
UNIVERSITY OF OSLO
Department of Informatics

PQ-trees and
maximal
planarization

An approach to
skewness

Gørril Vollen

Cand Scient Thesis

February 1998





Trying to get an edge on this

- I went astray -

not seeing the wood for the trees





Preface

This thesis is a result of my study for the Cand. Scient. degree at the De-

partment of Informatics, University of Oslo. The work has been carried out

in the time period between September 1995 and February 1998.

For the acknowledgments, I would �rst and foremost like to thank my

supervisor, Almira Karabeg, for introducing me to a very interesting species

of trees. She always had the time to discuss with me the di�erent aspects of

trees and bushes.

I am also very grateful to professor Stein Krogdahl who had mercy on

me when I desperately needed someone to discuss the �nal outline of the
chapters and this thesis with. He provided me with invaluable help in the

�nal stages of this thesis.
For their ability to back me up and inspire me in the early days of this

study, I would like to thank Ahmed El-abbadi and Kjetil Karlsen.
Great thanks to Dag-Erling Smørgrav for his patience and interest when

I got lost in the tricky parts of C++ templates.

My fellow students at �lesesal 1302� have been a good support as well,
with a cake break once in a while, and lots of moral support in the �nal spurt
of this thesis. A special thanks to Leif John, who let his Companion1 be my
Companion when I needed one.

For knowing when to back me up and when to back o�, I want to thank
my good friend Vibeke.

Finally, my boyfriend Ro�y has been most patient, always encouraging
me to keep at it until I was done, and my parents who have always been

there, supporting me when I needed it.

Blindern, February 1998

Gørril Vollen

1M. Goossens, F. Mittelbach, and A. Samarin: The LATEX Companion, Addison-Wesley,
1994.

i



ii



Contents

1 Introduction 1

2 Graphs and planarity 3

2.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Properties of planarity and non-planarity . . . . . . . . 6

2.2 Degrees of non planarity . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Thickness . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Crossing number . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Some relationships between these problems . . . . . . . 9

3 PQ-trees 11

3.1 PQ-trees and Permissible Permutations . . . . . . . . . . . . . 11

3.1.1 The PQ-tree data structure . . . . . . . . . . . . . . . 12

3.1.2 The reduction algorithm . . . . . . . . . . . . . . . . . 14

3.2 Planarity testing with PQ-trees . . . . . . . . . . . . . . . . . 18

3.2.1 st-numbering . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Planar . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 S. Leipert's implementation of PQ-trees . . . . . . . . 26

3.3.2 Implementation of Planar . . . . . . . . . . . . . . . 27

4 PQ-trees and obstructions to planarity 29

4.1 Additions to the PQ-tree . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Additional information . . . . . . . . . . . . . . . . . . 30

4.1.2 Additional data structure . . . . . . . . . . . . . . . . 32

4.1.3 Building the pruned subtree . . . . . . . . . . . . . . . 36

4.2 Maintaining additional information in the PQ-tree . . . . . . . 38

4.2.1 Template procedures . . . . . . . . . . . . . . . . . . . 39

4.2.2 Utility procedures . . . . . . . . . . . . . . . . . . . . . 48

4.3 Finding the obstruction when the PQ-tree fails . . . . . . . . 49

iii



4.3.1 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Implementation of additional data structure . . . . . . 56

4.4 Obstructions and skewness number . . . . . . . . . . . . . 57

5 Approaches to planarizing graphs using PQ-trees 61

5.1 A planarization algorithm . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Finding edges to delete . . . . . . . . . . . . . . . . . . 64

5.1.2 Deleting edges . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.3 Planarize . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Algorithms for maximal planarization . . . . . . . . . . . . . . 69

5.2.1 Initial approach [JTS89] . . . . . . . . . . . . . . . . . 69

5.2.2 Changes made by Kant . . . . . . . . . . . . . . . . . . 70

5.2.3 Problems discovered by Leipert . . . . . . . . . . . . . 73

5.2.4 An attack on the approach of [JTS89, Kan92] . . . . . 76

5.2.5 A new approach . . . . . . . . . . . . . . . . . . . . . . 77

6 Towards a skewness algorithm 79

6.1 Combining Planarize and Boundary . . . . . . . . . . . . . 80

6.1.1 RemoveNodes . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Finding near pairs . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 A closer look at the bush form . . . . . . . . . . . . . . 83

6.2.2 A closer look at Boundary . . . . . . . . . . . . . . . . 85

6.3 Skewness algorithm . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Time complexity . . . . . . . . . . . . . . . . . . . . . 90

6.4 Remaining problems . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.1 In search for perfection . . . . . . . . . . . . . . . . . . 93

7 Conclusion 97

7.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99

A Implementation of mypqtree 103

A.1 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1.1 vbcTool . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.1.2 Altered �les of Leipert's implementation . . . . . . . . 104

A.2 Code �les main.cc and mypqtree.h . . . . . . . . . . . . . . . 106

A.2.1 main.cc . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.2.2 pqtree . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.3 Code �les for parameter types . . . . . . . . . . . . . . . . . . 140

iv



A.3.1 edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3.2 Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.3.3 Boundary . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.3.4 element . . . . . . . . . . . . . . . . . . . . . . . . . . 165

v



vi



List of Figures and Tables

2.1 Graph with multiple edges and loops. . . . . . . . . . . . . . . 3

2.2 Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Three embeddings of K4, (c) with the four faces marked. . . . 4

2.4 K5 and K3,3 with respective homeomorphs. . . . . . . . . . . . 5

3.1 U = {A,B,C,D,E,F,G,H}, S1 = {A,B,C}. . . . . . . . . . . . . 12

3.2 Two more restrictions from S have been added to the PQ-tree

of �g. 3.1(b), S2 = {E,G,H}, S3 = {E,D}. . . . . . . . . . . . . 12
3.3 The pruned subtree of the tree in �g. 3.2 when S4 = {B,C,G}. 13

3.4 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Tree of �g. 3.2 after reduction of S4 = {B,C,G}. . . . . . . . . 17

3.6 Graph G, embedded subgraph G4, and bush form B4. . . . . . 19

3.7 A biconnected graph. Left: Drawing. Right: Adjacency list. . 21

3.8 Graph after Dfs. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.9 st-numbered graph on the left. Outgoing and incoming edge
sets on the right, used by Planar. . . . . . . . . . . . . . . . 22

3.10 The correspondence between a PQ-tree and its bush form. . . 23

3.11 The initial tree, and the result of the �rst two iterations of the

main loop of Planar, i = 2, 3. . . . . . . . . . . . . . . . . . 24

3.12 Running of the example graph through Planar, i = 4, 5, 6. . 25

3.13 Class structure of Leipert's implementation. . . . . . . . . . . 26

4.1 Outer mesh of a biconnected graph . . . . . . . . . . . . . . . 30

4.2 Biconnected component and boundary of triangle. . . . . . . . 31

4.3 Building chains in the PQ-tree. T4, T5, and T6. . . . . . . . . 32
4.4 Boundary of Q-nodes. T6, T7, and T8. . . . . . . . . . . . . . . 33

4.5 The reduction of T8 and T9. . . . . . . . . . . . . . . . . . . . 34

4.6 Reduction of T9. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



4.11 A sketch of the K3,3 subgraph for Case 1. . . . . . . . . . . . . 51

4.12 A sketch of the K3,3 subgraph for Case 2. . . . . . . . . . . . . 52

4.13 A sketch of the K3,3 subgraph for Case 3. . . . . . . . . . . . . 53

4.14 A sketch of the K3,3 subgraph for Case 4 when P -node is proper. 54

4.15 A sketch of the K5 subgraph for Case 4 when P -node is non

proper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.16 The data structure of pqtree . . . . . . . . . . . . . . . . . . 56

4.17 Reducing Tk−1. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.18 Bush forms Bk−1, corresponding to Tk−1 of �g. 4.17(a). . . . . 58

4.19 Tk−1 obtained for each of G1 and G2. . . . . . . . . . . . . . . 59

5.1 The deletion of l causes Gp to not be maximal. . . . . . . . . . 70

5.2 Two intersecting near pairs l, si(l) and l
′
, si(l

′
). . . . . . . . . 71

5.3 Two non intersecting near pairs, part of a consecutive se-
quence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Example of top down reduction of near pairs suggested in
[Kan92]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Only one of the potential leaves l1 and l2 can be reduced. . . . 75
5.6 MaxPlanarize of [JTS89] does not work when the st-num-

bering is not legal for Gp. . . . . . . . . . . . . . . . . . . . . 76

6.1 Pertinent subtree of T8. . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Pertinent subtree of T8 after Reduce, and bush form B9. . . . 82
6.3 Situation causing a stray edge to be deleted. . . . . . . . . . . 84

6.4 New inner faces. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Q-nodes and boundaries corresponding to bush forms in �g. 6.4. 86
6.6 A new inner face is checked for near pairs in Ti−1. . . . . . . . 87
6.7 Example of embeddable edge not discovered by the PQ-tree. . 92

6.8 Pertinent Q-node corresponding to biconnected component of

�g. 6.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.9 Example graph from [Kan92] and [GT94]. . . . . . . . . . . . 94

A.1 Example of input �le . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Example of �le displayed by vbcTool . . . . . . . . . . . . . . 104
A.3 File represented in �g. A.2. . . . . . . . . . . . . . . . . . . . . 105

3.1 PQ-tree de�nitions. . . . . . . . . . . . . . . . . . . . . . . . . 13

viii



Chapter 1

Introduction

The purpose of this thesis is to explore the possibilities that the PQ-tree data
structure of Booth and Lueker [BL76] gives for designing an e�cient heuristic
for the skewness problem for graphs. The skewness number of a non planar
graph G is the least number of edges that must be removed from G to make
the resulting subgraph G

′
planar. Determining the size of this set is NP-

hard. The corresponding problem of �nding the maximum planar subgraph
determined by removing such a minimum set from G is thus NP-hard.

The need for planar subgraphs arise for instance for automatic graph
drawing, facility layout, and design of electronic circuits. Thus, heuristics
for deleting as few edges as possible to obtain a planar subgraph are of great
interest. A related problem, which is in P , is to �nd a maximal planar

subgraph Gp of G, a subgraph that will no longer be planar if any additional
edge from G is added to Gp.

At �rst, the goal of this thesis was to �nd and extensively test a sim-

ple heuristic for �nding the skewness number. At that time, the problem

of �nding a maximal planar subgraph using the PQ-tree data structure was

believed to be solved [JTS89, Kan92]. However, [Lei96] shows that there

are serious de�ciencies with the approaches given in the earlier articles at-
tempting to solve the problem. This result shifted the emphasis of this thesis

towards solving the maximal planar subgraph problem correctly. A progress

in that direction has been made and is described in Chapter 6.

When this thesis was nearly �nished, a new result of [JLM96] gave an

explanation as to why the PQ-tree data structure may not lend itself well

to solving skewness or maximal planar subgraph problems. Our algorithm

in Chapter 6 solves all the problems pointed out in [Lei96], but it does not

produce a maximal planar subgraph for all instances due to the problem with

the PQ-tree data structure as described in [JLM96].

1



The rest of this thesis is organized as follows:

Chapter 2 presents some fundamental aspects of graph theory needed to

understand this thesis. Di�erent NP-hard graph problems, related to the

skewness problem both in theory and in the way they may be heuristicly

solved, are also presented.

Chapter 3 describes the PQ-tree data structure and the planarity testing

algorithm of [BL76].

Chapter 4 presents some additional data structure proposed in [Kar90],

that will maintain more information in the PQ-tree about the embedded sub-

graph. This data structure will be used for a di�erent purpose in chapter 6.

Chapter 5 gives a survey of the work done by others on the maximal

planar subgraph problem based on the PQ-tree data structure.

Chapter 6 proposes a new approach for the maximal planar subgraph

problem, a result that can also be viewed as a heuristic for the skewness
number. This approach is primarily based on the additional data structure
of chapter 4.

Chapter 7 contains concluding remarks as well as some thoughts on how

this work can be further developed.
Source code for the implementation of the data structure presented in

chapter 4 is included in appendix A.

The text

To make it easier to read and understand the various algorithms, procedures
and data structures presented, di�erent text styles have been used. All pro-

cedures and algorithms mentioned in this thesis are written in SmallCaps.
Class names are written in typeWriterStyle, while variables related to pro-

cedures or classes are written in CAPITAL_TYPEWRITER.

2



Chapter 2

Graphs and planarity

This chapter is a short introduction to the graph theory needed to give the
reader the necessary background for understanding the graph theoretical as-
pects of this thesis. Some basic notions, de�nitions, and properties of graphs
are given. The chapter ends with a short overview of some NP-hard prob-

lems on graphs, among them skewness, the problem which is the main focus
of the present work.

2.1 De�nitions

A graph G(V,E) consists of a vertex set V and an edge set E. The order of
G is |V | = n and the size is |E| = m. An edge is a pair of vertices, drawn as
a line between them. Two vertices u, v ∈ V are adjacent if and only if there

Figure 2.1: Graph
with multiple edges

and loops.

is an edge e = {u, v} ∈ E. A graph has multiple

edges if there exist edges e1, e2, . . . , ei ∈ E, i ≥ 2,
where e1 = e2 = · · · = ei = {u, v} for some vertices

u, v. An edge {u, u} is called a loop. See �g. 2.1.

A graph is �nite if both vertex- and edge-sets
are �nite. A graph is simple if there are no loops

or multiple edges in the graph. Only �nite, simple

graphs will be considered in this thesis.

If the graph G is directed, the edges are ordered

pairs, written (u, v) where the direction is from u to
v. A directed edge is drawn as an arrow, u being

the tail and v the head. (u, v) is an outgoing edge of u and an incoming

edge of v. The degree of a vertex is the number of edges adjacent to it. For

directed graphs, a vertex has out-degree and in-degree equal to the number

of its outgoing and incoming edges, respectively.

3



a tree a rooted tree

a subtree rooted at

the original root's

middle child

Figure 2.2: Trees.

The two �rst trees are the same graph, but the latter is rooted.

(a) (b)

R1
R2

R3

R4

(c)

Figure 2.3: Three embeddings of K4, (c) with the four faces marked.

A path from u to v, {u, e1, u1, e2, . . . , uk−1, ek, v}, is a sequence of vertices
and edges in which all vertices are distinct and all edges ei ∈ E. For directed
graphs, the edges must have the same direction as the path. That is, ei =
(ui−1, ui), for all i = {1, . . . , k}, u = u0, v = uk. If v = u, we have a cycle. A
graph is connected if there is a path between every pair of vertices. A graph

is biconnected if there are two vertex disjoint paths between every pair of

vertices. A vertex is a cut vertex if its removal disconnects the graph.

A connected graph is a tree if every vertex of degree higher than one is
a cut vertex (�g. 2.2). The vertices of a tree are called nodes. Rooted trees

are drawn as the middle tree in �g. 2.2, with the root on top. Rooted trees

are considered to be directed in direction from the root. Thus, the root is

the single node in a tree with no incoming edges. Nodes with no outgoing
edges are called leaves, and nodes with both incoming and outgoing edges

are called internal. The root is the ancestor of all nodes below it, and they
are the descendants of the root. Leaves are their own descendants. A node,

not root, and all its descendants de�ne a subtree, with the node as root of

the subtree, �g. 2.2. The immediate ancestor and descendants of a node are
often referred to as parent and children. Nodes that are children of the same

parent are siblings.

4



A drawing of a graph in the plane is called an embedding. Two edges

cross in an embedding if they intersect at some point other than a common

endpoint, as in �g. 2.3(a). A graph is planar if it can be embedded in the

plane without edge-crossings. If no such embedding exists, the graph is non-

planar. In a planar embedding of a graph, the edges describe faces. The

four faces in a planar embedding of K4 are marked in �g. 2.3(c). R1, the

unbounded region, is called the outer face, while the other three are inner

faces.

A graph is complete on n vertices, denoted Kn, if there is an edge between

every pair of vertices. A bipartite graph is a graph G(V1 ∪ V2, E), with
V1 ∩ V2 = ∅, where for every edge {u, v} ∈ E, u ∈ V1 and v ∈ V2 or vice

versa. A bipartite graph is complete if every vertex in V1 is adjacent to every

vertex in V2. If |V1| = n1, and |V2| = n2, the graph is denotedKn1,n2 . Fig. 2.4
shows K5 and K3,3 as examples of complete graphs.

A subgraph H(V ′, E′) ⊆ G(V,E) have V ′ ⊆ V and E′ ⊆ E. A connected
subgraph with exactly n − 1 edges is called a spanning subtree of G. For a
non planar graph G, if H is planar, it is called a planar subgraph. If no edge
e ∈ E −E′ can be added to H without destroying planarity, it is a maximal

planar subgraph. The largest of all such subgraphs of G with respect to E
′
,

is the maximum planar subgraph of G. A subgraph H(V ′, E′) where V ′ ⊂ V
and E′ contains all edges {u, v} ∈ E where u, v ∈ V ′, is called an induced

subgraph on V ′. The maximal biconnected subgraphs of a graph is called
its biconnected components or blocks. A biconnected graph has exactly one
biconnected component.

A subdivision of an edge e = {u, v} is the insertion of a new vertex w on

K5 Graph homeomorphic to K5

K3,3 Graph homeomorphic to K3,3

Figure 2.4: K5 and K3,3 with respective homeomorphs.

