $(PROG).1 $(INSTMANDIR)

62
63 depend dep:

64 $(CC) $(INCDIR) -MM *.c >depend

65
66 ###

67
68 # To let the author make a distribution. The rest of the Makefile

69 # should be used by the author only.

70 DISTDIR = $(DIST)-$(VERSION)

71 DISTFILE = $(DIST)-$(VERSION).tar.gz

72 DISTFILES = Makefile \

73 netcamera.c netviewer.c shhsched.c vidproxy.c \

74 netcamera.h netviewer.h network.h shhsched.h

75
76 chmod:

77 chmod -R a+rX *

78
79 veryclean: clean

80 rm -f $(PROG) $(DIST)-$(VERSION).tar.gz gmon.out

81
82 dist: chmod

— 104 —

Appendix D: SHHVid Proxy Source Code

83 mkdir $(DISTDIR)

84 chmod a+rx $(DISTDIR)

85 for q in $(DISTFILES); do \

86 if test -r $$q; then \

87 ln -s ../$$q $(DISTDIR); \

88 else echo "warning: no file $$q"; fi; \

89 done

90 tar -cvhzf $(DISTFILE) $(DISTDIR)

91 chmod a+r $(DISTFILE)

92 rm -rf $(DISTDIR)

93
94 ifeq (depend,$(wildcard depend))

95 include depend

96 endif

— 105 —

Video on the World Wide Web

network.h

1 /* Id */

2 #ifndef NETWORK_H

3 #define NETWORK_H

4
5 #define DEFAULT_VIEWER_PORT 8193

6 #define DEFAULT_CAMERA_PORT 8194

7
8 #define MAX_PACKET 1400

9
10 #endif

vidproxy.c

1 /* Id */

2 /**

3 *

4 * FILE vidproxy.c

5 * MODULE OF vidproxy

6 *

7 * DESCRIPTION

8 *

9 * WRITTEN BY Sverre H. Huseby <sverrehu@ifi.uio.no>

10 *

11 **/

12
13 #include <stdlib.h>

14 #include <stdio.h>

15
16 #include <shhmsg.h>

17 #include <shhopt.h>

18 #include <shhnet.h>

19
20 #include "shhsched.h"

21 #include "netcamera.h"

22 #include "netviewer.h"

23
24 /**

25 * *

26 * P R I V A T E D A T A *

27 * *

28 **/

29
30
31
32 /**

33 * *

34 * P R I V A T E F U N C T I O N S *

35 * *

36 **/

37
38 static void

39 version(void)

40 {

41 printf(

42 "%s " VERSION ", by Sverre H. Huseby "

43 "(compiled " COMPILED_DATE " by " COMPILED_BY ")\n",

44 msgGetName()

— 106 —

Appendix D: SHHVid Proxy Source Code

45);

46 exit(0);

47 }

48
49 static void

50 usage(void)

51 {

52 printf(

53 "usage: %s [options]\n"

54 "\n"

55 " -h, --help display this help and exit\n"

56 " -c, --camera-port=PORT set the port number for camera daemon\n"

57 " -p, --port=PORT set the port number for remote viewers\n"

58 " -V, --version output version information and exit\n"

59 "\n",

60 msgGetName()

61);

62 exit(0);

63 }

64
65
66
67 /**

68 * *

69 * P U B L I C F U N C T I O N S *

70 * *

71 **/

72
73 int

74 main(int argc, char *argv[])

75 {

76 optStruct opt[] = {

77 /* short long type var/func special */

78 { ’h’, "help", OPT_FLAG, usage, OPT_CALLFUNC },

79 { ’c’, "camera-port", OPT_STRING, netcSetLocalPort, OPT_CALLFUNC },

80 { ’p’, "port", OPT_STRING, netvSetLocalPort, OPT_CALLFUNC },

81 { ’V’, "version", OPT_FLAG, version, OPT_CALLFUNC },

82 { 0, 0, OPT_END, 0, 0 } /* no more options */

83 };

84
85 msgSetName(argv[0]);

86 snSetErrorHandling(SN_REPORT_ERROR_AND_EXIT, msgFatal);

87
88 optParseOptions(&argc, argv, opt, 0);

89
90 schedInit();

91 netcInit();

92 netvInit();

93
94 schedLoop();

95
96 netvFinish();

97 netcFinish();

98 schedFinish();

99 return 0;

100 }

— 107 —

Video on the World Wide Web

netcamera.h

1 /* Id */

2 #ifndef NETCAMERA_H

3 #define NETCAMERA_H

4
5 #include "network.h"

6
7 /* packet types */

8 enum {

9 /* tcp server */

10 PACK_HAVE_FEED = 30, /* already have video feed */

11 PACK_WELCOME_PORT, /* call accepted, port number included */

12 PACK_START_GRAB, /* start grabbing and sending frames */

13 PACK_STOP_GRAB, /* stop grabbing and sending frames */

14 /* tcp client */

15 PACK_QUIT = 40, /* end of call */

16 };

17
18
19 void netcSetLocalPort(const char *port);

20
21 void netcInit(void);

22 void netcFinish(void);

23
24 void netcStartGrab(void);

25 void netcStopGrab(void);

26 int netcCameraAvailable(void);

27
28 #endif

netcamera.c

1 /* Id */

2 /**

3 *

4 * FILE netcamera.c

5 * MODULE OF vidproxy

6 *

7 * DESCRIPTION Communication with camera server (c-grabber).

