
Abstract of M.Sc. thesis Jo Erskine Hannay; August 1, 1995

The thesis deals with topics in the field of formal abstract specification and verification of pro-
grams, particularly within the framework of algebraic methods restricted to equational logic.
The discussion views equational specification and the closely related topic of simple term-
rewriting as more concrete and nearer to implementation than specification in general. There-
fore initial and final models are considered, rather than complete model-classes. Also mostly
constructive, “executable” equational specifications are considered giving an inclination to-
wards viewing specifications as abstract programs. The thesis is structured around the follow-
ing two topics:

1. The method of equational algebraic specification is generalized in a manner allowing a cer-
tain mode of modular specification. The generalization has two forms accommodating
initial and final algebra semantics respectively. The generalization is modular in the sense
that complex specifications may be constructed stepwise from simpler kernel specifica-
tions. Each construction step provides the choice of initial or final generalized form. The
resulting complex equational specifications differ from general case predicate logic hierar-
chical specifications, in the sense that the polarization into initial and final semantics gives
inhomogeneous specifications; a complex specification cannot in principle be viewed as a
non-hierarchical simple specification.

A concept of consistency relative to kernel specifications is developed and it is possible to
reason about such relative consistency without specific knowledge about the kernel spec-
ification.

The possibility of analogously constructing complex formal-mechanical proof methods
from simpler methods is briefly discussed.

2. A variant of (initial) algebraic specification called indirect specification is developed. Moti-
vation and a foundation for indirect specification is given by syntactical specifier functions;
i.e. terms are to be understood identical iff the their values under some given function
(with syntactical codomain) are identical. A special and interesting case of syntactical
specifier functions are functions giving canonical representatives in some well-defined sense.

Besides providing the specification language with additional means of specifying equal-
ity, indirect specification expands the class of congruences (over ground terms) decidable
by simple term-rewriting. In addition, although the class of initial congruences equation-
ally specifiable is identical to the class specifiable by syntactical specifier functions with
canonical representatives as codomain, there exist syntactical specifier functions which do
not give canonical representatives. (Such a function may for instance give a representa-
tive in some other class than in which the argument belongs.) It may therefore be the fact
that the class of congruences indirectly specifiable is greater than the class equationally
specifiable. Characteristically, indirect specification represents a more operational mode
of specification than does usual algebraic specification.

Indirect specification introduces further inhomogeneousity to equational algebraic spec-
ification. The modularity of the generalized specification strategy discussed in part 1 is
used to encapsulate indirect specification in the hierarchical framework.

It is then shown that a trivial augmentation of indirect specification can be reduced to
standard non-generalized initial or final semantics specification; under certain interesting
circumstances. It is also shown that Knuth-Bendix completion of an augmentation of in-
direct specification, if successful and under a certain congruency condition, will give an
equivalent standard algebraic specification. Viewing equational specifications as abstract
programs, this might be seen as a program transformation. (A more applicable strategy for
automatic transformation in this sense is sketched just as an idea without any sort of fur-
ther proof.

The overall structure sees part 1 primarily as giving a framework for the discussion in part 2.

1



The subject of consistency permeates the entire discussion. Consistency is viewed as related
to basic ideas of some semantic domain which are expressed as untamperable presuppositions in
the act of specifying. For example, the basic idea that a mathematical proposition cannot simul-
taneously be true and false is presupposed in predicate calculus by predefined interpretations
of the symbols true and false, and by referring to a set of axioms as inconsistent iff the predicate
true = false is deducible from the axioms. The concept of (in)consistency seen always relatively
to such presuppositions allows a generalized notion of consistency in hierarchical specification
relative to kernel specifications as discussed in part 1. (This also generalizes Guttag’s notion of
consistency.) Some simple methods for detecting (generalized) inconsistency and for establish-
ing consistency are briefly presented.

The notion of artificial inconsistency is introduced, as inconsistency due to auxiliary functions;
i.e. functions helpful or necessary during constructive definition or implementation, but oth-
erwise really not belonging to the semantical objects under implementation. Formalisms and
results are developed showing that auxiliary functions and hence artificial inconsistency can
be hidden from the formal reasoning, still allowing for the full implementatory benefits. This
goes beyond the model-theoretical notions of hidden sorts and symbols. The theory developed
can probably be used and implemented by modifying existing proof methods (based on the
concepts of proof by consistency and inductive completion).

Finally an extension of Knuth-Bendix completion is presented as a step towards mechanical
generation of constructive proofs in the input theory given to the process. Constructive proofs
may give deeper insight into a theory. It also turns out that the extension of Knuth-Bendix
completion under certain circumstances can be used in establishing consistency in conjunction
with indirect specification (part 2). The extension also turns out to be vital in proving that hiding
of auxiliary functions and artificial inconsistency may be implemented in proof methods based
on inductive completion.

2