5



e, dividing e into e1 = {u, w} and e2 = {w, v}. One graph is a homeomorph

of another, if the �rst can be obtained from the second by a sequence of

subdivisions of edges. Fig. 2.4 also show two graphs homeomorphic to K5

and K3,3.

2.1.1 Properties of planarity and non-planarity

As stated earlier, a planar graph, by de�nition, has a planar embedding, and

any planar embedding shows the number of faces of the graph. Then Euler's

theorem on the relationship between the number of vertices n, edges m and

faces f of a connected planar graph states:

Theorem 1 n−m+ f = 2

In a planar embedding of a maximal planar graph, every face must be
a triangle. The number of edges in such a graph is thus m = 3n − 6, and
any graph on n vertices with m > 3n − 6 edges is non-planar. For a planar
bipartite graph, all regions have four edges surrounding it, so the maximum
number of edges in a planar bipartite graph is 2(n1 +n2)−4. A proof of this
theorem can be found in, for instance, [Gri94].

Another famous and important result, this time on non-planarity, was
published in 1930 by Kuratowski ([Kur30]). It is known as the Kuratowski
Theorem.

Theorem 2 A graph G is non-planar if and only if there is a subgraph of G
which is homeomorphic to either K3,3 or K5.

This is why K5 and K3,3 often are called Kuratowski graphs. K5 and K3,3

are the smallest non planar graphs.

2.2 Degrees of non planarity

There are severalNP-hard problems that relate to the degree of non-planarity
of a given graph. De�nitions and some theoretical results are given for three

such problems: skewness, thickness and crossing number. All three can be

viewed as measures of non-planarity of a graph G.

2.2.1 Skewness

The skewness number or just skewness µ(G) of a graph G(V,E) is the mini-

mum number of edges whose removal makes G planar. Thus, if E
′
is a set of

6



such edges, µ(G) = |E′|. If E
′
is given, the resulting subgraph H(V,E − E′)

is a maximum planar subgraph of G. For G planar, µ(G) = 0 and H = G.
Finding the Skewness of a graph was shown NP-hard by Liu and Geldmacher

in [LG79].

Theoretical bounds

In a complete graph Kn, the number of edges is 1
2
n(n − 1). The maximum

planar subgraph of Kn is of course a maximal planar graph on n vertices,

containing 3n − 6 edges. This graph is also triangulated, and has a unique

embedding. The skewness number for the complete graphs is thus given by

µ(Kn) =
n(n − 1)

2
− (3n− 6) =

(n− 3)(n− 4)

2
for n ≥ 3. (2.1)

For the complete bipartite graph Kn1,n2 , the number of edges is n1 · n2.

Since the maximum planar subgraph has 2(n1 + n2)− 4 edges, the skewness
number for the bipartite graph is

µ(Kn1 ,n2) = (n1n2)− (2(n1 + n2)− 4) = (n1n2)− 2(n1 + n2) + 4

for n1, n2 ≥ 2
(2.2)

2.2.2 Thickness

The thickness of a graph, θ(G), is the smallest number of planar subgraphs
of G whose union is G. For G planar, θ(G) = 1, since it is its own planar
subgraph. For a proof of NP-hardness, see [Man83].

Theoretical bounds

From m = 3n − 6 comes the lower bound for the thickness of a graph:

θ(G) ≥
m

3n− 6

For the complete graph, this gives

θ(Kn) ≥

⌈ 1
2
n(n− 1)

3n − 6

⌉
=

⌊ 1
2
n(n − 1) + 3n− 7

3n − 6

⌋
=

⌊
n+ 7

6

⌋
(2.3)

It was believed that (2.3) in most cases was an equality. The case was

�rst settled by Beineke and Harary in 1965 for all n 6= 4 (mod 6). Accurate
results were found for several values of n = 4 (mod 6) over the next years,

the last case of n = 16 was settled in 1972 by Mayer [May72].

7



This gives the equation (2.4) for the thickness of the complete graph.

θ(Kn) =

⌊
n+ 7

6

⌋
, n 6= 9, 10 and θ(K9) = θ(K10) = 3 (2.4)

(For a more complete historical review and further references, see e.g. [Har69]

or [Tho95]).

2.2.3 Crossing number

For G non planar, if embedded in the plane, some of G's edges will cross,

since no planar embedding exists. The crossing number ν(G) is the minimum

number of such crossings in any possible embedding of G. If the drawing is

required to have only straight lines, we get the rectilinear crossing number

ν(G). Naturally, ν(G) ≥ ν(G). Since any planar graph can be embedded

using only straight lines, ν(G) = ν(G) = 0 for G planar.
[GJ83] states that the decision problem

Given a graph G and a natural number k, is ν(G) ≤ k?

is NP-complete, which makes the optimization version of crossing number

NP-hard.

Theoretical bounds

Crossing number seems to be somewhat harder than the other two. Accurate
crossing numbers are known for very few graphs.

ν(Kn) ≤
1

4

⌊
n

2

⌋⌊
n− 1

2

⌋ ⌊
n− 2

2

⌋⌊
n − 3

2

⌋
(2.5)

This upper bound on the crossing number has been shown to be an equality

for n ≤ 10 [Guy72].

For the rectilinear crossing number, (2.6) is the best known upper bound

for the complete graph [Tho95]:

ν(Kn) ≤

⌊
7n4 − 56n3 + 128n2 + 48nbn−7

3
c+ 108)

432

⌋
(2.6)

The crossing number problem were originally given for bipartite graphs

(Turán's brick-factory problem [Mut94, Tho95]). Zarankiewicz gave a proof
of equality for (2.7) in 1954, but it was later found that he had only proven

the upper bound (see [Guy72]).

ν(Km,n) ≤

⌊
m

2

⌋ ⌊
m− 1

2

⌋⌊
n

2

⌋ ⌊
n− 1

2

⌋
(2.7)

8



(2.7) is still believed to be an equality, but this has so far only been proven for

min(m,n) ≤ 6 and K7,q, where q ≤ 10. (See [Tho95] and [Mut94] for further

history and references).

2.2.4 Some relationships between these problems

The three problems discussed above all try to give a numerical value for how
far a non planar graph is from planarity. They are somewhat related in the

way they may be heuristicly solved, as a heuristic solution for one problem
may provide a heuristic solution for the other.

This section gives a few examples of these relationships. Since all three
problems are NP-hard, no exact, polynomial algorithms are known for the
general graph. An intuitive heuristic for skewness is proposed, based on a

solution to or estimate of the crossing number.

Given a heuristic or accurate algorithm for the maximum planar sub-
graph problem, a straight forward heuristic for the thickness problem is to
repeatedly apply the planar subgraph algorithm and remove this subgraph,

until the graph is empty. The thickness estimate is then the number of

maximum or maximal planar subgraphs extracted [Cim95]. The connection
between the thickness θ(G) and crossing number ν(G) is given by the relation
θ(G) ≤ ν(G) + 1.

An algorithm for crossing number that also determines the edges involved

in each crossing can give a heuristic result for the skewness number: Assume
that each edge has received a set of (pointers to) crossing edges by the crossing

number algorithm. Edges are then given a priority according to the number

of crossings they are involved in. Edges with priority > 0 are put in a
priority queue, the rest are left in the planar subgraph. Each edge that is
removed from the front of the queue, is counted in the skewness number.

When no longer part of the graph, the priority of the edges it crosses with, is

decremented by 1. Edges fall out of the queue and into the planar subgraph
when their priority reaches zero.

9



procedure Skewness(E)
begin

SKEW := 0; {SKEW will count the skewness number µ(G)}
for i = 1 to |E| do

PRIORITY(ei) := |CROSSING_EDGES(ei)|;
if PRIORITY(ei) > 0 then place ei in PRIORITY_QUEUE;
else put ei back into graph;

od;
while |PRIORITY_QUEUE| > 0 do

dequeue e;
SKEW := SKEW + 1;
for each element d in CROSSING_EDGES(e) do

PRIORITY(d) := PRIORITY(d) - 1;
if PRIORITY(d) = 0 then put d back into graph;
else reposition d in PRIORITY_QUEUE according to new priority;

od;
od;

end;

The resulting planar subgraph is maximal planar (any removed edge will

create a crossing if added to the planar subgraph). Whether it is maximum
planar, depends on the embedding used for the crossing number. As Guy
states in [Guy72],

�Almost all questions that one can ask about crossing numbers
remain unanswered.�

Therefore, no more questions about crossing number will be asked, and this
connection between crossing number and skewness is only used to see, one
more time, the connection between problems in NP.

10



Chapter 3

PQ-trees

The PQ-tree data structure, used for planarity testing of graphs, is the basic
building block in this thesis. The PQ-tree data structure was designed by

Booth and Lueker [BL76] for sorting out permissible permutations of a set,
where some subsets have to be consecutive. As will be described in section
3.2, this sorting algorithm is also useful in planarity testing, which were
one of the main uses for it described in [BL76]. The other two were tests
for consecutive ones property and interval graphs. Today, the PQ-tree data
structure is used in biology, chemistry, graph theory, graph drawing, circuit

layout, matrix manipulation, and other areas where certain types of legal
permutations are of interest.

We will give a short and intuitive description of the general idea of the

PQ-tree data structure, the basic reduction algorithm, and the planarity
testing algorithm. For a more complete description of the data structure and
reduction algorithm, the reader is referred to [BL76].

3.1 PQ-trees and Permissible Permutations

PQ-trees are rooted trees, whose internal nodes are of two types, called P -
and Q-nodes. The leaves of the tree correspond to elements of a set U .
The PQ-tree is designed to constrain the permutations of elements of U ,
revealing the permissible permutations with respect to S, a family of subsets

of U . Permissible permutations of the set U with respect to Si ∈ S, are the
permutations where no two elements of Si are separated by an element not

belonging to Si. The PQ-tree ensures this by imposing restrictions on how

P - and Q-nodes can rearrange their children.

11



B C D E F G HA

D E F G H

B CA

(a) T (U ,U) (b) T (U , S1)

Figure 3.1: U = {A,B,C,D,E,F,G,H}, S1 = {A,B,C}.

3.1.1 The PQ-tree data structure

A PQ-tree, representing permutations of a set U , is built step by step. In each
step a new restriction, given as a subset S ∈ U , is introduced, and the tree
altered to also represent this restriction. Initially, there are no restrictions,

and the PQ-tree represents all permutations of U . This is re�ected by the
tree in �g. 3.1(a), in which the root, drawn as a circle, imposes no order on
its children; it is a P -node.

When a subset is introduced, the tree must ensure that elements of the
subset can permute only among themselves. To represent this, it gath-
ers them under another P -node, so that no outsiders may mingle, as in

�g. 3.1(b). When additional subsets are introduced (�g. 3.2), they may not
be disjoint from or contained in the sets already reduced, thus placing a
rather strict ordering on the elements of U . In the tree, this is solved by
introducing a new type of node, the Q-node, whose children must maintain
a strict order. Q-nodes are drawn as rectangles, to illustrate that they are

more stringent parents than the P -nodes.

The restrictions in de�nitions 3, 4 and 5 of table 3.1 de�ne a proper

PQ-tree, and are made to avoid costly chains and redundancy in the data

F

B CA D E

G H

Figure 3.2: Two more restric-
tions from S have been added

to the PQ-tree of �g. 3.1(b),

S2 = {E,G,H}, S3 = {E,D}.

structure. Reversing and permuting two el-
ements are in essence the same.

The frontier of a node in the PQ-tree is

the sequence of its descendant leaves, read
from left to right. The frontier of the root

of the PQ-tree in �g. 3.2 is ABCFDEGH.

Reversing the Q-node will give a di�erent
frontier, namely ABCFGHED. To �nd all
permutations the PQ-tree represents, all re-

arrangements of children of P -nodes and re-

versals of Q-nodes must be taken into ac-

count. It is shown in [BL76] that a PQ-tree

12



1 The universal tree, �g. 3.1, has all elements of U as leaves and

children of the root, a single P -node.
2 Every element a ∈ U is a tree, consisting of one leaf, with

itself as the root.

3 Every element of U appears exactly once, as a leaf, in the

PQ-tree representing U .
4 P -nodes have at least two children.

5 Q-nodes have at least tree children.
6 Two trees are identical if and only if one can be obtained from

the other by zero or more equivalence transformations. There

are two equivalence transformations:

• P -nodes may permute their children arbitrarily.

• Q-nodes may only be �ipped over, reversing the order of
their children, and always leaving the same two children
endmost, and the rest interior.

7 When a PQ-tree T is restricted by Si, the tree is said to

be reduced with respect to Si, and the new tree is denoted
T (U , Si).

Table 3.1: PQ-tree de�nitions.

T (U , S) represents exactly the permissible permutations of U where the el-
ements of S appear as a consecutive subsequence. If no such permutations
exists, then the reduction of T with respect to S fails and the null tree is
returned.

Given a PQ-tree T and a subset Si, a node in T is full if all its descendant

leaves are in Si. If none of them are in Si, the node is empty. An internal node
that is neither empty nor full, is partial with respect to Si. Full and partial

B C
G

Figure 3.3: The pruned sub-

tree of the tree in �g. 3.2
when S4 = {B,C,G}.

nodes are called pertinent. The smallest sub-
tree of T having all elements of Si in its frontier

is the pertinent subtree of T with respect to Si.
The root of this subtree is the pertinent root,

also called ROOT(T, Si). In the case of S4 and

the tree in �g. 3.2, the whole tree is the perti-
nent subtree and the root ROOT(T, S4). If all

empty nodes in the pertinent subtree, and the

edges pointing to them, are made invisible, one

gets the pruned subtree, �g. 3.3. When the full

leaves are gathered together by the reduction

13



step, they will form a consecutive sequence in every possible frontier of the

tree, as ABC does in �g. 3.1(b). This is called a pertinent sequence.

3.1.2 The reduction algorithm

There is only one operation on PQ-trees that alters the tree, namely reduction

with respect to S, S a subset of U . As stated in the following theorem, proven

in [BL76], that is exactly what is needed.

Theorem 3 (�The fundamental theorem of PQ-trees�) Let S ⊆ U be

a subset of U , and let T be a PQ-tree with exactly the elements of U in its

frontier. Let T (U , S) be T reduced with respect to S. The permutations of U
permissible by T (U , S) are then exactly those permutations permissible by T

in which the elements of S occur consecutively.

If this set of permutations is empty, then T is said to be irreducible with

respect to S, and T (U , S) will be the null tree.
Usually, a set U and a set of subsets of U , S, are given, and the task

is to produce a PQ-tree representing all the restrictions imposed by these
subsets. To obtain this, we start by initializing the PQ-tree to T (U ,U), and
for each Si ∈ S, Reduction(T, Si) is called. The �nal result is a PQ-tree

de�ning the permissible permutations, represented by the null tree if no such
permutations exist.

Reduction works in two steps, called Bubble and Reduce. Bubble
builds the pruned subtree with respect to Si, and then Reduce groups the
leaves together. This rearrangement of the PQ-tree is done by applying one

or more template matchings.
A template consists of a pattern, describing a PQ-tree, and a replacement

to be made for the pattern if a match is found. There are nine legal1 templates
all given in �g. 3.4 on the facing page. For further description, see [BL76].
In addition, there is a template L1 for leaves, that marks the leaf FULL if it is
in Si, else does nothing. Partial nodes matching P4, P5, and Q2 are referred

to as singly partial, while partial nodes matching P6 and Q3 are referred to

as doubly partial nodes. These templates covers all reducible situations in
the PQ-tree, and if none of them apply, the PQ-tree is irreducible.

Both Bubble and Reduce works with a bottom-up strategy, always
processing the children before the parent. The bottom-up strategy enables

processing of only the necessary parts of the tree, but it also requires that

children point to their parent. Since children frequently change parents in
the reduction step, maintaining parent pointers for all nodes would be too

1P0 and Q0 of [BL76] is not counted since they are not used.

14



...
...

...
...

...

...
...

...

P
a
tt
er
n

P
1

:

P

-n
o
d
e

R
ep
la
ce
m
en
t

P
a
tt
er
n

P
2

a
n
d

P
3

:

P

-n
o
d
e

R
ep
la
ce
m
en
t

P
2

,

R
ep
la
ce
m
en
t

P
3

,

w
it
h
fu
ll
ch
il
d
re
n

P
1

w
it
h
em
p
ty
a
n
d
fu
ll
ch
il
d
re
n

n
o
d
e
R
O
O
T
(T

,S

)

n
o
d
e
n
o
t
R
O
O
T
(T

,S

)

...
...

...
...

...

...
...

...

...

...
...

...

P
a
tt
er
n

P
4

a
n
d

P
5

:

P

-n
o
d
e
w
it
h
o
n
e
p
a
rt
ia
l
ch
il
d

R
ep
la
ce
m
en
t

P
4

,
n
o
d
e
R
O
O
T
(T

,S

)

R
ep
la
ce
m
en
t

P
5

,
n
o
d
e
n
o
t
R
O
O
T
(T

,S

)

...
...

...
...

...
...

P
a
tt
er
n

P
6

:

P

-n
o
d
e
w
it
h
tw
o
p
a
rt
ia
l
ch
il
d
re
n

...

...

...
...

...
...

R
ep
la
ce
m
en
t

P
6

,
n
o
d
e
R
O
O
T
(T

,S

)

...