8 *

9 * WRITTEN BY Sverre H. Huseby <sverrehu@ifi.uio.no>

10 *

11 **/

12
13 #include <stdlib.h>

14 #include <stdio.h>

15 #include <string.h>

16 #include <unistd.h>

17
18 #include <shhmsg.h>

19 #include <shhnet.h>

20
21 #include "shhsched.h"

22 #include "netviewer.h"

23 #include "netcamera.h"

24
25 /**

26 * *

— 108 —

Appendix D: SHHVid Proxy Source Code

27 * P R I V A T E D A T A *

28 * *

29 **/

30
31 static unsigned char netcInPacket[MAX_PACKET];

32
33 static char netcLocalTcpPort[81] = "";

34 static int netcLocalTcpInitial = -1;

35 static int netcLocalTcp = -1;

36 static int netcLocalUdp = -1;

37
38 static SchedId netcAcceptReadyId;

39 static SchedId netcTcpReadyId;

40 static SchedId netcUdpReadyId;

41
42
43
44 /**

45 * *

46 * P R I V A T E F U N C T I O N S *

47 * *

48 **/

49
50 static void

51 netcCloseConnection(void)

52 {

53 if (netcLocalTcp >= 0) {

54 schedRemoveDesc(netcTcpReadyId);

55 netcTcpReadyId = 0;

56 tcpClose(netcLocalTcp);

57 netcLocalTcp = -1;

58 }

59 if (netcLocalUdp >= 0) {

60 schedRemoveDesc(netcUdpReadyId);

61 netcUdpReadyId = 0;

62 udpClose(netcLocalUdp);

63 netcLocalUdp = -1;

64 }

65 }

66
67 static void

68 netcUdpInput(void *clientData, int fd)

69 {

70 int n;

71
72 udpRead(fd, netcInPacket, sizeof(netcInPacket), &n);

73 netvSendPacket(netcInPacket, n);

74 }

75
76 static void

77 netcTcpInput(void *clientData, int fd)

78 {

79 unsigned char buff[128];

80 int n, type;

81
82 if (tcpRead(fd, buff, sizeof(buff), &n) != SN_OK || n == 0) {

83 msgError("got error or empty packet, assuming broken connection\n");

84 netcCloseConnection();

85 return;

86 }

— 109 —

Video on the World Wide Web

87 type = buff[0];

88 switch (type) {

89 case PACK_QUIT:

90 msgMessage("shutting down connection on request\n");

91 netcCloseConnection();

92 break;

93 default:

94 msgError("unknown packet received (%u)\n", (unsigned) type);

95 }

96 }

97
98 static void

99 netcAcceptConnection(void *clientData, int fd)

100 {

101 int sock;

102 unsigned char buff[3];

103 char name[100];

104 SNAddr addr;

105 SNPort port;

106
107 tcpAccept(fd, &sock);

108 tcpLinger(sock, 1);

109 if (netcLocalTcp >= 0) {

110 buff[0] = PACK_HAVE_FEED;

111 tcpWriteAll(sock, buff, 1);

112 tcpClose(sock);

113 } else {

114 inGetPeerAddrPort(sock, &addr, &port);

115 inHostAddrToName(addr, name, sizeof(name));

116 msgMessage("camera daemon connected from %s\n", name);

117 netcLocalTcp = sock;

118 netcTcpReadyId

119 = schedAddDesc(SCHED_READ_READY, sock, netcTcpInput, NULL);

120 udpClientSock(&netcLocalUdp);

121 netcUdpReadyId

122 = schedAddDesc(SCHED_READ_READY, netcLocalUdp, netcUdpInput, NULL);

123 inGetSockAddrPort(netcLocalUdp, &addr, &port);

124 buff[0] = PACK_WELCOME_PORT;

125 buff[1] = (port >> 8) & 0xFF;

126 buff[2] = port & 0xFF;

127 tcpWriteAll(sock, buff, 3);

128 if (netvGetNumConnections() > 0)

129 netcStartGrab();

130 }

131 }

132
133
134
135 /**

136 * *

137 * P U B L I C F U N C T I O N S *

138 * *

139 **/

140
141 void

142 netcSetLocalPort(const char *port)

143 {

144 strcpy(netcLocalTcpPort, port);

145 }

146

— 110 —

Appendix D: SHHVid Proxy Source Code

147 void

148 netcInit(void)

149 {

150 if (*netcLocalTcpPort == ’\0’)

151 sprintf(netcLocalTcpPort, "%d", DEFAULT_CAMERA_PORT);

152
153 msgMessage("setting up tcp-server for camera daemon at port %s\n",

154 netcLocalTcpPort);

155 tcpServerOpen(netcLocalTcpPort, &netcLocalTcpInitial);

156 netcAcceptReadyId

157 = schedAddDesc(SCHED_READ_READY, netcLocalTcpInitial,

158 netcAcceptConnection, NULL);

159 snSetErrorHandling(SN_REPORT_ERROR_AND_RETURN, NULL);

160 }

161
162 void

163 netcFinish(void)

164 {

165 /* TODO: netcStopGrab(); */

166 netcCloseConnection();