P
a
tt
er
n

Q
1

:

Q

-n
o
d
e

...

R
ep
la
ce
m
en
t

...
...

...
...

...
...

...
...

w
it
h
fu
ll
ch
il
d
re
n

Q
1

P
a
tt
er
n

Q
2

:
S
in
g
ly
p
a
rt
ia
l

Q

-n
o
d
e

R
ep
la
ce
m
en
t

Q
2

...
...

...
...

...
...

...

P
a
tt
er
n

Q
3

:
D
o
u
b
ly
p
a
rt
ia
l

Q

-n
o
d
e

...
...

...
...

...
...

...

R
ep
la
ce
m
en
t

Q
3

,
n
o
d
e
R
O
O
T
(T

,S

)

Figure 3.4: Templates

15



time consuming. Hence only children of P -nodes and endmost children of Q-

nodes have valid parent pointers between reductions, while interior children

of Q-nodes borrow one from their endmost siblings when they become part

of a pruned subtree.

Bubble and Blocks

Bubble builds the pruned subtree of T with respect to Si from the leaves

upwards, connecting it by giving valid parent pointers to interior children of

Q-nodes, and setting a count at each internal node of its number of pertinent

children. If Bubble reaches the root of T before it has determined the root

of the pruned subtree, a �ag is set (OFF_THE_TOP).

When an interior child of a Q-node is encountered, and none of its im-

mediate siblings have a valid parent pointer, it is blocked for the time being.

If one or both of the node's siblings are also blocked, they become a block

of blocked nodes, or a blocked sequence. In a later step, when a sibling of a
blocked node receives a valid parent pointer from another sibling, the pointer
is passed on, and the entire block is unblocked. A count of both the num-
ber of blocked nodes and of blocks are kept (BLOCK_COUNT). Bubble is only

allowed to leave one block in the PQ-tree, the sequence under the Q-node,
root of the pertinent subtree, that matches the pattern of template Q3. In
this case, a pseudo node is used, alluding the doubly partial Q-node. If any
other blocked sequences remain, Bubble returns T (∅,∅), the null tree.

Procedure Bubble can be brie�y sketched as follows.

procedure Bubble(T, S)
begin

for each leaf X ∈ S do enqueue X;
while |queue| + BLOCK_COUNT + OFF_THE_TOP > 1 do

if |queue| = 0 then return T (∅,∅); {No consecutive sequence is possible}

else

dequeue X and mark X BLOCKED;
if X has valid parent pointer or is adjacent to unblocked sibling then

mark X UNBLOCKED;
if X is marked UNBLOCKED then

if X is ROOT(T, Si) then OFF_THE_TOP := 1;
else

Y := PARENT;
update blocked siblings of X;
if Y has not been enqueued earlier then enqueue Y ;

�;
else update BLOCK_COUNT;

�;
od;
if BLOCK_COUNT = 1 then make PSEUDONODE ROOT(T, Si);

16



return T ;
end;

Nodes touched by Bubble are put on a stack, and reset after each re-

duction. New nodes created by Reduce are also put on the stack.

Reduce and Template Matchings

Reduce carries out the template matching for every node in the pruned sub-

tree, in order to gather the full leaves in one pertinent sequence. Care is taken

F

E D

B C

A G H

Figure 3.5: Tree of �g. 3.2 af-
ter reduction of S4 = {B,C,G}.

so that no node is matched until all

its pertinent children are matched. The

last node matched is ROOT(T, Si), every

node matched before that has only part
of the pertinent sequence in its frontier.
This is why some templates apply only to

ROOT(T, Si), and others only to nodes not
root of the pertinent subtree.

Template P3 creates a non proper tree,
since the new Q-node has just two children.
This is always corrected by a later template,

that either incorporate the node as part of another Q-node, or adds more
children to it. If a P -node ends up with only one child after replacement,
the child takes its place and the P -node is removed from the tree. Hence the

PQ-tree is always proper after Reduce.
If a node does not match any legal template pattern, then no permissible

permutations of U with respect to S exists, and T (∅,∅) is returned. Fig. 3.5
shows the PQ-tree of �g. 3.3 after reduction with respect to S4. Trying to

reduce S5 = {B,E,H} results in the null tree, since these elements cannot be
made consecutive in any frontier of T (U , S4) of �g. 3.5.

Procedure Reduce can be brie�y sketched as follows.

procedure Reduce(T, S)
begin

for each leaf X ∈ S do enqueue X;
while |queue|>0 do

dequeue X;
if X is ROOT(T, Si) then

if some template for ROOT(T, Si) applies to X then

substitute the replacement for X in T ;
else return T (∅,∅);

else {X is not ROOT(T, Si)}
if some template for nodes not ROOT(T, Si) applies to X then

substitute the replacement for X in T ;

17



else return T (∅,∅);
�;
if ROOT(T, Si) is reached then return T ;
else if every pertinent sibling of X has been matched then

enqueue the parent of X;
od;

end;

Some templates apply only to nodes ROOT(T, Si), others only to nodes

not ROOT(T, Si), while some apply to both kinds of nodes. This divides the

templates into two not disjoint sets. Templates are called in a special order

by Reduce, the lexicographic order within each set, so that the templates

have implicit knowledge of the node being matched. For instance, a P -node
reaching P4 must have at least one partial child, since otherwise it would

have been matched and handled by P1 or P2.

3.2 Planarity testing with PQ-trees

Since planarity can be characterized by the existence of a planar embedding,
a natural way to check for planarity, is to search for such an embedding. If
no planar embedding can be found, the graph is not planar. This method
underlies both main types or approaches for planarity testing algorithms,
path-addition (also called edge-addition) and vertex-addition. Although no

embedding is explicitly exhibited by either approach, all information needed
to do so is present during the course of the algorithm ([HT74, BL76, CNAO85,
Joh98]).

The �rst linear planarity testing algorithm was based on path addition
and is due to Hopcroft and Tarjan [HT74]. The �rst planarity testing al-
gorithm based on the vertex addition approach that reached the linear time

bound, is due to Booth and Lueker [BL76], and is built on the algorithm

given in [LEC67]. The idea of Lempel, Even and Cederbaum was that when
trying to �nd a planar embedding of a graph, an ordering, or permutation,
of the edges around each vertex has to be established, ensuring that no edges

will cross. Planarity is veri�ed for the induced subgraph on vertices 1 through
k, and then checked for the incoming edges of vertex k + 1.

For this algorithm, the graph is assumed to be st-numbered. The con-

cept of st-numbering is due to Lempel, Even and Cederbaum. They proved

in [LEC67] that a graph can be given an st-numbering if and only if it is
biconnected.

De�nition 3.1 ([ET76]) Given any edge (s, t) in a biconnected graph G
with n vertices, the vertices of G can be numbered from 1 to n so that vertex

18



1 2

3

4

5

6

1

2
3

4

1

2
3

4

6 5 6 5 6

1

2
3

4

6 6 5 5 6

G G4 B4 B
′

4

Figure 3.6: Graph G, embedded subgraph G4, and bush form B4.

B
′

4 have all virtual vertices labeled 5 consecutive.

s receives number 1 and vertex t number n, and any vertex except s and t is

adjacent both to a lower-numbered and to a higher-numbered vertex. Such a

numbering is called an st-numbering of G.

The next section explains this concept further, and gives an example of how
a graph is given an st-numbering, using the linear algorithm of [ET76].

The cornerstone of the approach of [LEC67] is the bush form.

De�nition 3.2 The induced subgraph on vertices 1 through i of G is Gi,

1 ≤ i ≤ n. The bush form Bi is de�ned as follows: Gi is the embedded

vertices and edges of Bi. In addition, Bi consists of all edges (j, k) of G,
where 1 ≤ j ≤ i, and i < k ≤ n. These edges are called virtual edges, and

their head vertices are called virtual vertices. Virtual edges and vertices

are not yet embedded. See �g. 3.6.

Virtual vertices have only one entering edge each, so there may be several

virtual vertices with the same label. Bush forms are drawn with all virtual
vertices on the outer face, lined up below Gi. Since a bush form grows step

by step downwards from the �rst embedded vertex, vertex 1 will always be

on top. Vertex i + 1 is added to Bi by making all virtual vertices labeled

i+ 1 consecutive. This is done by rearranging outgoing edges of cut vertices

and �ipping biconnected components.

Lempel, Even, and Cederbaum showed in [LEC67] that an st-numbered

graph G is planar if and only if for every Bi, 2 ≤ i ≤ n − 2, there exists a

planar drawing of Bi such that all virtual vertices labeled i+ 1 appear as a

consecutive sequence. This results in the following lemma, shown by [Eve79].

Lemma 1 Let G = (V,E) be a planar, biconnected graph with an st-num-

bering, and let 1 ≤ i ≤ n. If G is embedded such that both s and t lie on the

outer face, then all vertices and edges of G−Gi are drawn in the outer face

of the induced subgraph Gi of G.

19



Lempel, Even, and Cederbaum used formulas to keep track of legal per-

mutations of the virtual vertices of the bush form, and did not achieve a

linear time bound. With the linear st-numbering algorithm of [ET76], Booth

and Lueker [BL76] achieved a linear bound on the vertex-addition algorithm

using their novel data structure PQ-trees. How PQ-trees and bush forms

correspond is explained in section 3.2.2.

Planarity is not a graph property dependent upon whether the graph is

connected or biconnected, directed or undirected, simple or with multiple

edges. A disconnected graph is planar if and only if its connected compo-

nents are planar, and a connected graph is planar if and only if its bicon-

nected components are planar. Multiple edges can be embedded in parallel.

Thus any graph can be tested for planarity, by testing the underlying simple,

undirected graph, one biconnected component at a time. The biconnected

components can be found by a slight modi�cation to the depth �rst search
procedure of the st-numbering algorithm [Eve79].

We will here give a short description of the basic elements of the st-num-
bering algorithm. Graphs considered will be �nite, simple, undirected, and
biconnected.

3.2.1 st-numbering

The purpose of the st-numbering is to order the vertices by numbering, in
such a way that when checking the graph for planarity, the algorithm will not
�run dry�. That is, when �nishing one vertex, there will always be outgoing
edges to higher-numbered vertices, and all vertices, except the �rst one, will
always have incoming edges from lower-numbered vertices. Because of this,
the output graph of the st-numbering algorithm will in essence be treated

as a directed graph, with edges directed from lower-numbered to higher-

numbered vertices. This gives a network with one source (node s), one sink
(node t), and no cycles.

Given a biconnected graph, this is achieved by selecting an edge (s, t)
and giving vertex s number 1 and vertex t number n. Numbering of the
remaining vertices is done such that each vertex is adjacent both to a lower

numbered and to a higher numbered vertex. If edges then are imagined to

have direction from lower to higher numbered vertices, we get the network

described above.

In [ET76], Even and Tarjan gave a linear (that is, O(n + m)) algorithm
for giving an st-numbering to a biconnected graph. Here we give a brief
introduction to the algorithm with an example, the reader is referred to

[ET76] or [Eve79] for further details.

The algorithm takes a biconnected graph G as input, and produces as

20



1

2

3

4

5

7

6

Vertex Adjacent to

no: vertices:

1 2 4 5 7

2 1 3 4

3 2 5 6 7

4 1 2 6

5 1 3

6 3 4 7

7 1 3 6

Figure 3.7: A biconnected graph. Left: Drawing. Right: Adjacency list.

output an st-numbering for G. A biconnected graph is given in �g. 3.7. The

adjacency lists in the right column is the form of both input and output
of the algorithm, with an additional line �rst, containing n, the number of
vertices.

1

2

3

4 5

76

2

1

3

4

5 6

7

Figure 3.8: Graph after
Dfs, vertices with preorder

numbering, original num-
bers in italics.

First, a depth �rst search (Dfs) is carried
out, in order to �nd a spanning subtree of G

and to give the vertices a temporary, preorder
numbering according to theDfs (�g. 3.8). The
depth �rst search start in vertex t, with edge
(t, s). Edges in the spanning subtree are called
tree edges (with an imagined direction from the

root), the rest are called back edges (with di-
rection towards the root).

The second part of the algorithm is the
PathFinder procedure. It investigates every

path between two given vertices, marking the

edges and vertices old as they become part of a
path. When all paths have been investigated,

an empty path is returned. The initial path is

{t, (t, s), s}.

The �nal part is stNumber, that uses
PathFinder to give the vertices st-numbers. The vertices of the path re-

turned are placed on a stack, the last one on top. The edge between the
two topmost vertices are then extended to a path by PathFinder. When

an empty path is received, the top vertex on the stack is given the next st-
number. The vertex to receive number 1 is s. t will stay the bottom element
of the stack throughout, and receive number n. Fig. 3.9 gives the resulting
st-numbering of the graph of �gs. 3.7 and 3.8.

All graphs considered for the rest of this thesis are assumed to be st-

21



1

2

3

4

57

6

Si S
′

i

→ {(1, 2), (1, 5), (1, 7)}

{(1, 2)} → {(2, 3), (2, 5)}

{(2, 3)} → {(3, 4), (3, 7)}

{(3, 4)} → {(4, 5), (4, 7)}

{(1, 5), (2, 5), (4, 5)}→ {(5, 6)}

{(5, 6)} → {(6, 7)}

Figure 3.9: st-numbered graph on the left. Outgoing and incoming edge sets

on the right, used by Planar.

numbered, and all references to vertex number refer to the st-number of each
vertex.

3.2.2 Planar

When operating on the vertices and edges of a graph in order to check pla-
narity, the �universal� set U changes for each vertex. In the beginning, U1

consists of the outgoing edges of vertex 1 in G, S
′

1. Then for each vertex i,
i = {2, . . . , n− 1}, the tree is reduced with respect to Si, the set of incoming

edges of i. In the ith step, after the reduction of Ti−1, the new vertex i is
added to the tree, by exchanging the consecutive sequence of elements from

Si with the set of outgoing edges from i, S
′

i, thus creating Ti. Ui is updated
accordingly.

The PQ-trees T1, T2, . . . , Tn−1 built by Planar represent exactly the

bush forms B1, B2, . . . , Bn−1 of [LEC67]. Leaves are virtual edges, P -nodes
are cut vertices, and Q-nodes are biconnected components. This is exempli-
�ed in �g. 3.10. A bush formBi with all vertices labeled i+1 as a consecutive

sequence exists if and only if the PQ-tree Ti can be reduced such that all

its pertinent leaves appear as a consecutive sequence in the frontier of all

permutations of Ti [BL76]. Tn−1 does not need to be reduced, all its leaves

represent incoming edges to vertex n.

22



1

2
3

4

6 5 6 5 6

2,6

4,5 4,6

3,5

1,6

1

2
3

4

6 6 5 5 6

2,6

4,6 4,5

3,5

1,6

B4 T4 B
′

4 T
′

4

Figure 3.10: The correspondence between a PQ-tree and its bush form.

B4 and B
′

4 are from �g. 3.6. T4 and T
′

4 are equivalent PQ-trees.

boolean procedure Planar(V, E)
begin

U1 := the set of edges whose lower-numbered vertex is 1;
T1 := T (U1,U1);
for i := 2 to n− 1 do

{Reduction step}

Si := the set of edges whose higher numbered vertex is i;
Ti−1 := Bubble(Ti−1, Si);
Ti−1 := Reduce(Ti−1, Si);
if Ti−1 = T (∅,∅) then return FALSE;
else

{Vertex addition step}

S
′

i := the set of edges whose lower-numbered vertex is i;
if ROOT(Ti−1, Si) is a partial Q-node then

replace the full children of ROOT(Ti−1, Si) and their descendants

by T (S
′

i , S
′

i);

else replace ROOT(Ti−1, Si) and its descendants by T (S
′

i , S
′

i);

Ui := Ui − Si ∪ S
′

i ;
�;

od;
return TRUE;

end;

If ROOT(Ti−1, Si) after reduction is a Q-node with one empty child, the
vertex addition step will leave it with only two children. To keep the tree

proper, the non proper Q-node is replaced by a P -node.
The table of �g. 3.9 on the preceding page shows the sets Si and S

′

i of the

incoming and outgoing edges of vertex i for our example graph. Here U1 =
S
′

1 = {(1, 2), (1, 5), (1, 7)} and S2 = {(1, 2)}. After the �rst reduction, S2 is
removed from U1, and S

′

2 = {(2, 3), (2, 5)}, the outgoing edges of vertex 2, is

added, so that in the second step U2 = {(1, 5), (1, 7), (2, 3), (2, 5)}.
The trees are numbered accordingly: T1 = T (U1,U1), and then the sub-

script changes with U 's subscript (�g. 3.11), so that Ti−1 is reduced in step

i, creating Ti.

23



1,2 1,5 1,7

T1

U1 = {(1, 2), (1, 5), (1, 7)}

1,5 1,7

2,3 2,5

T2

U2 = {(1, 5), (1, 7), (2, 3), (2, 5)}

1,5 1,7

2,5

3,4 3,7

T3

U3 = {(1, 5), (1, 7), (2, 5), (3, 4), (3, 7)}

Figure 3.11: The initial tree, and the result of the �rst two iterations of the

main loop of Planar, i = 2, 3.

The remaining PQ-trees and some corresponding bush forms from run-
ning the example graph of �gs. 3.9 and 3.11 through Planar, are shown in
�g. 3.12.

Correctness and complexity

This planarity testing algorithm is merely an e�cient implementation of the
planarity testing algorithm presented in [LEC67]. A proof of the correctness
can be found there. Otherwise the algorithm is quite intuitive, and the reader
should be able to convince himself that the algorithm works.

The st-numbering algorithm of [ET76] is O(n + m). The total number
of nodes handled by all calls to Bubble is O(n +m). The amount of work
done for each node is bounded by a constant. The number of P -nodes in a
PQ-tree Ti is at most i, the number of Q-nodes is also at most i, and the

number of pertinent leaves is |Si+1|. Summing up these numbers for all Ti's
gives O(n+m). The time bound for Reduce is also O(n+m), following the
same arguments as for Bubble. Initialization and the vertex addition step

takes O(n+m) time as well, rendering a total time complexity of O(n+m).
Since Planar only needs to be called for graphs with m ≤ 3n − 6 (see

section 2.1.1), the algorithm is O(n), linear in the number vertices of G.

3.3 Implementation

PQ-trees are a tool, a basis for further work in this thesis. Therefore, an

existing implementation were sought. The choice fell on an implementation

provided by Sebastian Leipert ([Lei97]), now also a LEDA-Extension Pack-

age (http://www.mpi-sb.mpg.de/LEDA/). The main reasons for choosing

24



1,5 1,7

2,5

3,7

4,5 4,7

1

2

3

4

5 5 57 7 7

↔

1

2

3

4

5 5 5 777

T4 B4 B4 with all vertices

labeled 5 consecutive

1,5 1,7

2,5

3,7

4,5 4,7

→ 1,5 1,7

3,74,5 4,7

2,5

P3 P5

→ 1,5

2,5 3,74,5 4,7

1,7 →

2,5 3,74,5 4,71,5

1,7

P5 P4

3,74,75,6

1,7

T5

1

2

3

4

5

7776

3,74,7

1,7

6,7

T6

Graph is planar!

1

2

3

4

5

6

7

B5
Planar embedding

(B7)

Figure 3.12: Running of the example graph through Planar, i = 4, 5, 6.
Elements of S4, matched by L1, are marked with a_ underneath, pertinent

internal nodes are marked by shading. The two middle rows show the result

of all non trivial matchings done by Reduce. The template name is stated
for each.

25



pqNode

node

leaf

basicKey

key

T

nodeInfo

X

internal

Y

Figure 3.13: Class structure of Leipert's implementation.
Top �gure show the class structure of the nodes in the PQ-tree, the bottom

is the information keepers. Each information keeper has a pointer of the
speci�ed argument type.

Leipert's implementation, was the idea behind it: an implementation that
provides the features necessary to extend it to other purposes, and the ex-
tensive documentation provided with it ([Lei97]).

Leipert has implemented the general PQ-tree data structure of [BL76] as

a template class in C++. Readers not familiar with C++ and templates are

referred to [Str97]. The speci�cation as a template class enables the user to
specify any type of elements of U to be handled by the PQ-tree.

3.3.1 S. Leipert's implementation of PQ-trees

The PQ-tree template has three template arguments, T, X, and Y. All classes

of the PQ-tree implementation are parameterized, with the types T, X, and
Y as their parameters.

The class structure for the classes in the PQ-tree is shown in �g. 3.13.

Leipert uses the two subclasses of node, pqNode and leaf, to build the

PQ-tree. All internal nodes are of one type, pqNode. The only di�erence

between P - and Q-nodes is the values of certain �elds and how the child list

is accessed. This means that children are linked in a doubly linked list both

26



for P - and Q-nodes, but for endmost children of Q-nodes one sibling pointer

is nil.

pqNode and leaf are only concerned with their place in the tree, they

leave all information handling to the subclasses of basicKey. Type T is

essential for the PQ-tree template to work. It is the type of the elements of U .
Every leaf object in the PQ-tree must be associated with an element of U .
The maintenance of this pointer is fully taken care of by the implementation,

it is part of the general structure of PQ-trees. Thus, class leaf has a pointer
of type key and class key has a pointer of type T. The implementation ensures

that each key object is assigned to exactly one leaf object, and that every

element of U is assigned to exactly one key.

Additional information, speci�c either to P - and Q-nodes or of general
interest to all nodes in the PQ-tree, can also be included. Class node has

a pointer of type nodeInfo, and nodeInfo has a pointer of type X. Thus
nodeInfo is meant to hold information that may concern all nodes, while in-
formation speci�c to internal nodes should be made type Y. Class pqNode has
a pointer to internal, that has a pointer of type Y. To include information

of type X and Y in the tree, the user must make a derived class of PQTree to
maintain these pointers.

3.3.2 Implementation of Planar

For the implementation of Planar, we made a derived subclass pqtree of
the template class PQTree. This work was done jointly with J.-E. Bye Jo-
hansen, who also provided an implementation of the st-numbering algorithm
of section 3.2.1. A description of this implementation can be found in [Joh98].

A procedure Planar, as well as a procedure readStNumbering for reading

st-numbered graphs from �le, was added to the class pqtree. The edge sets

Si and S
′

i, necessary for procedure Planar, are built.
Since the possibility to handle self-made types was present, and mapping

the edges to integers makes output from the PQ-tree cumbersome to read,
a new type, class edge was designed. Each edge object carries the number

of its head and tail vertex, making it easier to give readable output from

the program. As long as a mapping number is one of the attributes of class
edge, included for handling edges outside of Planar, it is quite possible to

implement Planar by using integer as template type T instead of edge (see
[Joh98]). In this version, however, edge was used.

All code �les are found in appendix A.

27



28



Chapter 4

PQ-trees and obstructions to

planarity

In chapter 3, a planarity testing algorithm using the PQ-tree data struc-
ture was presented. Both this algorithm, the vertex addition algorithm of
[LEC67] and [BL76], and the path addition algorithm of [HT74] have been
used for other purposes than planarity testing ([CHT93, Cim95, JTS89,
Kan92, CNAO85, Kar90]). This chapter will concentrate on one of these
articles, [Kar90], where a linear algorithm for explicitly identifying obstruc-

tions to planarity is given. This article formed the basis for our search for a
new approach to a skewness heuristic.

Given a non planar graph G, then a subgraph G
′
of G, where G

′
is home-

omorphic to K3,3 or K5, is an �obstruction to planarity�. G can be made
closer to planarity by removing such an obstruction. To remove an obstruc-

tion, deleting one edge from the subgraph is enough. In [Kar90], Karabeg
uses Planar, the planarity test of section 3.2.2, with some additional data

structure added to the PQ-tree, to detect obstructions to planarity when
Planar fails.

A challenging part of designing a skewness heuristic using PQ-trees, is
how to add to the existing data structure so that more information can

be handled by PQ-trees, while preserving e�ciency. The data structure of

[Kar90] proved to provide information useful for determining a minimal set
of edges to remove from a planar graph. Accordingly, sections 4.1 and 4.2
are devoted to this new data structure that enables obstructions to planarity

to be found by the PQ-tree. Section 4.3 presents how this additional data

structure was used in [Kar90], while section 4.4 discusses to what extent the

contents of this chapter can be used for a skewness heuristic.

29



4.1 Additions to the PQ-tree

During Planar, the planarity testing algorithm described in the previous

chapter, a series of PQ-trees T1, T2, . . . , Tn−1 are constructed, corresponding

to the bush forms de�ned on page 19. A PQ-tree Ti only carries information

about Ui, the virtual edges of the bush form, and how they are connected to

the embedded subgraph Gi. The structure of this subgraph is to some extent

represented by the internal nodes in the tree. P -nodes represent cut vertices
on the outer face of the bush form, as long as their children can be rearranged.

Biconnected components are represented by Q-nodes, as long as they have

more than two vertices with outgoing edges. Thus, only structures that can

cause virtual vertices to change place are represented, and no information

about the vertices and edges that these structures consist of, is available.

4.1.1 Additional information

When a Kuratowski subgraph is detected, some of it has to have been em-

bedded already, so in order to exhibit its vertices and edges, additional in-
formation about structures in the embedded subgraph needs to be present.
An essential part of this information is the vertex number, an integer rep-
resenting the st-number of each vertex, and head and tail vertex of each
edge. Vertices of degree two build chains that must be kept track of. For

biconnected components, the outer mesh is necessary.

De�nition 4.1 An outer mesh is the cycle made up of the edges and ver-

tices of the unbounded region in a planar embedding of a biconnected graph.

Figure 4.1: Outer mesh of a biconnected graph
The �lled vertices determine the outer mesh of the graph. The open vertices

are internal.

30



De�nition 4.2 Outgoing edges of vertices on the outer mesh of a bicon-

nected component, not embedded in the same component, are called hanging

edges.

De�nition 4.3 A biconnected component in a bush form, attached to the

rest of the subgraph at a single vertex, is called a triangle. The vertex of

attachment is called the joint. The outer mesh of a triangle is called the

boundary of the triangle. The �rst two vertices with hanging edges en-

countered when walking along the boundary in both directions, are endmost

vertices. Other vertices with hanging edges, between endmost vertices, are

interior vertices. Vertices on the boundary without hanging edges are idle.

5

6

7

8

9

10

11

12

13

25 18 19 14 15 20 16

Rest of B15

5

6

9

11 12 13

7

8

10

25 18 19 14 15 20 16

Rest of B15

Biconnected component, corre-

sponding to the Q-node below.

25

18 19 14 15 20 16

Triangle with hanging edges, boundary

in bold lines. Vertex 5 is joint, 6 and

13 endmost vertices, and 11 and 12 in-

terior vertices. Vertex 9 is idle, and 7,

8, and 10 are internal vertices to the tri-

angle. The degree of this biconnected

component is 5.

Figure 4.2: Biconnected component and boundary of triangle.

De�nition 4.4 The degree of a biconnected component is the number

of vertices with edges entering or leaving the component, in other words, the

number of vertices with hanging edges plus one for the joint.

Fig. 4.2 shows examples of these concepts.

31



4.1.2 Additional data structure

All explicit information present in a PQ-tree is in the leaves, holding the

elements of U . When working with graphs, this information is in the vir-

tual edges of the corresponding bush form. The embedded subgraph of the

bush form is represented by P - and Q-nodes, corresponding to biconnected

components and cut vertices. Accordingly, information about structures in

the subgraph must be held by internal nodes of the PQ-tree. The additional
data structure in the expanded PQ-tree is described in the following. The

same example graph G is used in �gs. 4.3�4.6.

Vertex number

The embedded subgraph consists of vertices and edges. As mentioned earlier,
the number of each vertex is essential information. The set S

′

i is the outgoing
edges of vertex i, introduced to the tree Ti in iteration i. When |S

′

i| > 1, a new
P -node will be parent of the new leaves and receive i as its vertexNumber.

All P -nodes are introduced to the PQ-tree this way.If |S
′

i| = 1, the tail
vertex of the single edge will be i, and so the number is present in the PQ-
tree when needed. Numbers inside P -nodes in the PQ-trees of �g. 4.3 are
vertexNumbers.

Chain

Chains of vertices of degree two are not visible in the PQ-tree, and bicon-
nected components of degree two meet the same fate (�g. 4.3). Chains are
built when vertices of degree two are embedded, that is, when |Si| = |S

′

i| = 1
(T4 and T6 of �g. 4.3), or when all hanging edges from a biconnected compo-

nent are tied up in the new vertex, leaving a component of degree two (T5 of

1

233

4

5

5 5

6

7 10 11

12

1

25

1

3

5

7 8

6

7 10 11

12

1

25

1

3

5 1

6

9

7 8

9

7 10 11

12

1

23

4

5

6

7 8 9 7 10 11 12

T4 T5 T6 B6

S5 = {(3, 5), (4, 5)} S6 = {(1, 6)} S7 = {(4, 7), (6, 7)}

S
′

5 = {(5, 7), (5, 8)} S
′

6 = {(6, 9)} S
′

7 = {(7, 9), (7, 10)}

Figure 4.3: Building chains in the PQ-tree. T4, T5, and T6.

Chains are represented as upside down stacks of vertex numbers.

32



1

2

1

6

9

j e e

1-3-5-7-2

8 7 7

9 12

10 11

1

27

1

6

9

j e e

1-3-5-7-2

8

9 12

9 10 10 11

1

27

1

6

9
5

8

9

j e e

1-3-5-7-2

9

9 12

9 10 10 11

1

2
3

4

5
6

7

8

9 9 10 10 11 9 12

T6 T7 T8 B8

After reduction, S8 = {(5, 8)} S9 = {(6, 9), (7, 9)}

Q-node is ROOT(T, Si). S
′

8 = {(8, 9)} S
′

9 = {(9, 12)}

Figure 4.4: Boundary of Q-nodes. T6, T7, and T8.

A biconnected component with boundary has been constructed. A chain is

part of the boundary, creating an idle element (3 ). Boundaries are repre-

sented as a list of vertex numbers, joint and endmost elements marked.

�g. 4.3). The vertices connecting the chain to the rest of the subgraph is also

part of the Chain.

In the PQ-tree, this is the case when P1 or Q1, and sometimes P2,
matches ROOT(T, Si), as in T4 of �g. 4.3. Biconnected components of degree
two are represented by a simple path from the joint along the boundary to
the single vertex with hanging edges. This component may later become part
of the outer mesh of another biconnected component, but it will still be free

to �ip so that the side represented by the Chain can be on the boundary
(B8 of �g 4.4).

Since parents in the PQ-tree have several children, while children have
only one parent, a Chain is held by the child. This ensures that children
of Q-nodes always have the number of the vertex on the boundary to which

they are connected, and are able to update their parents' boundary when the

extended PQ-tree is traversed bottom up.

Boundary

Q-nodes represent triangles, biconnected components in the embedded sub-

graph, and thus they have a Boundary.

A Q-node left with only two children after the vertex addition step, is
replaced by a P -node. Such a P -node, that represents a biconnected compo-
nent of degree three in the bush form, is a non proper P -node, and inherits the

Q-node's Boundary (T10 of �g. 4.6). Accordingly, only proper P -nodes will
have vertexNumber, while non proper P -nodes and Q-nodes have Boundary.

All Q-nodes start out as a non proper Q-node, a Q-node with only two

children, created by template P3. (See �g. 3.4 on page 15.) This new Q-

33



1

2

1

6

9
5

8

9

j e e

1-3-5-7-2

E F P E

F F T T

-7-

F

T

9

9 12

9 10 10 11

1

2

1

6

9
5

8

9

j e e

1-3-5-7-2

E F F E

F F T T

9

9 12

9 10

10 11

1

2

j e e

1-6-9-7-2

E E E E

F T T T

9 9

12

9 10

10 11

(a) T8 after 7 has (b) The Q-node has (c) Reduction is �nished,

been matched by P3 been matched by Q2 and boundary updated.

Figure 4.5: The reduction of T8 and T9.

The third row of the boundary is the STATUS of each element, E = EMPTY,

F = FULL, P = PARTIAL. The second row is their CHILD �eld, telling if the

corresponding node has empty children. F = FALSE, T = TRUE.

node will grow into a proper Q-node before the last step of the reduction. A
biconnected component with an outer mesh is created when the new vertex
is added, and the boundary comes into existence. (Figs. 4.4 and 4.5.) In the
PQ-tree however, in order to have the required information about the new
Boundary at this point, the Boundary of a Q-node is built bit by bit by each

template that handles it. When ROOT(T, Si) is reached, the boundary can
be completed, since all necessary information is available (�g. 4.5 and T6 of
�g. 4.4).

Boundary of a node X, denoted Boundary(X), consists of elements in a

circular, doubly linked list, one element for each vertex on the outer mesh of
the triangle. Each element has a NUMBER equal to the number of the vertex it
represents. Track is kept by Boundary of the joint and two endmost elements,
representing the corners of the triangle. To be able to distinguish between

the two endmost elements, and �nd interior elements, the joint is de�ned as

the �beginning and end� of the circular list, its left pointer always leading to

the left endmost �rst (END1), and the right pointer to the right endmost �rst
(END2). This doubly linked list is represented as a simple list in �gures, with
the joint as the leftmost element, see for instance �gs. 4.4 and 4.5.

Each element has a STATUS that equals the status of the node representing
the vertex in the PQ-tree. Idle elements will have status EMPTY. In addition

the element has a �eld CHILD, with the value TRUE as long as the correspond-

ing node has empty children, and value FALSE if that node has only full
children or if the corresponding vertex is idle already. These �elds are shown
for non idle elements in the reduction of T8 in �g. 4.5. JOINT and endmost

elements, as well as idle elements, are marked for all boundaries in �gs. 4.4,

4.5, and 4.6. Elements are also capable of holding a Chain. For instance, the

Chain 5 8 9 in (a) and (b) of �g. 4.5 has actually been passed on to element

34



1

2

j e e

1-6-9-7-2

12

10 10

10 11

1

2
3

4
5

6

7
8

9

10 10 10 11 12

1j e e

1-6-9-10-2

12

1111

T9 B9 T10

S10 = {(2, 10), (7, 10), (9, 10)}

S
′

10 = {(10, 11)}

Figure 4.6: Reduction of T9.

The actual reduction is not shown. The Boundary of the Q-node, non proper

after vertex addition, is passed on to the non proper P -node of T10.

5 by template L1. This fact is not important, and for simplicity, this will not
be re�ected in the �gures. On the other hand, when such Chains obviously

will be internal to a biconnected component when the new vertex is added,
as with 5 8 9 in (c) of �g. 4.5, they will be removed, since the corresponding
element will be thrown away from Boundary.