167 if (netcLocalTcpInitial >= 0) {

168 schedRemoveDesc(netcAcceptReadyId);

169 tcpClose(netcLocalTcpInitial);

170 netcLocalTcpInitial = -1;

171 }

172 }

173
174 void

175 netcStartGrab(void)

176 {

177 unsigned char buff[1];

178
179 if (netcLocalTcp < 0)

180 return;

181 msgMessage("telling grabber to start grabbing\n");

182 buff[0] = PACK_START_GRAB;

183 tcpWriteAll(netcLocalTcp, buff, 1);

184 }

185
186 void

187 netcStopGrab(void)

188 {

189 unsigned char buff[1];

190
191 if (netcLocalTcp < 0)

192 return;

193 msgMessage("telling grabber to stop grabbing\n");

194 buff[0] = PACK_STOP_GRAB;

195 tcpWriteAll(netcLocalTcp, buff, 1);

196 }

197
198 int

199 netcCameraAvailable(void)

200 {

201 return (netcLocalTcp >= 0);

202 }

— 111 —

Video on the World Wide Web

netviewer.h

1 /* Id */

2 #ifndef NETVIEWER_H

3 #define NETVIEWER_H

4
5 #include "network.h"

6
7 /* packet types */

8 enum {

9 /* tcp server */

10 PACK_NO_CAM = 0, /* no camera available */

11 PACK_BUSY, /* unable to serve you */

12 PACK_SEND_PORT, /* send UDP port number */

13 PACK_WELCOME, /* call accepted */

14 PACK_GO_AWAY, /* call not accepted */

15 /* tcp client */

16 PACK_PORT = 10,

17 PACK_HANGUP, /* end of call */

18 };

19 enum {

20 /* udp */

21 PACK_BLOCK = 20, /* a block of an image */

22 };

23
24
25 void netvSetLocalPort(const char *port);

26
27 void netvInit(void);

28 void netvFinish(void);

29
30 void netvSendPacket(const unsigned char *packet, int len);

31 int netvGetNumConnections(void);

32
33 #endif

netviewer.c

1 /* Id */

2 /**

3 *

4 * FILE netviewer.c

5 * MODULE OF vidproxy

6 *

7 * DESCRIPTION Communication with viewer clients (c-client and

8 * SHHVid.java)

9 *

10 * WRITTEN BY Sverre H. Huseby <sverrehu@ifi.uio.no>

11 *

12 **/

13
14 #include <stdlib.h>

15 #include <stdio.h>

16 #include <string.h>

17 #include <unistd.h>

18
19 #include <shhmsg.h>

20 #include <shhnet.h>

21

— 112 —

Appendix D: SHHVid Proxy Source Code

22 #include "shhsched.h"

23 #include "netcamera.h"

24 #include "netviewer.h"

25
26 #undef COUNT_PACKETS

27
28 /**

29 * *

30 * P R I V A T E D A T A *

31 * *

32 **/

33
34 #define MAX_CONNECTIONS 50

35
36 typedef struct {

37 int tcpSock;

38 SchedId tcpSchedId;

39 int udpSock;

40 SNAddr udpAddr;

41 SNPort udpPort;

42 #ifdef COUNT_PACKETS

43 unsigned long packetsSent;

44 #endif

45 } Connection;

46
47 static Connection conn[MAX_CONNECTIONS];

48 static int numConn = 0;

49
50 static char netvLocalTcpPort[81] = "";

51 static int netvLocalTcpInitial = -1;

52
53 static SchedId netvAcceptReadyId;

54
55
56
57 /**

58 * *

59 * P R I V A T E F U N C T I O N S *

60 * *

61 **/

62
63 static void netvTcpInput(void *clientData, int fd);

64
65 static int

66 netvAddConnection(int tcpSock, int udpSock)

67 {

68 Connection *c;

69
70 if (numConn == MAX_CONNECTIONS) {

71 msgError("out of space for more connections\n");

72 return -1;

73 }

74 c = &conn[numConn];

75 #ifdef COUNT_PACKETS

76 c->packetsSent = 0;

77 #endif

78 c->tcpSock = tcpSock;

79 c->udpSock = udpSock;

80 c->tcpSchedId

81 = schedAddDesc(SCHED_READ_READY, tcpSock, netvTcpInput, NULL);

— 113 —

Video on the World Wide Web

82 if (++numConn == 1) {

83 msgMessage("first connection, setting up grabber\n");

84 netcStartGrab();

85 }

86 return numConn - 1;

87 }

88
89 static void

90 netvRemoveConnection(int tcpSock)

91 {

92 int q;

93 Connection *c;

94
95 for (q = 0; q < numConn; q++)

96 if (conn[q].tcpSock == tcpSock)

97 break;

98 if (q == numConn)

99 return;

100 c = &conn[q];

101 schedRemoveDesc(c->tcpSchedId);

102 if (c->tcpSock >= 0)

103 tcpClose(c->tcpSock);

104 if (c->udpSock >= 0)

105 udpClose(c->udpSock);

106 memcpy(c, &conn[numConn - 1], sizeof(Connection));

107 if (--numConn == 0) {

108 msgMessage("no connections left, stopping grabber\n");

109 netcStopGrab();

110 }

111 }

112
113 static int

114 netvFindConnection(int tcpSock)

115 {

116 int q;

117
118 for (q = 0; q < numConn; q++)

119 if (conn[q].tcpSock == tcpSock)

120 return q;

121 return -1;

122 }

123
124 static void

125 netvTcpInput(void *clientData, int fd)

126 {

127 unsigned char buff[128];

128 char name[100];

129 int n, type, idx;

130 SNPort port;

131
132 if (tcpRead(fd, buff, sizeof(buff), &n) != SN_OK || n == 0) {

133 msgError("got error or empty packet, assuming broken connection\n");

134 netvRemoveConnection(fd);

135 return;

136 }

137 idx = netvFindConnection(fd);

138 type = buff[0];

139 switch (type) {

140 case PACK_PORT:

141 inGetPeerStr(fd, name, sizeof(name), 1);

— 114 —

Appendix D: SHHVid Proxy Source Code

142 port = ((int) buff[1] << 8) | buff[2];

143 conn[idx].udpPort = port;

144 udpClientSock(&(conn[idx].udpSock));

145 msgMessage("incoming call from %s using UDP port %u\n",

146 name, (unsigned) port);

147 buff[0] = PACK_WELCOME;

148 tcpWriteAll(fd, buff, 1);

149 break;

150 case PACK_HANGUP:

151 msgMessage("shutting down connection on request\n");

152 netvRemoveConnection(fd);

153 break;

154 default:

155 msgError("unknown packet received (%u)\n", (unsigned) type);

156 }

157 }

158
159 static void

160 netvAcceptConnection(void *clientData, int fd)

161 {

162 int sock, idx;

163 unsigned char buff[1];

164 SNAddr addr;

165 SNPort port;

166
167 tcpAccept(fd, &sock);

168 tcpLinger(sock, 1);

169 inGetPeerAddrPort(sock, &addr, &port);

170 if (!netcCameraAvailable()) {

171 buff[0] = PACK_NO_CAM;

172 tcpWriteAll(sock, buff, 1);

173 } else if ((idx = netvAddConnection(sock, -1)) < 0) {

174 buff[0] = PACK_BUSY;

175 tcpWriteAll(sock, buff, 1);

176 } else {

177 conn[idx].udpAddr = addr;

178 conn[idx].tcpSchedId

179 = schedAddDesc(SCHED_READ_READY, sock, netvTcpInput, NULL);

180 buff[0] = PACK_SEND_PORT;

181 tcpWriteAll(sock, buff, 1);

182 }

183 }

184
185
186
187 /**

188 * *

189 * P U B L I C F U N C T I O N S *

190 * *

191 **/

192
193 void

194 netvSetLocalPort(const char *port)

195 {

196 strcpy(netvLocalTcpPort, port);

197 }

198
199 void

200 netvInit(void)

201 {

— 115 —

Video on the World Wide Web

202 if (*netvLocalTcpPort == ’\0’)

203 sprintf(netvLocalTcpPort, "%d", DEFAULT_VIEWER_PORT);

204
205 msgMessage("setting up tcp-server for viewers at port %s\n",

206 netvLocalTcpPort);

207 tcpServerOpen(netvLocalTcpPort, &netvLocalTcpInitial);

208 netvAcceptReadyId

209 = schedAddDesc(SCHED_READ_READY, netvLocalTcpInitial,

210 netvAcceptConnection, NULL);

211 snSetErrorHandling(SN_REPORT_ERROR_AND_RETURN, NULL);

212 }

213
214 void

215 netvFinish(void)

216 {

217 int q;

218
219 for (q = 0; q < numConn; q++) {

220 if (conn[q].tcpSock >= 0)

221 tcpClose(conn[q].tcpSock);

222 if (conn[q].udpSock >= 0)

223 tcpClose(conn[q].tcpSock);

224 schedRemoveDesc(conn[q].tcpSchedId);

225 }

226 numConn = 0;

227 if (netvLocalTcpInitial >= 0) {

228 tcpClose(netvLocalTcpInitial);

229 netvLocalTcpInitial = -1;

230 schedRemoveDesc(netvAcceptReadyId);

231 }

232 }

233
234 void

235 netvSendPacket(const unsigned char *packet, int len)

236 {

237 int q, n;

238 Connection *c;

239 #ifdef COUNT_PACKETS

240 static int delay = 0;

241 char name[81];

242 #endif

243
244 if (!len)

245 return;

246 for (q = 0; q < numConn; q++) {

247 c = &conn[q];

248 if (c->udpSock >= 0) {

249 udpWriteTo(c->udpSock, packet, len, c->udpAddr, c->udpPort, &n);

250 if (n < len)

251 msgError("partial packet sent\n");

252 }

253 #ifdef COUNT_PACKETS

254 ++(c->packetsSent);

255 #endif

256 }

257 #ifdef COUNT_PACKETS

258 if (++delay == 100) {

259 delay = 0;

260 for (q = 0; q < numConn; q++) {

261 c = &conn[q];

— 116 —

Appendix D: SHHVid Proxy Source Code

262 inHostAddrToName(c->udpAddr, name, sizeof(name));

263 printf("sent %ld packets to %s\n", c->packetsSent, name);

264 }

265 }

266 #endif

267 }

268
269 int

270 netvGetNumConnections(void)

271 {

272 return numConn;

273 }

— 117 —

Video on the World Wide Web

shhsched.h

Identical to the file used in the grabber. Please refer to page 94 for full listing.

shhsched.c

Identical to the file used in the grabber. Please refer to page 95 for full listing.