A Boundary that is part of a pruned subtree has a pertinent sequence.
The �rst pertinent element encountered walking left to right along the bound-

ary from JOINT, is denoted BEGFULL, and the last one ENDFULL. These can be
endmost or interior. The last element encountered before BEGFULL is denoted
ENDEMPTY, and BEGEMPTY is the �rst element encountered after ENDFULL.
These can be any element in Boundary, including idle elements and JOINT.

Elements on the boundary are updated when their children are matched.

In �g. 4.5(a), all children of theQ-node have been matched, and the pertinent
sequence consists of elements 5 and 7, BEGFULL and ENDFULL, respectively.
This makes element 3 ENDEMPTY and 2 BEGEMPTY. The partial child has been

matched by P3, creating a non proper Q-node with a single element in its

boundary. This element represents the same vertex as the P -node did, and
has status FULL and child �eld TRUE, since the Q-node has a full child. The

corresponding element on the parent's boundary is set to PARTIAL when
parent is told of partial child.

When the Q-node is matched by Q2, its partial child is �swallowed�. In
Boundary(Q), the partial element is replaced by the Boundary of the partial

child, in this case one element. This is visible in the changed status of

element 7.

ROOT(T8, S9), node 1, is matched by P6. P6 leaves the partial child as

root of the pertinent subtree. Since this is the last step of the reduction,

35



the vertex addition is carried out in Boundary(Q) at this point. The Chain

of the full child of node 1 is inserted between element 1 and the new ele-

ment, creating a new idle element. On the other side, the new element is

connected to ENDFULL. Those elements that are removed from the boundary,

represent vertices that become internal to the biconnected component when

the new vertex is added, so that the boundary of the Q-node in T9 re�ects

the boundary of the biconnected component in B9 (�g. 4.6).

Elements touched by the reduction are reset when nodes in the pruned

subtree are reset, after the vertex addition step of Planar. In (c) of �g. 4.5,

Boundary(Q) is shown after this resetting.

The procedures handling the construction of boundaries during reductions

are described in section 4.2. They are called by the corresponding template

procedures in the PQ-tree, who also provide the necessary information about

e.g. partial children.

Complexity of the additional data structure

From the above examples, it should be clear that, if implemented correctly,
maintaining the Boundary requires no more time than handling the PQ-tree.
Each template called by Reduce will take a constant amount of time extra
to deal with the Boundary. Building and maintaining a chain does also take

constant amount of time. The total number of elements in all boundaries,
not counting the joints, are O(n). The number of joints equals the number
of biconnected components of degree at least three in the bush form. This
number is at most O(1

3
n), since one component consists of at least three

vertices.

The pointers to BEGFULL, ENDFULL, ENDEMPTY, and BEGEMPTYmust be set

once for all boundaries in the pruned subtree. At most O(n) elements will
be traversed in total in each reduction. Pointers JOINT, END1 and END2 are
maintained by each boundary, and take only constant time to be set.

Thus the conclusion should be clear, this additional data structure does

not increase the time complexity of the PQ-tree. A more thorough proof can

be found in [Kar90].

4.1.3 Building the pruned subtree

Planar of [BL76] is only concerned with deciding whether a graph is planar
or not. Reduce stops if a node cannot be matched, Bubble breaks o� and

returns the empty tree if it discovers that the pruned subtree cannot be built.

When working with non planar graphs, it is essential that Bubble always

completes the building of the pruned subtree. Therefore, it must be modi�ed.

36



New version of Bubble

This new version, denoted BubblExt, will be a slightly modi�ed version of

Bubble. For completeness, the parts of Bubble that are unchanged are

described as well. Recall also the short outline of Bubble given on page 16.

All nodes in the PQ-tree have a mark, initially set to UNMARKED. This

�eld is used by Bubble, and reset after each reduction, along with all �elds

used by Bubble and Reduce, such as the counter of descendant pertinent

leaves. Bubble has two counters, BLOCKED_NODES and BLOCK_COUNT.

The �rst time a node is seen by Bubble, it is put in a queue and marked

QUEUED.When dequeued, the node is marked BLOCKED. If Bubble succeeds in

�nding a valid parent pointer, the node is marked UNBLOCKED, and its parent

is put in the queue if it is still UNMARKED. Nodes that remain blocked, are

counted by BLOCKED_NODES. Sequences of blocked nodes, blocks, are counted
in BLOCK_COUNT. When a sibling of a blocked node receives a valid parent
pointer in a later step, it is passed on to the whole block, and the numbers

BLOCKED_NODES and BLOCK_COUNT are counted down accordingly.

In BubblExt, all nodes ever counted in BLOCKED_NODES are put on a
stack. If Bubble is not able to unblock all blocks before the queue empties,
it returns the empty tree. BubblExt will instead �nd valid parent pointers
for all blocked nodes. The stack is emptied, node by node. Nodes marked
UNBLOCKED are just thrown away. For each node X marked blocked, a proce-

dure FindParent is called. FindParent traverses the siblings of X until
a valid parent pointer is found. This pointer is given to X, and then passed
on to its blocked siblings in the same way described above for Bubble. The
parent of X is also told of its pertinent children and, if still UNMARKED, put

in the queue. BLOCKED_NODES and BLOCK_COUNT are also updated. When

BLOCKED_NODES reaches zero, the stack is emptied, since no more blocked
nodes remains.

If the queue is no longer empty, Bubble continues to build the pruned

subtree, as described above. If the queue empties with one block left, without

the root being reached, Bubble places that block as children of a pseudo

node, and makes that node ROOT(T, Si). BubblExt has to �nd the real

pertinent root, so FindParent is called in this situation as well.

FindParent is only called when Bubble has failed to �nd a valid parent

pointer for some blocked nodes. FindParent will only go as far as necessary
to �nd a valid parent pointer, but it might have to traverse the sibling chain
all the way to the end if no unblocked node is encountered. Since a Q-node

may have several blocks of blocked children, FindParent may pass other

blocks in its search for a valid parent pointer for X. When FindParent is

called for these blocks later on, it might end up traversing the same nodes

37



traversed for X. To avoid this extra work, without jeopardizing the updat-

ing of the parent, FindParent introduces a new mark. All nodes marked

BLOCKED traversed by FindParent are put on a local stack. All such nodes

will receive the valid parent pointer from FindParent, and their mark is

set to BLOCKED_WITH_PARENT. When BubblExt pops nodes with this mark

o� its stack, it does exactly the same as for nodes marked BLOCKED, but it

needs not call FindParent.

Complexity of BubblExt

From the above discussion, it should be clear that FindParent is called at

most |Si+1| times by BubblExt(Ti, Si+1). The total number of children of

Q-nodes in Ti is at most i, thus at most O(i) nodes are traversed by all calls
to FindParent by BubblExt(Ti, Si+1). Summing this up for all calls to
BubblExt made by the reduction step, gives time O(n+m).

Bubble as presented in section 3.1.2, takes time O(n + m) as well (see
page 24). BubblExt handles exactly the same nodes as Bubble, perform-
ing exactly the same work, as long as Ti is reducible with respect to Si+1.

The only exception is that the pseudo node is not used if the real root of the
pertinent subtree cannot be found. As argued above, these calls amount to
at most O(n +m).

The extra work done by BubblExt when the tree is irreducible, is due
to the fact that the graph is non planar. Since the number of edges of a non

planar graph is O(n2), the complexity of BubblExt is also O(n2).

4.2 Maintaining additional information in the

PQ-tree

The new data structure of the previous section has to be incorporated into the

PQ-tree data structure so that the intended information can be maintained.

Chain and Boundary maintain additional information in the PQ-tree about
structures in the embedded subgraph of the corresponding bush form. New

structures build when a new vertex is added to the bush form. The PQ-
tree prepares for the new vertex in the reduction step, making sure that all
incoming edges to the vertex can be made consecutive. The new vertex is then
added in the vertex addition step. Boundary and Chain must therefore be

an integrated part of the reduction and vertex addition steps of the PQ-tree
algorithm, in order to maintain the correct information about the structures

of the bush form.

38



All handling of boundaries is done withinReduce. Each time a node, not

ROOT(T, Si), has been matched, the parent's Boundary is updated. Each

element thus updated, is placed on a stack, so that it can be reset or deleted

after the vertex addition step, in the same way the nodes of the pruned

subtree are reset.

As noted in section 3.3, the implementation has only one type of internal

nodes, allowing only one type of information reserved for internal nodes.

Therefore all P - and Q-nodes will have Boundary objects, but for proper

P -nodes only vertexNumber will be valid, and for non proper P -nodes and

Q-nodes, all Boundary pointers, such as JOINT, will be valid. This also

allows templates to update a parent's Boundary without being concerned if

that parent actually has a boundary or not. And proper P -nodes can hold

Chains from their full children, allowing correct boundaries to be constructed

in P2, P4, and P5.
Reduce handles constructions of new chains when biconnected compo-

nents of degree two are built. The vertex addition step handles chains of
vertices of degree two, that build when |Si| = |S

′

i| = 1. If ROOT(T, Si) has
a chain, it is passed on to the new vertex.

There is one situation in the PQ-tree that calls for a Chain object not
representing a chain in the embedded subgraph. If ROOT(T, Si) is full and
child of a Q-node or non proper P -node, then no new element representing

the new node has been added to the boundary of this parent. Hence, there
will be no element to update when the new node becomes pertinent in a
later reduction. If there already exists a Chain that will be passed on from
ROOT(T, Si) to the new node, this will not be a problem. The �rst element
of the Chain will be the number of the correct element to update. Otherwise,
the new node will receive a Chain with only two numbers, the number of the

old and new vertex. The �rst number is then the number of the corresponding
element on parent's Boundary, the element that should be updated when the

new node later becomes pertinent.

4.2.1 Template procedures

In Planar, Reduce handles all template matchings of the pertinent nodes

of the PQ-tree, and ensures that the pertinent sequence is constructed, if

possible. The nine templates were given in �g. 3.4 on page 15. Now Re-

duce will have the responsibility to maintain Chain and Boundary as well.
To ensure that this is done properly, each template of the PQ-tree calls a

corresponding procedure in the Boundary of the node being matched. Any

Chains held by partial children, and other necessary information, is provided

by the caller.

39



A template matching a node descendant of ROOT(T, Si), has responsi-

bility to inform the parent of this node of the status of its pertinent child.

When this is done, the Boundary of the parent node is also informed about

the correct status, what element that corresponds to this child, if any, and

whether or not this child has a chain. If it does, a pointer to the chain is

sent along.

In Leipert's implementation, when new Q-nodes are created by P3, the
full child is always made rightmost and the empty child leftmost. This rule

is also followed in Boundary, and is the reason why special cases arise only

for END1 or END2, and not both, when Boundary is under construction. As

noted in chapter 3, children of a node are implemented as a doubly linked list

without direction. The same structure is used for the doubly linked list of

elements in Boundary. That is why the element on the other side is needed

when traversing the list.
P4 and P5 are interchanged in the following presentation, since P4 and

P6 match ROOT(T, Si) and will both apply vertex addition in the Boundary.
Utility procedures are given in section 4.2.2

L1

L1 is not really a template, it only marks the leaf FULL.
If the leaf is not ROOT(T, Si), L1 tells its parent about its status. The

Boundary of its parent is also updated.

P1

P1 matches a full node as well. Regardless of whether it is ROOT(T, Si) or
not, it is responsible for a whole little subgraph, so it must prepare a Chain

in case this subgraph ends up as (part of) a biconnected component. This

work is done in Boundary.
In Boundary(X):

procedure ProperP1(X, i)
begin

if X has chain then

if all children of X have chain then add one of them to Chain(X);
else add i to Chain(X);

else {X has no chain}

if all children of X have chain then make one of them Chain(X);
else make new chain of vertexNumber(X) and i;

�;
end;

For non proper P1, see Q1.

40



P2 (ROOT(T, Si))

P2 gathers all its full children under a new P -node, and makes that node

ROOT(T, Si). P2 will always be a proper P -node, since it must have at least

three children. In the bush form, a biconnected component of degree two will

be created. If all the full children have a chain, one must be kept as chain of

the full node, and given to the new node in the vertex addition step, in case

this component later becomes part of the boundary of another biconnected

component.

In Boundary(X):

procedure P2(X)
begin

if all full children of X have chain then

make one of them Chain(X);
end;

P3 (not ROOT(T, Si))

P3 creates a new Q-node with two children, one empty and one full. Its
parent is told about its partial child, and parent's boundary about partial
element. The P -node matching P3 can be both proper and non proper.
If it is non proper, it already has a boundary, and is treated as Q2, not
ROOT(T, Si) and with no partial child. The only thing that will be done in

this case is to mark the pertinent sequence.

The boundary-object of a proper P -node is empty, except for the vertex

number. Since the corresponding component is still a cut vertex, that is

correct so far. But the new Q-node is the building block of a new component
and a proper Q-node, and should carry the necessary information to be a

part of that boundary. Hence an element that will represent the same vertex

in the embedding, and the two children in the PQ-tree, is constructed and

given the number of that vertex. If the full child has a chain, it is kept in

this element.

In Boundary(X):

procedure ProperP3(X)
begin

make new element El with vertexNumber(X), STATUS(FULL), CHILD(TRUE);
if all full children of X have chain then give one of them to El;
END1 := El ; {Left endmost is only corner of triangle}

end;

For non proper P3, see Q2.

41



P5 (not ROOT(T, Si))

P5 attaches its full children, if any, to the full end of the partial child and,

if left with enough empty children, itself to the empty end. Since the par-

tial child switches place with the P -node, any chain held by the P -node is

transferred to the partial node. partial node gets the old boundary.

The vertex a proper P5 represents, will be placed on the �empty� side

of the boundary of the triangle, regardless of whether it has empty children,

full children, or both. But the CHILD �eld will be TRUE only if the node has

empty children. Thus, the boundary created by P5 will be far from what

has been de�ned earlier.

If the P -node has empty children, the joint's children are made part of

the triangle's boundary. This is solved by letting the empty endmost point to

the same element as the joint, since this element also represents an endmost
corner. The situation is corrected when the parent node is matched, by giving
the partial boundary a new joint, or by including it in an already existing
boundary.

On the other hand, if the P -node has only full children besides the partial
child, the joint is still idle. But if the partial child was matched by P3, the
boundary consists of only two elements, one idle and one full. For later
templates to �nd full and empty end of boundary, both JOINT and END1

must point of the idle element. This situation will be corrected when the

new vertex is added in ROOT(T, Si), if not sooner.
Non proper P5 is treated as Q2, not ROOT(T, Si) and with one partial

child, except it's joint will be empty end if the P -node had empty children.
In this case, the boundary of the P -node is expanded to include the boundary
of the partial child, thus the P -node's boundary must then be given to the

partial child.

In BOUNDARY(partialChild(X)):

procedure PartialP5(vertexNumber(X), HASEMPTY)
begin

if this boundary has only one element then
make new element JOINT with vertexNumber(X),

STATUS(EMPTY), CHILD(HASEMPTY);
END2 := END1;
END1 := JOINT;
connect the two elements;
if there is a chain between partial node and X then

insert it between END1 and END2;
else {Boundary has at least two elements,}

{JOINT, END1 and END2 all valid pointers}

if END1 has status EMPTY then
if JOINT has NUMBER di�erent from vertexNumber(X) then

42



make new element JOINT with vertexNumber(X),
STATUS(EMPTY), CHILD(HASEMPTY);

if there is a chain between partial node and X then

insert it between new and old JOINT;
else let JOINT get CHILD(HASEMPTY);
if HASEMPTY is TRUE then make END1 point to JOINT;

else if END2 has status EMPTY then
if JOINT has NUMBER di�erent from vertexNumber(X) then

make new element JOINT with vertexNumber(X),
STATUS(EMPTY), CHILD(HASEMPTY);

if there is a chain between partial node and X then

insert it between new and old JOINT;
else let JOINT get CHILD(HASEMPTY);
if HASEMPTY is TRUE then make END2 point to JOINT;

�;
mark pertinent sequence;

�;
end;

And for non proper P5, in Boundary(X):

procedure NonProperP5(X)
begin

call NonRootQ2(X);
if HASEMPTY is TRUE then

let JOINT get CHILD(TRUE);
if END1 has status EMPTY then make END1 point to JOINT;
else make END2 point to JOINT;

�;
end;

For NonRootQ2, see Q2.

P4 (ROOT(T, Si))

P4 attaches its full children to the full end of its partial child, and makes the
Q-node new ROOT(T, Si). If the P -node has no empty children, it is deleted

from the tree, and the partial child inherits its parent's chain, if there was

one.

Since the reduction �nishes at this point, the boundary of the partial
node can be �cleaned up�, or connected. An element representing the new
vertex just about to be added, is created, and connected to each end of the

pertinent sequence in the boundary, throwing away those elements of the

pertinent sequence that will become internal vertices in the vertex addition
step of the bush form.

43



If the P -node is non proper, it will be treated as Q2, ROOT(T, Si) and
with one partial child. The P -node disappears from the tree, leaving its

boundary to the partial child.