— 118 —

Appendix E: Recoding MPEG to JPEG and GIF

Appendix E

Recoding MPEG to JPEG and
GIF

This appendix explains the method used for converting MPEG streams to GIF and
JPEG files in chapter 2.5 on page 14. After shortly describing the tools used, figure E.1
presents the script used to do the actual conversion.

The MPEG streams were decoded using Andy Hung’s MPEG codec1, which translates
from a single MPEG file, to three files for each frame of the movie. The three files,
given extensions .Y, .U and .V, contains the three components from the YUV (or
actually YCbCr) color space of the frame in question.

PPM (Portable PixMap file format) was chosen as an intermediate format during
conversion, since fully command line driven support programs are available, simpli-
fying conversion of a large number of files. A large collection of support programs,
known as netpbm2, provides conversion between many popular image file formats, in
addition to elementary image processing.

Matching YUV-files were combined into a single PPM-file using cyuv2ppm3, also
written by Andy Hung.

Conversion from PPM to JPEG was done with Independent JPEG Group’s program
cjpeg, found in the package jpegsrc.v6a.tar.gz4.

GIF-conversion was performed in two steps. The first step quantized the image to
256 colors, the maximum number of colors in a GIF image. Quantization was done
using ppmquant. The second step converted the quantized PPM image to GIF using
ppmtogif. Both programs can be found in the above mentioned netpbm package.

The shell script in the following figure, decodes a single MPEG file, given it’s name
and horizontal and vertical frame sizes. After decoding to a number of YUV-files, the
conversion to JPEG and GIF is done, followed by removal of all intermediate files.
Note that cjpeg defaults to a quality of 75. The quality settings range from 0 (worst)

1ftp://havefun.stanford.edu/pub/mpeg/MPEGv1.2.2.tar.Z
2ftp://wuarchive.wustl.edu/graphics/graphics/packages/NetPBM/
3ftp://havefun.stanford.edu/pub/cv/VCv1.2.2.tar.Z
4ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6a.tar.gz

— 119 —

Video on the World Wide Web

to 100 (best), and the number given is used to scale the quantization tables.

#!/bin/sh

NAME=bart-temple

WIDTH=192

HEIGHT=144

NAME=bjork

WIDTH=160

HEIGHT=120

NAME=enterprise

WIDTH=176

HEIGHT=144

mkdir -p decode/$NAME

cd decode/$NAME

mpeg -d -s ../../$NAME.mpg $NAME.

for file in *.Y

do

base=‘basename $file .Y‘

cyuv2ppm $base $base.ppm -iw $WIDTH -ih $HEIGHT

cjpeg $base.ppm > $base.jpg

ppmquant 256 $base.ppm | ppmtogif > $base.gif

rm $base.[YUV] $base.ppm

done

Figure E.1: Shell-script used to recode the MPEG files to JPEG and GIF.

— 120 —

Appendix F: Internet Links

Appendix F

Internet Links

This appendix provides links to relevant information found on the World Wide Web.
Note that more links may be found in the bibliography starting at page 125.

Video Applications for WWW

This section contains links to existing programs for inlining video in Web browsers.
The following Video on Demand -like programs are available for playback of movie
files:

• “Action”
http://open2u.com/action/action.html
An MPEG video and sound player plug-in for Windows95.

• “Apple QuickTime Plug-In”
http://quicktime.apple.com/
Plug-in playing QuickTime movies on Macintosh and Windows.

• “InterVU”
http://www.intervu.com/player/aboutpre.html
MPEG-playing plug-in for Windows95 and Macintosh.

• “Plug-in Plaza, Multimedia”
http://browserwatch.iworld.com/plug-in-mm.html
Lists lots of known plug-ins for multimedia applications.

MBone

The following links provide information on MBone, the multicasting backbone.

• “Index to MBone information”
http://www.mang.canterbury.ac.nz/˜busa057/mbone/
Pointers to MBone information in general, and precompiled programs in par-
ticular.

• “The MBone FAQ”
http://www.best.com/˜prince/techinfo/mbone.faq.html
Contains a Frequently Asked Questions -list for the MBone.

— 121 —

Video on the World Wide Web

• “The MBone Information Web”
http://www.best.com/˜prince/techinfo/mbone.html
Contains pointers and information.

Video Compression

Pointers to resources describing various video compression standards and applications.

• “The MPEG Meta-guide”
http://www.mpeg.org/
“Is the most complete, comprehensive and up-to-date index of MPEG resources
on the Web.”

• “MPEG Archive”
http://www.powerweb.de/mpeg/
Contains information, links, software and movies.

• “MPEG Information Page”
http://www.vol.it/MPEG/
Contains answers to frequently asked questions.

• “MPEG Research at U.C. Berkeley”
http://bmrc.berkeley.edu/projects/mpeg/
Describes the MPEG encoder and decoder developed at Berkeley.

• “MPEG Overview”
http://www.c-cube.com/tecno/mpeg.html
Gives a brief and informative overview of the MPEG standard.

• “PVRG-MPEG”
ftp://havefun.stanford.edu/pub/mpeg/
A source code package for MPEG encoding/decoding, developed by the Portable
Video Research Group at Stanford University.