In Boundary(X):

procedure ProperP4(X, i)
begin

if all full children of X have chain then place one of them in CH_PTR;
call PartialP4(vertexNumber(X), i, CH_PTR) in partialChild(X);

end;

procedure PartialP4(vertexNumber(X), i, CH_PTR)
begin

if this boundary has only END1 then

make new element JOINT with vertexNumber(X),
STATUS(EMPTY), CHILD(FALSE);

make new END2 with i, STATUS(EMPTY), CHILD(TRUE);
connect the three elements;
if there is a chain between partial node and X then

insert it between JOINT and END1;
if END1 holds a chain then insert it between END1 and END2;
if CH_PTR holds a chain then insert it between JOINT and END2;

else {Boundary has at least two elements,}

{JOINT, END1 and END2 all valid pointers}

if END1 has status EMPTY then
if JOINT has NUMBER di�erent from vertexNumber(X) then

make new element JOINT with vertexNumber(X),
STATUS(EMPTY), CHILD(FALSE);

connect new JOINT to old JOINT and its right neighbor;
if there is a chain between partial node and X then

insert it between new and old JOINT;
if END1 is idle then END1 := END2;
{Old END2 is only active element on boundary.}

�;
make new element END2 with i, STATUS(EMPTY), CHILD(TRUE);
connect new END2 to JOINT and BEGFULL;
remove any disconnected pertinent and idle elements;
{They will be internal to the triangle}

if BEGFULL has a chain then insert it between BEGFULL and new END2;
if CH_PTR holds a chain then insert it between JOINT and new END2;

else if END2 has status EMPTY then
if JOINT has NUMBER di�erent from vertexNumber(X) then

make new element JOINT with vertexNumber(X),
STATUS(EMPTY), CHILD(FALSE);

connect new JOINT to old JOINT and its left neighbor;
if there is a chain between partial node and X then

insert it between new and old JOINT;
�;
make new element END1 with i, STATUS(EMPTY), CHILD(TRUE);

44



connect new END1 to JOINT and ENDFULL;
remove any disconnected pertinent and idle elements;
{They will be internal to the triangle}

if ENDFULL has a chain then insert it between ENDFULL and new END1;
if CH_PTR holds a chain then insert it between JOINT and new END1;

�;
�;

end;

P6 (ROOT(T, Si))

P6 attaches its full children to the full end of one of its partial children.

Then it connects the two partials into one Q-node, and makes that node new

ROOT(T, Si). If the P -node is not left with any empty children, it is deleted

from the tree, and the partial node inherits its parent's chain, if any.
The reduction is �nished at this point, so the boundary of the partial node

can be �cleaned up�, or connected. Accordingly, a new element representing
the new vertex just about to be added, is created, and connected to the
interior end of the pertinent sequence of each partial boundary, throwing
away those elements of the pertinent sequence that will become internal
vertices in the vertex addition step of the bush form. Full children of the

P -node are not given any attention, since they are doomed to be internal.
If the P -node is non proper, it will be treated as Q2, ROOT(T, Si) and

with one partial child. The P -node disappears from the tree, leaving its
boundary to the partial child.

In BOUNDARY(partialChild1(X)):

procedure ProperP6(vertexNumber(X),i,partialChild2(X))
begin

if this boundary has only END1 then

make new element JOINT with vertexNumber(X),
STATUS(EMPTY), CHILD(FALSE);

connect JOINT and END1;
if there is a chain between this partial node and X then

insert it between JOINT and END1;
connect boundary of partialChild2(X) to this boundary,

and insert new element i;
else {Boundary has at least two elements,}

{JOINT, END1 and END2 all valid pointers}

if END1 has status EMPTY then
if JOINT has NUMBER di�erent from vertexNumber(X) then

make new element JOINT with vertexNumber(X),
STATUS(EMPTY), CHILD(FALSE);

connect new JOINT to old JOINT and its right neighbor;
Old JOINT is on same side as END1

if there is a chain between this partial node and X then

45



insert it between new and old JOINT;
if END1 is idle then make END1 point to END2;
{Old END2 is only active element on boundary.}

�;
connect boundary of partialChild2(X) to this boundary,

and insert new element i;
else if END2 has status EMPTY then

if JOINT has NUMBER di�erent from vertexNumber(X) then

make new element JOINT with vertexNumber(X),
STATUS(EMPTY), CHILD(FALSE);

connect new JOINT to old JOINT and its left neighbor;
if there is a chain between this partial node and X then

insert it between new and old JOINT;
�;
connect boundary of partialChild2(X) to this boundary,

and insert new element i;
�;

�;
end;

For non proper P6, see Q3.

Q1

Q1 is much like P1, except it has a boundary. This boundary is treated
the same, regardless of whether the full Q-node is ROOT(T, Si) or not. The
same chain must be built anyhow.

In Boundary(X):

procedure Q1(X, i)
begin

if Chain(X) is empty then
make new Chain(X);
insert NUMBER of JOINT as �rst element of Chain(X);

�;
add one side of the boundary to Chain(X);
make sure i is last entry in Chain(X);
�;

end;

Q2

Q2 is a singly partial Q-node. If it has a partial child, its children are

made children of the Q-node being matched. Q2 matches Q-nodes both

ROOT(T, Si) and not. If the node is ROOT(T, Si), the boundary must be

cleaned up, while if not, the boundary should be built. Hence, there must

be two procedures, one for each possibility.

46



In Boundary(X):

procedure NonRootQ2(X)
begin

mark pertinent sequence;
if X has partial child then

connect boundary of partialChild2(X) to this boundary;
mark pertinent sequence;

�;
end;

procedure RootQ2(X, i)
begin

mark pertinent sequence;
if X has partial child then

connect boundary of partialChild(X) to this boundary,
and insert new element i;

else {X has no partial child}

if END1 is FULL then
make new END1 with i, STATUS(EMPTY), CHILD(TRUE)

and insert it between BEGFULL and ENDFULL;
else if END2 is FULL then

make new END2 with i, STATUS(EMPTY), CHILD(TRUE),
and insert it between BEGFULL and ENDFULL;

�;
if BEGFULL has chain then insert it between BEGFULL and i;
if ENDFULL has chain then insert it between ENDFULL and i;

�;
end;

Q3 (ROOT(T, Si))

Q3 can only be ROOT(T, Si). It is a doubly partial Q-node. If it has partial
children, their children are included as children of the doubly partial Q-node.
Q3 can have one, two, or no partial children. In either case, the boundary is
�cleaned up�, or connected, introducing a new element i. This new element
will be interior, since both endmost children are empty.

In Boundary(X):

procedure RootQ3(X)
begin

mark pertinent sequence;
if X has no partial children then

make new element with i, STATUS(EMPTY), CHILD(TRUE)

and insert it between BEGFULL and ENDFULL;
if BEGFULL has chain then insert it between BEGFULL and i;
if ENDFULL has chain then insert it between ENDFULL and i;

else if X has one partial child then

47



connect boundary of partialChild(X) to this boundary,
and insert new element i;

else if X has two partial children then

connect boundary of partialChild1(X) to this boundary;
connect boundary of partialChild(X) to this boundary,

and insert new element i;
�;

end;

4.2.2 Utility procedures

insert chain Receives a chain, and two elements it should be connected to.

Makes new elements representing the vertices of the chain. If top and

bottom elements match the two received elements, this chain of new

elements is connected to them.

mark pertinent sequence Starts out the left pointer of JOINT, and tra-
verses the list until it reaches an element with status FULL or PARTIAL.
This element is marked BEGFULL, and previous element are marked
ENDEMPTY. The same is done with the right pointer setting ENDFULL

and BEGEMPTY respectively.

In regard of time complexity, this procedure should only be called once

for NonRootQ2, namely before Boundary of the partial child is in-
serted. If done right, all pointers to the pertinent sequence can be
updated correctly during this insertion. In this �rst version of the
implementation, this was not done, and unfortunately, there was not
enough time to make a second version.

connect boundaries Most nodes in the pruned subtree disappear during

reduction. The same fate strikes their boundaries. Boundary(X)must

connect with Boundary(Y ) when node X with partial child Y is re-

duced. These procedures are called from Boundary(X), and executed

in Boundary(Y). Boundary(X) sends along the elements it want

Boundary(Y) to connect to, and then Boundary(Y) connects its full

end to the full element, and its empty end to the empty element.

• without inserting i: X is not ROOT(T, Si). The connection ele-

ments will be the two elements to either side of the partial element
on Boundary(X).

• with insertion of i: X is ROOT(T, Si), so Boundary(X) should be

cleaned up. The correct elements are sent along to Boundary(Y),
and those parts of the boundary that will be interior are thrown

48



away. Boundary(Y) makes a new element i its full end before

connecting, and throw away surplus elements of its pertinent se-

quence.

In ProperP6, one of the partial children are made ROOT(T, Si), and
the other one is connected. For Q3, with two partial children, one

boundary is connected without i, and the other inserts i.

4.3 Finding the obstruction when the PQ-tree

fails

The number of Kuratowski subgraphs in a graph can be much larger than the

skewness number, since two di�erent subgraphs need only di�er by a single
path. Therefore, when the PQ-tree fails, several Kuratowski subgraphs may
be detected, and removing a single edge may in fact remove several K3,3 or
K5.

To restore planarity in a Kuratowski homeomorph, it is enough to discon-
nect it by removing one edge, an entire path does not have to be removed.
The cases presented next, ended up as not being a part of the skewness
algorithm presented in chapter 6, for reasons discussed in section 4.4.

4.3.1 Cases

The reduction algorithm of Booth & Lueker fails when the elements of S

cannot be made a consecutive sequence. This is detected either by Reduce,
if no matching template for the present node is found, or by Bubble, if a
connected pruned subtree is impossible to achieve.

The situations that may occur in a node of the PQ-tree are limited. The

legal ones from [BL76] are shown in �g. 3.4 on page 15, and A. Karabeg

shows in [Kar90] that there are only four illegal ones.

Case 1 (�g. 4.7) is the situations where the patterns of Q1, Q2 and Q3 will

not match the Q-node because empty or partial children occur inside

the pertinent sequence.

... ... ... ...

Figure 4.7: Case 1

49



Case 2 (�g. 4.8) The Q-node matches the pattern of Q3, but is not root of
the pertinent subtree.

... ... ...

Figure 4.8: Case 2

Case 3 (�g. 4.9) A P -node, ROOT(T, Si), with three or more partial chil-

dren.

... ...

Figure 4.9: Case 3

Case 4 (�g. 4.10) P -node, not ROOT(T, Si), with two or more partial chil-
dren.

... ...

Figure 4.10: Case 4

Every situation that can occur in the pertinent PQ-tree is covered by
these four Cases and the nine templates of �g. 3.4 on page 15.

Theorem 4 ([Kar90]) The reduction process terminates before the last node

is reduced if and only if the last processed node in Ti can be classi�ed as one

of Cases 1, 2, 3 or 4.

Proof is given in [Kar90].

50



n n n

n n n

d e f

a b c

joint
trapped,
empty

i
(full desc.)

1st with
full desc.

2nd with
full desc.

common vertex
of b and c (t)

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��S

S
S
S
S
S
S
S
SS

S
S
S
S
S
S
S
S
SS�

�
�
�
�
�
�
�
�
�
�
�
�
��Q

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

X

O

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 4.11: A sketch of the K3,3 subgraph for Case 1.
Each of the edges 1 through 9 may actually be a path.

4.3.2 Procedures

In [Kar90], procedures to �nd the vertex sets of each of the four Cases are
given, but an edge set procedure is presented for Case 1 only. Here we will

give procedures for all edge sets as well. From the outset it was intended to
use these procedures as a foundation for a skewness approach, together with
the additional data structure of this chapter. As will be seen in section 4.4,
these Cases are not directly used, but studying them provided quite a bit of
insight into what happens in the PQ-tree when the reduction fails. For that
reason, they are included.

Case 1

procedure VertexSet1

begin

mark JOINT of BOUNDARY(Q) by X;
�nd interior element with empty descendant such that on each side of this element

on the boundary, there are elements with full descendants;
mark this element by X;
mark two elements with full descendants, one on each side of the

previous element, by O;
mark a full descendant itself by X;
�nd paths from the last two X's to t;
if paths are disjoint then mark t by O;
else mark the �rst common vertex on the paths by O;

end;

51



n n n

n n n

d e f

a b c

joint
interior with
full desc.

common vertex
of d, e and f (t)

1st endmost 2nd endmost i (full desc.)

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��S

S
S
S
S
S
S
S
SS

S
S
S
S
S
S
S
S
SS�

�
�
�
�
�
�
�
�
�
�
�
�
��Q

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

X

O

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 4.12: A sketch of the K3,3 subgraph for Case 2.
Each of the edges 1 through 9 may actually be a path.

procedure EdgeSet1

begin

�nd the four paths on BOUNDARY(Q);
�nd paths from vertices that have a full descendant, to that descendant;
{Two paths are found in VertexSet1}

�nd path from the last vertex marked by O to JOINT, containing edge {s, t};
end;

Case 2

procedure VertexSet2

begin

mark JOINT of BOUNDARY(Q) by X;
mark two endmost elements by O;
mark interior element with full descendant by X;
mark that descendant by O;
�nd paths from the three vertices marked O to t;
if all three paths are disjoint then mark t by X;
else if the path from the full child and one of the other two paths intersect then

mark the �rst common vertex by X;
else

{All three paths join}

mark the �rst common vertex (of two or all three paths) by X;
�;

end;

52



n n n

n n n

d e f

a b c

common ancestor
of d, e and f

i
(full desc)

common vertex
of empty children
of d, e and f (t)

1st partial 2nd partial 3rd partial

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��S

S
S
S
S
S
S
S
SS

S
S
S
S
S
S
S
S
SS�

�
�
�
�
�
�
�
�
�
�
�
�
��Q

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

X

O

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 4.13: A sketch of the K3,3 subgraph for Case 3.
Each of the edges 1 through 9 may actually be a path.

procedure EdgeSet2

begin

�nd the four paths on BOUNDARY(Q);
�nd path from vertex with full descendant, to that descendant;
{Three paths are found in VertexSet2}

�nd path from JOINT to a full descendant outside the Q-node;
end;

Case 3

procedure VertexSet3

begin

mark three partial nodes by O;
mark their common ancestor (the P -node) by X;
mark any full descendant by X;
�nd paths from one of the empty children of the three partial nodes to t;
mark the smallest numbered common vertex for any two of these paths by X;

end;

procedure EdgeSet3

begin

�nd paths from P -node to partial children;
�nd paths from partial children to full descendant;
{Three paths are found in VertexSet3}

end;

53



n n n

n n n

d e f

a b c

father of
partial nodes

i
(full desc.)

common vertex
of empty children
of e and f (t)

1st partial 2nd partial root of pert.
subtree

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��S

S
S
S
S
S
S
S
SS

S
S
S
S
S
S
S
S
SS�

�
�
�
�
�
�
�
�
�
�
�
�
��Q

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

X

O

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 4.14: A sketch of theK3,3 subgraph for Case 4 when P -node is proper.

Each of the edges 1 through 9 may actually be a path.

Case 4

procedure VertexSet4

begin

mark JOINT of two partial nodes by O;
if P -node is proper then

mark it by X;
mark ROOT(T, S) by O;
mark any full descendant by X;
�nd paths from one of the empty children of the two partial nodes to t;
mark the smallest numbered common vertex of these paths by X;

else

{P -node not proper}

mark JOINT of Q-node and one full descendant by O;
�nd paths from one of the empty children of the two partial nodes to t;
mark the smallest numbered common vertex of these paths by O;
{They form a vertex set of K5}

�;
end;

procedure EdgeSet4

begin

if a K5 were found then

�nd the three paths on BOUNDARY(Q);
�nd paths from partial nodes and Q-node (via ROOT(T, Si)) to full descendant;
{Two paths are found in VertexSet4}

�nd path from t to JOINT of Q-node, containing edge {s, t};

54



m

m m

m m

a

b

cd

e

1st partial

2nd partial

jointi (full desc.)

common vertex
of empty children
of a and b (t)

�
�
�
�
�
�
��

Z
Z

Z
Z

Z
Z

ZZ

B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

�
�

�
�

�
�

�
�

�
�

�
�

�

1

1

2

2

4

4

7

7

3

3

5

5

88

66

9

9

10

10

Figure 4.15: A sketch of the K5 subgraph for Case 4 when P -node is non
proper. Each of the edges 1 through 10 may actually be a path.

�nd path from full descendant to t;
else

{A K3,3 were found}

�nd paths from P -node to two partial nodes;
�nd path from ROOT(T, S) to P -node;
�nd paths from ROOT(T, S) and partial nodes to full descendant;
{Two paths were found in VertexSet4}

�nd path from the last vertex marked by X to ROOT(T, S),
containing edge {s, t};

�;
end;

Finding obstructions in linear time.

The algorithm presented in [Kar90] assumes that templates corresponding to

Cases 1 through 4 are added to those given by Booth and Lueker in [BL76].

This can easily be done. The procedure for explicitly exhibiting a subgraph
homeomorphic to a Kuratowski graph when the PQ-tree fails can then be

sketched like this:

procedure Obstructions(G)
begin

if Case(i) was detected by Planar(G) then
call the vertex and edge set procedures of Case i;

end;

55



The vertex and edge set procedures presented above are clearly linear in

the number of vertices of the graph. The paths that goes beyond the vertices

and edges of the bush form (all paths leading to t) can be found from the

sorted adjacency lists that represents the graph. Common vertices of these

paths exist if consecutive occurrences of vertices occur.