• “PVRG-P64”
ftp://havefun.stanford.edu/pub/p64/
Source code package for H.261 encoding/decoding, developed by the Portable
Video Research Group at Stanford University.

Image Compression

Information regarding single image compression.

• “JPEG Frequently Asked Questions”
ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/

• “PNG (Portable Network Graphics) Home Page”
http://www.wco.com/˜png/
Lots of PNG-related pointers. PNG is supposed to be the successor of GIF.

— 122 —

Appendix F: Internet Links

• “PVRG-JPEG”
ftp://havefun.stanford.edu/pub/jpeg/
Source code package for JPEG encoding/decoding, developed by the Portable
Video Research Group at Stanford University.

• ftp://ftp.ncsa.uiuc.edu/misc/file.formats/graphics.formats/
Contains files describing various image file formats.

Research Projects

Research project on transferring video on the Internet.

• “The LAVA Project”
http://www.nr.no/lava/
is led by Telenor Research & development The main focus of the LAVA project
is the delivery of video using ATM technology. LAVA is a Norwegian acronym
for “Delivery of video over ATM”.

• “MERCI”
http://www-ks.rus.uni-stuttgart.de/PROJ/MERCI/
MERCI is short for “Multimedia European Research Conferencing Integration”.
The objective of the project is to provide all the technology components, other
than the data network itself, to allow proper deployment of the tools for Euro-
pean multimedia collaboration in Europe.

Miscellaneous

Items that didn’t fit elsewhere.

• “Internet Documentation (RFC’s, FYI’s, etc.) and IETF Information”
http://ds.internic.net/ds/dspg0intdoc.html
Contains all RFCs and other documents describing the Internet standards and
draft standards.

— 123 —

Video on the World Wide Web

— 124 —

Bibliography

Bibliography

[1] W. Richard Stevens. Unix Network Programming. Prentice Hall Software Series,
1990.

[2] E. Krol and E. Hoffman. FYI on “What is the Internet?”, 1993. RFC 1462,
available at http://ds.internic.net/rfc/rfc1462.txt.

[3] J. Reynolds and J. Postel. The request for comments reference guide, 1987. RFC
1000, available at http://ds.internic.net/rfc/rfc1000.txt.

[4] Bruce Sterling. Short history of the Internet, 1993. available at go-
pher://gopher.isoc.org:70/00/internet/history/short.history.of.internet.

[5] Robert H Zakon. Hobbes’ Internet timeline v2.5, 1996. available at
http://info.isoc.org/guest/zakon/Internet/History/HIT.html.

[6] T. Berners-Lee and R. Cailliau. WorldWideWeb: Proposal for a HyperText
project, 1990. available at http://www.w3.org/pub/WWW/Proposal.html.

[7] Robert Cailliau. A little history of the world wide web, 1995. available at
http://www.w3.org/pub/WWW/History.html.

[8] Andy C. Hung. PVRG-P64 CODEC 1.1, 1993. available at
ftp://havefun.stanford.edu/pub/p64/.

[9] Foley, van Damme, Feiner, and Huhges. Computer Graphics: Principles and
Practice. Addison-Wesley Publishing Company, second edition, 1990.

[10] William K. Pratt. Digital Image Processing. Wiley & sons Inc., second edition,
1991.

[11] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison–
Wesley Publishing Company, Inc., 1992.

[12] Majid Rabbani and Paul W. Jones. Digital Image Compression Techniques.
SPIE Optical Engineering Press, 1991.

[13] CompuServe Incorporated. Graphics Inter-
change Format, Version 87a, 1987. available at
ftp://ftp.ncsa.uiuc.edu/misc/file.formats/graphics.formats/gif87a.doc.

[14] CompuServe Incorporated. Graphics Inter-
change Format, Version 89a, 1989. available at
ftp://ftp.ncsa.uiuc.edu/misc/file.formats/graphics.formats/gif89a.doc.

— 125 —

Video on the World Wide Web

[15] William B. Pennebaker and Joan L. Mitchell. JPEG Still Image Data Compres-
sion Standard (incl. ISO DIS 10918-1/2). Van Nostrad Reinhold, 1993.

[16] Gregory K. Wallace. The JPEG still picture compression standard. Communi-
cations of the ACM, 1991.

[17] Tom Lane et al. JPEG frequently asked questions, October 1996. available at
ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.

[18] Eric Hamilton. JPEG file interchange format version 1.02. Technical report, C-
Cube Microsystems, 1992. available at ftp://ftp.uu.net/graphics/jpeg/jfif.ps.gz.

[19] Frank Gadegast et al. The MPEG-FAQ version 4.1, June 1996. available at
ftp://rtfm.mit.edu/pub/usenet/news.answers/mpeg-faq/.

[20] International Telecommunication Union, Telecommunication Standardization
Sector (ITU-T). ITU-T Recommendation H.261: Line Transmission of Non-
Telephone Signals — Video Codec for Audiovisual Services at p×64 kbits, March
1993.

[21] International Telecommunication Union, Telecommunication Standardization
Sector (ITU-T). ITU-T Draft Recommendation H.263: Line Transmission of
Non-Telephone Signals — Video Coding for Low Bitrate Communication, May
1996.

[22] C-Cube Microsystems. Compression technology — MPEG overview. available
at http://www.c-cube.com/tecno/mpeg.html.

[23] Didier Le Gall. MPEG: A video compression standard for multimedia applica-
tions. Communications of the ACM, vol. 34(no. 4), April 1991.

[24] Lenoardo Chiariglione. The development of an integrated audiovisual coding
standard: MPEG. Proceedings of the IEEE, vol. 83:151–157, February 1995.

[25] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley Publishing Company, 1994.

[26] Fred Halsall. Data Communications, Computer Networks and Open Systems.
Addison-Wesley, third edition, 1994.

[27] J. Mogul and J. Postel. Internet standard subnetting procedure, 1985. RFC 950,
available at http://ds.internic.net/rfc/rfc950.txt.

[28] P. Mockapetris. Domain names — concepts and facilities, 1987. RFC 1034,
available at http://ds.internic.net/rfc/rfc1034.txt.

[29] P. Mockapetris. Domain names — implementation and specification, 1987. RFC
1035, available at http://ds.internic.net/rfc/rfc1035.txt.

[30] Jon Postel. Transmission control protocol, 1981. RFC 793, available at
http://ds.internic.net/rfc/rfc793.txt.

[31] Jon Postel. User datagram protocol, 1980. RFC 768, available at
http://ds.internic.net/rfc/rfc768.txt.

— 126 —

Bibliography

[32] J. Reinolds and J. Postel. Assigned numbers, 1994. RFC 1700, available at
http://ds.internic.net/rfc/rfc1700.txt.

[33] J. Postel and J. Reynolds. File transfer protocol (FTP), 1985. RFC 959, available
at http://ds.internic.net/rfc/rfc959.txt.

[34] Jonathan B. Postel. Simple mail transfer protocol, 1982. RFC 821, available at
http://ds.internic.net/rfc/rfc821.txt.

[35] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol –
HTTP/1.0, 1996. RFC 1945, available at http://ds.internic.net/rfc/rfc1945.txt.

[36] Randi Haraldsø. Distribusjon av multimedia. In Nye teknologier — Multimedia
7. november. Den Norske Dataforening, 1996.

[37] Jeffrey Mogul. Broadcasting Internet datagrams in the presence of subnets, 1984.
RFC 922, available at http://ds.internic.net/rfc/rfc922.txt.

[38] David C. Plummer. An ethernet address resolution protocol, or converting net-
work protocol addresses to 48.bit ethernet address for transmission on ethernet
hardware, 1982. RFC 826, available at http://ds.internic.net/rfc/rfc826.txt.

[39] R. Finlayson, T. Mann, J. Mogul, and M. Theimer. A reverse address resolution
protocol, 1984. RFC 903, available at http://ds.internic.net/rfc/rfc903.txt.

[40] S. Armstrong, A. Freier, and K. Marzullo. Multicast transport protocol, 1992.
RFC 1301, available at http://ds.internic.net/rfc/rfc1301.txt.

[41] R. Braudes and S. Zabele. Requirements for multicast protocols, 1993. RFC
1458, available at http://ds.internic.net/rfc/rfc1458.txt.

[42] S. Deering. Host extensions for IP multicasting, 1989. RFC 1112, available at
http://ds.internic.net/rfc/rfc1112.txt.

[43] Michael R. Macedonia and Donald P. Brutzman. MBONE provides audio and
video across the Internet. IEEE Computer, vol. 2Z(no. 4):30–36, April 1994.
available at ftp://taurus.cs.nps.navy.mil/pub/mbmg/mbone.ps.

[44] Hans Eriksson. MBONE: The multicast backbone. Communi-
cations of the ACM, vol. 37(no. 8), August 1994. available at
http://www.mang.canterbury.ac.nz/˜busa057/mbone/art1.html.

[45] Stephen Casner and Stephen Deering. First IETF Internet audiocast. ACM
Sigcomm Computer Communication Review, vol. 22(no. 23):92–97, July 1992.
available at ftp://venera.isi.edu/pub/ietf-audiocast.article.ps.

[46] Stephen Casner. Are you on the MBone? IEEE
Multimedia, vol. 1(no. 2):76–79, 1994. available at
http://www.mang.canterbury.ac.nz/˜busa057/mbone/art2.html.

[47] Mark Handley and Van Jacobson. SDP: Session description protocol, 1996. In-
ternet draft, currently available at http://ds.internic.net/internet-drafts/draft-
ietf-mmusic-sdp-02.txt.

— 127 —

Video on the World Wide Web

[48] Mark Handley. SAP: Session announcement protocol, 1996. Internet draft, cur-
rently available at http://ds.internic.net/internet-drafts/draft-ietf-mmusic-sap-
00.txt.

[49] M. Handley, H. Schulzrinne, and E. Schooler. SIP: Session invitation proto-
col, 1996. Internet draft, currently available at http://ds.internic.net/internet-
drafts/draft-ietf-mmusic-sip-01.txt.

[50] Tim Berners-Lee. Worldwide web seminar, 1992. available at
http://www.w3.org/pub/WWW/Talks/General.html.

[51] N. Borenstein, Bellcore, and N. Freed. MIME (multipurpose Inter-
net mail extensions) part one: Mechanisms for specifying and describing
the format of internet message bodies, 1993. RFC 1521, available at
http://ds.internic.net/rfc/rfc1521.txt.