The additional data structure maintained for this algorithm were shown

linear in section 4.1.2, and thus, given that the actual amount of time spent by

Planar before it fails for non planar graphs is always O(n), Obstructions
is O(n).

4.3.3 Implementation of additional data structure

As Leipert's implementation is a template class with three parameters, open-
ing for additional information in the nodes of the PQ-tree, it was perfect for
implementing the additional data structure of this chapter. The focus during
the development of the procedures of section 4.2 was on the speci�cations

and conditions of [Kar90]. Only the data structure has been implemented,
not the Obstructions procedures and additional templates of section 4.3.

The derived subclass pqtree of section 3.3.2 was extended to implement
the additional data structure of this chapter. Chains are held by children,

and all nodes in the PQ-tree, except ROOT(T, Si), is child of another node.
Accordingly, class Chain was constructed and used as parameter X. See
�gs. 3.13 and 4.16. Boundary is meant to contain information speci�c to

nodeInfo

key

internal boundary

chain

edge

pqNode

leaf

Figure 4.16: The data structure of pqtree

Circles are the objects of the PQ-tree. Ovals are their respective information
handlers, and the squares the information holders speci�ed at initialization,

as parameters to the pqtree object. The double arrows denote pointers that

are being maintained by Leipert's implementation, single arrows the main
access direction maintained by pqtree.

56



Q-nodes and non proper P -nodes, while proper P -nodes are intended to

have vertexNumber only. Since there is no distinguishing between the infor-

mation held by P - and Q-nodes in Leipert's implementation, Boundary and

vertexNumber was combined, as mentioned in section 4.2. Class Boundary

is thus used for all P - and Q-nodes. Proper and non proper P -nodes are dis-
tinguished between by checking whether or not the JOINT pointer is active.

The main procedures necessary to maintain Chain and Boundary were

outlined in section 4.2. All template procedures of Leipert's implementation

were overridden in class pqtree, so that the procedures of Boundary can

be called. Procedure Bubble was also overridden, and changed to match

BubblExt of section 4.1.3. Code �les and some further descriptions are

given in appendix A.

4.4 Obstructions and skewness number

Cases 1 through 4 of algorithm Obstructions exhibit a Kuratowski sub-
graph when the PQ-tree fails. The procedures of section 4.3.2 provide us
with all vertices and edges of the subgraph. Therefore, the possibility of

using Cases and additional data structure of this chapter as an approach to
a heuristic for the skewness number, was investigated.

The pen and paper method was used. By running small graphs through
Planar, keeping track of boundaries and chains, rules for letting the Cases

decide the edges to delete, were sought. It soon became apparent that the
Boundary could provide useful information about when a deleted edge could
be reintroduced to the embedded graph without destroying planarity. By
marking the elements that represented vertices with deleted, outgoing edges,

it was easy to see when all obstacles causing the deletion had been removed,

thus enabling a planar embedding.

However, �nding consistent rules for the Cases proved to be harder. It

was therefore decided to implement the additional data structure as if it
would be used for exhibiting homeomorphs of K3,3 and K5 when one was

detected. The plan was to test di�erent sets of rules on the computer instead
of by hand. But before the Cases were programmed, a serious problem with

this approach came to the surface.

Problems with this approach

Consider an irreducible PQ-tree Ti. Let one of the reducible nodes in the

pruned subtree of Ti be a partial P -node with no partial child. This node will
be made into a Q-node with two children by template P3, a non proper Q-

57



k1

k+1

k+1 k2

n

(a) Tk−1 before Re-
duce

k1k+1

k+1 k2

n

(b) Reduce has reached
ROOT(T, Sk), Case 1 de-
tected.

k+1

k+1 k2

n

(c) PQ-tree after k1 has
been deleted.

Figure 4.17: Reducing Tk−1.

node by the de�nitions of table 3.1. Since Ti is now a non proper PQ-tree, it
no longer corresponds to the bush form Bi. In Bi, the cut vertex represented
by the P -node will stay a cut vertex until the new vertex is embedded. For
Planar and planar graphs, this is no problem, as a PQ-tree Ti+1 will match
the bush form Bi+1 when the vertex is added, maintaining the bush form as

an invariant of the PQ-tree.

Since this PQ-tree is irreducible, the pertinent children of the new Q-
node may not end up as part of the maximal pertinent sequence in Ti. Thus
a Q-node representing cut vertices in the bush form Bi+1 may be part of the
PQ-tree after Reduce has �nished. The bush form can thus no longer be
used as an invariant for the remaining PQ-trees. As the next example will

show, this may lead to more edges than necessary being deleted from the

graph, rendering a planar subgraph that is not maximal.

Fig. 4.17 pictures this situation. (a) shows the PQ-tree Tk−1 before Re-

duce is called. The tree has two pertinent leaves, k1 and k2. The cor-
responding bush form Bk−1 is shown in �g. 4.18. The two leaves and cor-

k1 k+1 k+1 k2 n

Figure 4.18: Bush forms Bk−1, corresponding to Tk−1 of �g. 4.17(a).

58



k+1

k+1 k2

n

(a) G1

k1

k+1

k+1

n

(b) G2

Figure 4.19: Tk−1 obtained for each of G1 and G2.

responding virtual vertices can clearly not be made consecutive in neither
the PQ-tree nor the bush form. Accordingly, Reduce(Tk−1) detects Case 1

when ROOT(Tk−1, Sk) is reached, �g. 4.17(b). One of k1 and k2 will have
to be deleted to make the PQ-tree reducible and the subgraph planar. If k1

is deleted from Tk−1, the PQ-tree will have two Q-nodes, of which only one
represents a biconnected component in the bush form. The situation remains
the same if k1 is kept and k2 deleted.

In �g. 4.17(c), k1 has been deleted. In the vertex addition step, a new
P -node will replace k2. Without loss of generality, the new vertex is assumed
not to have outgoing edges leading to vertex k+1. Thus, when Tk is reduced,
only the two leaves labeled k + 1 in Tk−1 will be pertinent in Tk. As seen

in �g. 4.17(c), these leaves will not be able to from a consecutive sequence
in the PQ-tree. Case 2 will be detected, and another leaf deleted. A look
at the bush form Bk−1 in �g. 4.18 shows that it is possible to embed both
incoming edges to vertex k+ 1 in the subgraph. Deleting k2 instead will lead

to the exact same situation.

The problem is that the presence of such Q-nodes may cause several PQ-
trees to be irreducible, and thus even more edges to be deleted from the
graph. To show how the PQ-tree will behave if the situation in Tk−1 is
removed, consider two subgraphs G1 and G2, obtained from G by removing
one edge from each, edges k1 and k2 respectively. The respective PQ-trees

Tk−1 obtained for each graph is given in �g. 4.19. Clearly, the next tree

Tk can be reduced without problems for both graphs, and no edges will be
deleted from these trees. Again, it can be assumed w.l.o.g., that G1 and G2

are planar. Thus, the skewness number of G is 1. In addition, both G1 and
G2 are maximal (and maximum) planar subgraphs of G.

Using the Cases of algorithm Obstructions will give a connected and

planar subgraph of any non planar input graph. But for some graphs, the

59



obtained subgraph will obviously not be maximal, and the given estimate for

the skewness number will be equally far from optimal.

This is caused by PQ-trees that no longer re�ect the structures of the

corresponding bush form, and thereby loose some knowledge of the embed-

dable subgraph obtained so far. As seen in the above example, this may lead

to the deletion of clearly embeddable edges.

A better result is wanted, and seems to be obtainable if a way to decide

when, and which, leaves should be deleted from a PQ-tree before Reduce
is called, and the structures of the PQ-tree changed.

The search for such a method led to revisiting a number of articles, re-

sulting in the survey presented in the next chapter.

60



Chapter 5

Approaches to planarizing graphs

using PQ-trees

Many heuristics for planarizing graphs have been published. Most of them
also claim to �nd a maximal planar subgraph. This chapter surveys some of
these works, with emphasis on approaches based on PQ-trees.

Many applications require a graph to be planar or separated into planar
subgraphs. The removal of edges in order to obtain a planar subgraph of
a given non planar graph is called planarization. Ideally, one would want
an algorithm that produces a maximum planar subgraph within reasonable
time. However, that problem is NP-hard, and in practice a heuristic must

be used.

A planar subgraph where no additional edges from the original graph can
be added without destroying planarity, is maximal planar. Determining a
maximal planar subgraph is in P . Thus any heuristic for maximum planar

subgraph should at least come up with a maximal planar subgraph. The

straight forward way of �nding a maximal planar subgraph is to start with
one edge, and then, for every edge that is added to the subgraph, test if
planarity is preserved. This gives an O(nm) algorithm, given that planarity
is tested in time O(n).

More e�cient algorithms have been presented in the literature. Cai, Han,
and Tarjan [CHT93] uses the path addition algorithm of [HT74] to �nd a

maximal planar subgraph, achieving an O(m logn) time bound. The algo-

rithm of Di Battista and Tamassia [DT89] checks in O(logn) time whether
or not an edge can be added to G without destroying planarity, rendering an

O(m logn) algorithm as well. An algorithm claiming to give results closer to

optimum than what [DT89], [Kan92] (see below), and earlier versions of the

algorithm of [CHT93] give, has been presented by Goldschmidt and Takvo-

rian [GT94]. They use a very interesting approach, but the worst case time

61



complexity of this algorithm is at least O(nm).

The �rst approach using PQ-trees to planarize a non planar graph, is

due to Ozawa and Takahashi [OT81]. They claimed that their O(nm) al-

gorithm �nds a maximal planar subgraph. Jayakumar, Thulasiraman, and

Swamy later showed that this is not the case. Any maximal planar subgraph

of a biconnected graph is connected, and the algorithm of [OT81] fails to

always include all vertices in the planar subgraph. In [JTS89] they modi�ed

the approach of [OT81] into an O(n2) algorithm Planarize, rendering a

connected planar subgraph Gp that is not necessarily maximal. They also

present a second phase, based on PQ-trees as well. If the subgraph Gp found

by Planarize is biconnected,MaxPlanarize augments it into a maximal

planar subgraph G
′

p of G.

G. Kant showed in [Kan92] that the second phase of [JTS89] is not correct,

and gave an improved version of MaxPlanarize that augments Gp into a
maximal planar subgraph of G, independent of whether Gp is biconnected or
not. This improved version has been shown incorrect by S. Leipert in [Lei96].
He points out three problems, but suggests corrections only to two of them.

In addition to this, Jünger, Leipert, and Mutzel [JLM96] recently pointed

out serious de�ciencies in the approaches of [JTS89] and [Kan92], one directly
related to the nature of the PQ-tree. The reader should by now be convinced
that searching for a heuristic for the maximal planar subgraph problem (or
the skewness problem) based on the PQ-tree data structure is not a simple
task!

Some of the results presented in this chapter will be used in the next chap-

ter as a basis for a new approach for the maximal planar subgraph problem.
This new approach will avoid most of the fundamental problems of the ap-
proaches discussed in this chapter. Parts of Planarize [JTS89], that will

be used directly in chapter 6, are thoroughly described in section 5.1, while
results from the articles concerning MaxPlanarize is brie�y discussed in

section 5.2.

5.1 A planarization algorithm

This section will describe the basic principles and procedures of the planariza-
tion algorithm Planarize of [JTS89]. Rules used by procedures Compute
and DeleteNodes are given in extenso, since they will be used for a new

approach for the skewness number presented in chapter 6.

As seen in the previous chapter, during a reduction, some pertinent leaves

may cause a node not to match any of the legal templates of [BL76], thus
signaling that the graph is not planar. The goal in Planarize is to solve

62



these situations before each reduction, by deleting just enough leaves to make

each tree reducible. As few edges as possible are deleted, in such a way that

the remaining graph Gp is a connected planar subgraph of G. Gp is only

guaranteed to be maximal planar if G is complete ([JTS89, Kan92]).

Based on the frontier of a node, its descendant leaves read from left to

right, [JTS89] classify the nodes in a new way. This classi�cation is later used

to decide if any of its descendants need to be deleted. The corresponding

notions used in [BL76] and chapter 3 are given in parenthesis for each type.

Remember that the frontier of a leaf is the leaf itself.

Type W: A node is said to be Type W, if its frontier consists of only empty

leaves. (Empty node)

Type B: A node is said to be Type B, if its frontier consists of only pertinent
leaves. (Full node)

Type H: A node X is said to be Type H if the subtree rooted at X can
be arranged such that all the descendant pertinent leaves of X appear
consecutively at either the left end or at the right end of the frontier.

(Singly partial node)

Type A: A node X is said to be Type A if the subtree rooted at X can
be arranged such that all the descendant pertinent leaves of X appear
consecutively in the middle of the frontier with at least one empty leaf
appearing at each end of the frontier. (Doubly partial node)

Planar of section 3.2.2 constructs a sequence of PQ-trees T2, T3, . . . , Tn−1

provided that each Ti, 1 ≤ i ≤ n−2, is reducible with respect to Si+1. Recall

the de�nitions given in section 3.1.1. The principle of the planarity test-
ing algorithm of [BL76] and [LEC67] can thus be restated as the following
theorem, the cornerstone of the planarization algorithm of [JTS89].

Theorem 5 ([JTS89]) A graph G is planar if and only if the pertinent

roots of all subtrees in T2, T3, . . . , Tn−1 of G are Type B, H, or A.

A PQ-tree whose pertinent root is Type B, H, or A is reducible, otherwise

it is irreducible. An irreducible PQ-tree is made reducible by appropriately
deleting some of its pertinent leaves.

A full node can be made Type B or, by deleting all its pertinent children,

Type W. A partial node can be made Type W, Type H, or Type A, but not

Type B, as Planarize do not allow deletion of empty leaves. The reason
why is explained next, as well as how the type of each node is determined.

63



5.1.1 Finding edges to delete

Since the aim of the algorithm is to �nd a maximal planar subgraph, and

it usually pays to be greedy in heuristics, as few edges as possible is sought

to be deleted in each step. Of course, if Ti is reducible, no edges need to be

deleted.

The reason the algorithm of [OT81] does not necessarily produce a span-

ning subgraph, is that they allow empty leaves to be deleted. If a deleted

empty leaf (j, k), j < k, represented the only incoming edge to vertex k in
Tk−1, then there will be no pertinent leaves to reduce in the PQ-tree, and
nowhere to add the outgoing edges of k. Thus k, and maybe some of its

descendants, will not be a part of the planar subgraph embedded by the

PQ-tree. Accordingly, only pertinent leaves will be deleted by Planarize

to ensure that Gp is connected.

If a PQ-tree Ti is irreducible, the strategy of the algorithm is to delete
some of its pertinent leaves to make it reducible. As concluded in section 4.4

of the previous chapter, these leaves should be found and removed before the
tree is reduced. In other words, all nodes in the pertinent subtree should be
one of Type W, B, H, or A before calling Reduce. The w-, h-, and a-number
of a nodeX in the pertinent subtree of Ti is the minimumnumber of pertinent
descendant leaves of X that should be deleted from Ti in order to make X

Type W, H, and A, respectively. The tuple of numbers thus associated with a
node is hence denoted by [w,h,a]. Since only pertinent leaves can be deleted,
the b-number is not needed. The [w,h,a]-number of a node X is computed
from the [w,h,a]-numbers of its children, so the computation is done in a
bottom up process.

The actual type of the nodes is decided after Compute(Ti) reaches
ROOT(Ti, Si+1). If the minimum of h and a for ROOT(Ti, Si+1) is zero, then

Ti is reducible. Otherwise the [w,h,a]-numbers are used by the procedure

DeleteNodes of section 5.1.2 to decide the correct type for ROOT(Ti, Si+1)

and all its descendant nodes, and delete the appropriate nodes.

Computation of [w,h,a]-numbers

The pruned subtree is assumed to be completely built and connected by a
modi�ed version of the Bubble procedure of [BL76], e.g. the BubblExt of
section 4.1.3.

Procedure Compute computes bottom up the [w,h,a]-number for each

node X in the pruned subtree. It also �nds the partial children of X that

should be made Type H or A if X is made Type H or A. These children are

denoted h-child1(X), h-child2(X), and a-child(X).

64



The [w,h,a]-number of a node is based on the [w,h,a]-numbers of its per-

tinent children. The computation formulas from [JTS89] are included here

for the sake of completeness. P (X) denotes the set of pertinent children of
X and Par(X) denotes its set of partial children.

I) X is a pertinent leaf.

w = 1, h = 0, and a = 0.

II) X is a pertinent internal node.

w =
∑

i∈P (X)wi

(i) X is a full node, or partial P -node with no partial children.

h = 0 and a = 0.

(ii) X is a partial P -node with partial children.

• Type H:
Make all pertinent children of X Type B, one partial child
Type H, and all other partial children Type W. The partial
child chosen to be Type H is made h-child1(X).

h =
∑

i∈Par(X)

wi − max
i∈Par(X)

{(wi − hi)}

• Type A:

1. Make one partial child of X Type A and all other per-
tinent children Type W. The partial child chosen to be
Type A is made a-child(X).

α1 =
∑

i∈Par(X)

wi − max
i∈Par(X)

{(wi − ai)}

2. Make two partial children Type H, all full children Type B

and all other partial children Type W. max1 and max2
determine the two partial children to be made Type H,
h-child1(X) and h-child2(X).