[52] The common gateway interface. available at http://hoohoo.ncsa.uiuc.edu/cgi/.

[53] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A trans-
port protocol for real-time applications, 1996. RFC 1889, available at
http://ds.internic.net/rfc/rfc1889.txt.

[54] H. Schulzrinne. RTP profile for audio and video conferences with minimal control,
1996. RFC 1890, available at http://ds.internic.net/rfc/rfc1890.txt.

[55] D. Hoffman, G. Fernando, and V. Goyal. RTP payload for-
mat for MPEG1/MPEG2 video, 1996. RFC 2038, available at
http://ds.internic.net/rfc/rfc2038.txt.

[56] T. Turletti and C. Huitema. RTP payload format for H.261 video streams, 1996.
RFC 2032, available at http://ds.internic.net/rfc/rfc2032.txt.

[57] L. Berc, W. Fenner, R. Frederick, and S. McCanne. RTP pay-
load format for JPEG-compressed video, 1996. RFC 2035, available at
http://ds.internic.net/rfc/rfc2035.txt.

[58] Tim Dorcey. CU-SeeMe desktop videoconferencing software. Con-
nexions, vol. 9(no. 3), March 1995. available at http://cu-
seeme.cornell.edu/DorceyConnexions.html.

[59] Michel Carleer. CU-SeeMe (tm) for Windows, March 1996. Available at ftp://cu-
seeme.cornell.edu/pub/video/PC.CU-SeeMeCurrent/readme.txt.

[60] T. Berners-Lee and D. Connolly. Hypertext markup language – 2.0, 1995. RFC
1866, available at http://ds.internic.net/rfc/rfc1866.txt.

[61] D. Raggett and D. Connolly. Introducing HTML 3.2, 1996. available at
http://www.w3.org/pub/WWW/MarkUp/Wilbur/.

[62] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform resource locators (URL),
1994. RFC 1738, available at http://ds.internic.net/rfc/rfc1738.txt.

[63] Brian Kantor and Phil Lapsley. Network news transfer protocol, 1986. RFC 977,
available at http://ds.internic.net/rfc/rfc977.txt.

— 128 —

Bibliography

[64] F. Anklesaria, M. McCahill, P. Lindner, D. Johnson, D. Torrey, and B. Al-
berti. The Internet gopher protocol, 1993. RFC 1436, available at
http://ds.internic.net/rfc/rfc1436.txt.

[65] Netscape Communications Corporation. An Exploration of Dynamic Objects.
available at http://home.netscape.com/assist/net sites/pushpull.html.

[66] Michael Swafford and Dane Dwyer. CS397KC final project presentation, 1995.
available at http://yertle.csl.uiuc.edu/multimedia/java mpeg/.

[67] Zhigang Chen, See-Mong Tan, Roy H. Campbell, and Yongcheng Li. Real time
video and audio in the world wide web. Technical report, Vosaic Corp., 1995.
available at http://choices.cs.uiuc.edu/Papers/New/vosaic/vosaic.html.

[68] Dave Garaffa. Browserwatch, 1996. http://browserwatch.iworld.com/.

[69] Netscape Communications Corporation. Plug-in Guide. available at
http://home.netscape.com/eng/mozilla/3.0/handbook/plugins/pguide.htm.

[70] David Bank. The Java saga. HotWired, December 1995. available at
http://www.hotwired.com/wired/3.12/features/java.saga.html.

[71] Jason English. It all started with an angry letter, 1996. available at
http://www.javasoft.com/nav/whatis/index.html.

[72] Sun Microsystems Computer Corporation. The Java Virtual Machine
Specification, 1.0 beta, draft edition, August 1995. available at
http://www.javasoft.com/doc/language vm specification.html.

[73] James Gosling, Frank Yellin, and The Java Team. Java
API Documentation version 1.0.3, 1996. available at
http://www.javasoft.com/products/JDK/1.0.2/api/packages.html.

[74] Laura Lemay and Charles L. Perkins. Teach Yourself Java in 21 Days. Sams.net
Publishing, first edition, 1996.

[75] W. Richard Stevens. Advanced Programming in the Unix Environment. Addison-
Wesley Publishing Company, 1992.

[76] Andrew S. Tannenbaum. Operating Systems: Design and Implementation. Pren-
tice Hall, 1987.

[77] Adrian Nye. Xlib Programming Manual for Version 11. O’Reilley & Associates,
Inc., 1995.

[78] Adrian Nye, editor. Xlib Reference Manual for Version 11. O’Reilley & Asso-
ciates, Inc., 1993.

[79] Carolyn Curtis. IRIS Digital Media Programming Guide, chapter 11–15. Silicon
Graphics Inc., 1994.

[80] M. J. Usher. Information Theory for Information Technologists. Macmillan
Computer Science Series, 1984.

[81] Ross N. Williams. Adaptive Data Compression. Kluwer Academic Publishers,
1991.

— 129 —

Video on the World Wide Web

[82] Mark Nelson. The Data Compression Book. M&T Publishing, Inc., 1991.

[83] Frequently asked questions from comp.compression, 1994.

[84] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, vol. 23(no. 3):337–343, May 1977.

[85] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate cod-
ing. IEEE Transactions on Information Theory, vol. 24(no. 5):530–536, Septem-
ber 1978.

— 130 —