α2 =
∑

i∈Par(X)

wi − max1
i∈Par(X)

{(wi − hi)} − max2
i∈Par(X)

{(wi − hi)}

This gives a = min{α1, α2}. If the value of a is di�erent from
α1, a-child(X) is made empty.

(iii) X is a partial Q-node.

65



• Type H:

X can only be made Type H if one of its endmost children

is pertinent. Assume one endmost is pertinent. Then an

array P1(X) is �lled with a consecutive sequence of pertinent

children ofX, starting with the endmost pertinent child. Only

the last node is allowed to be partial. If the other endmost is

pertinent also, an array P2(X) is �lled in the same way. The

last node in the maximal array is made h-child1(X).

h =
∑

i∈P (X)

wi −max

{ ∑
i∈P1(X)

(wi − hi),
∑

i∈P2(X)

(wi − hi)

}

• Type A:

1. Make one pertinent child Type A and all other pertinent
children Type W. The child chosen to be Type A will be
made a-child(X).

β1 =
∑

i∈P (X)

wi − max
i∈P (X)

{(wi − ai)}

2. Let PA(X) be a maximal consecutive sequence of children

of X such that the two endmost are either full or par-
tial, and all interior nodes are full. X can then be made
Type A if all full nodes in PA(X) are made Type B, any
partial nodes in PA(X) Type H, and all pertinent chil-
dren outside PA(X) Type W. There may be more than

one PA(X). An endmost node in the selected PA(X) is

made h-child2(X).

β2 =
∑

i∈P (X)

wi − max
PA(X)

{ ∑
i∈PA(X)

(wi − hi)

}

This gives a = min{β1, β2}. If β2 is minimum, a-child(X) is

made empty.

These numbers are computed bottom up for each Ti by Compute(Ti).
The tree is reducible if the minimum of h and a for ROOT(T, Si) is zero. If
not, some pertinent leaves must be deleted to make it reducible.

Compute(Ti) traverses at most all nodes in the pruned subtree, plus all

children of all partial Q-nodes. The number of children of all Q-nodes in a

PQ-tree Ti is at most i, the number of vertices embedded so far. The number

66



of P -nodes in a PQ-tree Ti is also at most i, and the number of pertinent

leaves is |Si+1|, the in-degree of vertex i+ 1. Thus the amount of work done

by Compute for one Ti is O(n+ in-degree(i+ 1)). The total for all Ti's are
thus O(n2 +m) = O(n2), so Compute has complexity O(n2) [JTS89].

5.1.2 Deleting edges

The type of a node determines uniquely the types of its children. So when Ti
is irreducible, the type of ROOT(T, Si) is decided according to the minimum

of h and a, and then DeleteNodes(Ti) is called. DeleteNodes traverses
the pruned subtree top down, and for each node X the type of all its children

is determined and the pertinent leaves made Type W deleted.

A node X is made Type B if h = a = 0. The subtree rooted at a node

made Type B is not touched by the procedure; all its pertinent leaves are
to stay in the tree. When X is made some type other than B, all pertinent
children of X will be processed, and the correct type is set for each one. If
X is a leaf of Type W, it is deleted from the PQ-tree, and the corresponding

edge is removed from the graph.
Assume X is an internal node whose type is set. Then there are three

possibilities:

1. X is Type W.

All children of X are made Type W. All descendant pertinent leaves
will be deleted, and the corresponding edges removed from the graph.

2. X is Type H.

(i) X is a P -node.

The partial child h-child1(X) is made Type H, all other partial

children Type W, and all full children Type B.

(ii) X is a Q-node.

It is determined if h-child1(X) is part of P1(X) or P2(X), all full
nodes in the chosen array are made Type B, h-child1(X) is made

Type H if it is partial, and all other pertinent children of X are

made Type W.

3. X is Type A.

(i) X is a P -node.

If a-child(X) is not empty, that child is made Type A, and all other

pertinent children are made Type W. On the other hand, if a-
child(X) is empty, h-child1(X) and h-child2(X) are made Type H,

all other partial children Type W, and all full children Type B.

67



(ii) X is a Q-node.

If a-child(X) is not empty, that child is made Type A and all other

pertinent children are made Type W. If a-child(X) is empty, all

full nodes in PA(X) are made Type B. If endmost nodes in PA(X)
are partial, they are made Type H, and all other pertinent children

of X are made Type W.

These rules determine the actions of procedure DeleteNodes. When

necessary, the number of descendant leaves for each node is updated. The

leaves deleted from Ti−1 is removed from Si, the set corresponding to incom-

ing edges of vertex i, and added to the set E
′

i. The leaves in all sets E
′

i ,

3 ≤ i ≤ n− 1 correspond to all edges in G−Gp.

DeleteNodes(Ti) traverses most of the pruned subtree. Full nodes are

not touched, neither are nodes outside the pruned subtree. Deletion and
updating of nodes can be done in constant time for each node. Thus, fol-
lowing the same arguments used for Compute, DeleteNodes is an O(n2)
algorithm.

5.1.3 Planarize

Adding these new procedures to the main loop of procedure Planar (sec-

tion 3.2.2 on page 22) gives this outline of Planarize:

procedure Planarize(G)
begin

construct initial tree T1;
for i := 2 to n− 1 do

BubblExt(Ti−1, Si);
Compute(Ti−1);
if min{h, a} 6= 0 for ROOT(Ti−1, Si) then

{Deletion step}

make ROOT(Ti−1, Si) Type H or A corresponding to minimum of h and a;
DeleteNodes(Ti−1);

�;
Reduce(Ti−1, Si);
{Vertex addition step}

make Ti by replacing full nodes with new P -node X with all outgoing edges
of vertex i as children of X;

od;
end;

Planarize �nds a planar, connected subgraph Gp of G, and by doing so,

also constructs a sequence T2, T3, . . . , Tn−1 of reducible PQ-trees.
As shown in [JTS89], Gp is not necessarily a maximal planar subgraph.

Assume a pertinent leaf l is deleted by DeleteNodes in Ti because some

68



empty leaves are between l and the maximal pertinent sequence in all per-

mutations of Ti. The corresponding edge e is deleted from Gp in order to

preserve planarity. If the empty leaves are later deleted as well, then edge e
can be included in Gp without destroying planarity, and consequently, Gp is

not maximal planar.

Given that Planar of [BL76] is O(m+n), and Compute and Delete-

Nodes both are O(n2), this procedure runs in time O(n2) for non planar

graphs [JTS89].

5.2 Algorithms for maximal planarization

In order to �nd a maximal planar subgraph of G, Jayakumar et al. suggested

a second phase MaxPlanarize, also based on PQ-trees [JTS89]. This
second phase tries to �nd all leaves in G − Gp that can be added to Gp

without destroying planarity, thus creating a maximal planar subgraph G
′

p.
The three versions of MaxPlanarize that, to our knowledge, have been
published so far, are brie�y described here.

5.2.1 Initial approach [JTS89]

The main goal of Jayakumar et al. was to detect leaves that were unnecessar-

ily deleted from G by the �rst phase, and augment Gp into a maximal planar
subgraph G

′

p, containing Gp as a subgraph. Their second phase demands

that Gp be biconnected for G
′

p to be maximal planar.

MaxPlanarize sets out to construct the same sequence T
′

2, T
′

3, . . . , T
′

n−1

of PQ-trees for G as Planarize did, but this time no such leaves as l,
mentioned at the end of the previous section, are deleted from G. Leaves
corresponding to edges of G − Gp are ignored until they become pertinent.
Nodes with only ignored children are also ignored. In a PQ-tree Ti, leaves
representing incoming edges to vertex i+ 1 in Gp are called preferred leaves

and make up the preferred sequence. None of these leaves will be deleted by

MaxPlanarize. Leaves in E
′

i+1 are called new pertinent leaves, and these
leaves can be added to the preferred sequence if ignored nodes are the only

nodes between two preferred leaves. Such ignored nodes will then be deleted
from the PQ-tree. Edges corresponding to the new pertinent leaves added

to the preferred sequence are added to the planar subgraph. Hence, for each

T
′

i as many as possible of the leaves in E
′

i+1 are kept and reduced, in order
to create a maximal planar subgraph G

′

p of G, containing Gp as a subgraph.

If Gp is not biconnected, G
′

p may not be maximal [JTS89]. Let vertex k
have degree 1 in Gp. Its only adjacent edge will be an incoming edge. If the

69



corresponding leaf is the only node between a pertinent leaf l and its maximal

pertinent sequence in a PQ-tree T
′

i−1, i < k, then l will be deleted from T
′

i−1

l1 l2 l3 k l· · · · · ·

Figure 5.1: The deletion of l
causes Gp to not be maximal.

l1, l2, l3, l ∈ Si, i < k

to make it reducible, and the corresponding

edge e will be removed from G
′

p (�g. 5.1).

But in the vertex addition step of Tk−1, no

new vertex is added, meaning that l could

have been made adjacent to its pertinent se-

quence if Sk had been reduced before Si. Thus
adding e to G

′

p will not destroy planarity, and

G
′

p is not maximal planar.

5.2.2 Changes made by Kant

G. Kant showed in [Kan92] thatMaxPlanarize of [JTS89] does not always
produce a maximal planar subgraph even when Gp is biconnected. One

problem is the fact that ignored-empty leaves have to be deleted in order to
augment the preferred sequence with new pertinent leaves. In general there is
a choice between di�erent sets of ignored leaves. Arbitrarily choosing one set
to keep may lead to deleting an ignored leaf that would have been adjacent
to its preferred sequence in a later step.

Another problem stems from the fact that adding a new pertinent leaf to
the maximal pertinent sequence of T

′

i may lead to empty nodes being bound
to new places, causing the following PQ-trees T

′

j , i < j < n, of the second

phase not to be equivalent any more to the PQ-trees Tj of the �rst phase.
Accordingly, it may not be possible in some T

′

j to form a consecutive sequence
of the preferred leaves of the maximal pertinent sequence in Tj. This forces
some preferred leaves to be deleted in order to make T

′

j reducible, and Gp is

no longer a subgraph of G
′

p.

Kant suggests a new version of MaxPlanarize in order to solve these

problems. He introduces sequence indicators1 to keep track of the place of the

pertinent sequence in the PQ-tree. Thereby he is able to delay the question
of whether an edge can be added to G

′

p without destroying planarity, until
enough information is available. Leaves from G−Gp are treated as normal,
empty leaves until it is time for them to become pertinent in some T

′

i . Instead

of being made pertinent, leaves in E
′

i+1 are made potential. The maximal

pertinent sequence of Gp is then reduced, and in the vertex addition step, if
|E
′

i+1| > 0, a sequence indicator < i+ 1 > is added to T
′

i adjacent to the new

node. Both potential leaves and sequence indicators are ignored for the rest
of their lifetime in the PQ-tree.

1Based on the direction indicator of [CNAO85].

70



l si(l
′
) l

′· · ·

si(l)

Figure 5.2: Two intersecting near pairs l, si(l) and l
′
, si(l

′
).

The Q-node and all its descendants are ignored nodes.

Taking care not to bind empty nodes to new places, a sequence of PQ-
trees T

′

2, T
′

3, . . . , T
′

n−1 is constructed by MaxPlanarize, equivalent to the

sequence constructed by Planarize. Since all non pertinent leaves of each

Ti will be present as ordinary leaves in T
′

i , Gp need not be biconnected.

When, in a later T
′

i , a potential leaf l can be made adjacent to its sequence

indicator si(l) in every permutation of T
′

i , by only deleting ignored nodes,
the corresponding edge can be added to Gp without destroying planarity.

De�nition 5.1 A potential leaf l is near its sequence indicator si(l), if the
PQ-tree Ti, 1 ≤ i < n can be reduced such that they are adjacent siblings, by

deleting only ignored nodes and not binding empty nodes to new places. If a

potential leaf l is near its sequence indicator si(l), then l and si(l) are called
a near pair.

This does not mean that every near pair can be reduced. Other potential
leaves may form near pairs with si(l) as well, causing l to be deleted when
reducing for near pairs. Another situation is when two near pairs, l, si(l) and
l
′
, si(l

′
), intersect, that is, in every permutation of the PQ-tree, either l or

si(l) are between l
′
and si(l

′
). See �g. 5.2. When two near pairs intersect,

only one of them can be reduced [Kan92].

Leaves that form near pairs and are successfully reduced, are removed
from the tree and the corresponding edges are added to G

′

p. Sequence in-

dicators stay in the tree as long as they have potential leaves and are not
deleted in a reduction.

How near pairs are found and reduced is described next.

Finding and reducing near pairs

Since there, by de�nition, are no empty leaves in a pertinent sequence, Kant
tests for near pairs only within pertinent sequences.

Each time Reduce matches a pertinent node X, the frontier of X is

searched for near pairs l and si(l). To reduce a found near pair, two arrays

PLX and SIX are introduced for every internal nodeX in the pruned subtree.

71



Those children of X that are ancestors of potential leaves corresponding to

incoming edges of vertex i, are placed in PLX [i]. The child of X that is

ancestor of sequence indicator < i > is placed in SIX[i].

Since Reduce works bottom up, all near pairs in the frontier of every

pertinent child of X have been found and reduced already. Also, all potential

leaves or sequence indicators that are between pertinent leaves in the frontier

of a child Z of X in all permissible permutations, have been removed from

the tree. Thus, PLZ and SIZ are up to date for every pertinent child Z of

X. It can be shown that all near pairs will be found by using the PLX and
SIX arrays [Kan92].

Reduction of near pairs is done top down. When a near pair is found, if

X is a P -node, the two children of X that are ancestors of l and si(l) are

placed as children of a new Q-node, to ensure that the reduction of the near

pair starts with a Q-node.

The procedure reducing near pairs is here called ReduceNear. Other
near pairs, not intersecting with the one that is being reduced, are reduced

�rst. Other potential leaves li, also forming a near pair with si(l), are added
to the planar subgraph.

De�nition 5.2 An ignored P -node is said to be of Type U, if all children

except one child, yet unknown, must be removed with their descendants from

the PQ-tree in a later step. An ignored Q-node is said to be of Type U, if

it has one special marked child Y , and all children of the Q-node between Y
and one of the endmost children, yet unknown, must be removed with their

descendants from the PQ-tree in a later step.

A Type U node is used to delay the question of which set to keep when

exactly one arbitrary set of ignored nodes can be kept in the tree. The
reduction process is brie�y described. After a near pair l, si(l) corresponding
to an incoming edge of vertex i is found, the following situation occurs: The

�rst common ancestor of l and si(l) is a Q-node X. Let node Y1 be child of
X and ancestor of l, let Yk, k ≥ 2, be another child of X and ancestor of

si(l), and let Y2, . . . , Yk−1 be the sequence of ignored nodes between them.
ReduceNear �rst removes the children Y2, . . . , Yk−1 and their descendants

from the tree. Any deleted leaf li corresponding to an incoming edge of vertex

i form a near pair with si(l), and is added to the graph. Then ReduceNear
goes along the path from Y1 to l applying a top down reduction. Any leaves

li that form a near pair with si(l), are added to the graph. The same is done

with the path from Yk to si(l). If there are other near pairs in the frontier of

Y1 and Yk, they are reduced correspondingly. In the end, all ignored nodes

between l and si(l) are removed from the PQ-tree, and arrays PL and SI

72



· · ·

· · ·

l1 l2

· · ·

si(l2)

si(l1)

Y1 Yk

Figure 5.3: Two non intersecting near pairs, part of a consecutive sequence.

Reducting l1, si(l1) �rst leads to the deletion of l2, so that l2, si(l2) cannot

be reduced after the reduction of l1, si(l1).

are updated. Any leaf thus deleted corresponding to an incoming edge of i
is added to Gp.

Proof that these changes are within the time bound of O(n2) is presented
in [Kan92].

5.2.3 Problems discovered by Leipert

S. Leipert [Lei96] found that ReduceNear does not reduce near pairs cor-
rectly, due to the following problems.

1. If one of Y2, . . . , Yk−1 is a Type U node, adding all edges corresponding
to leaves li to the graph will create non planarity.

2. The top down reduction does not restrict the permissible permuta-

tions in such a way that l and si(l) form a consecutive sequence in

all permissible permutations of the PQ-tree. Fig. 5.4 give an example
of this, taken from [Lei96]. Hence the top down reduction performed

by ReduceNear of [Kan92] may lead to wrong conclusion about the

presence of near pairs.

3. There may exist near pairs between l and si(l) in the frontier of their
least common parent, near pairs that will not be detected because one

part of the pair is deleted before the other one is found. An example

from [Lei96] is given in �g. 5.3. Obviously, both near pairs can be

reduced, but reducing l1, si(l1) �rst causes l2 to be deleted, making it

impossible to reduce l2, si(l2) afterwards. The edge corresponding to l2
will therefore not be added to Gp, and Gp will not be maximal planar.

73



Y1
2Y

llll

��l si(l)

�
�
�

�
�
�

�������������������������
�������������������������
�������������������������
�������������������������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��������������������
��������������������
��������������������
��������������������

Type U

Type U

(a) Before the reduction.

2YY1

l
l l

�
�
�
�

�������������������
�������������������
�������������������
�������������������

�
�
�
�

��
��
��
��
��
��
��
��

����������������
����������������
����������������
����������������

����

�����
�����
�����
�����

��
��
��
��
��
��
��
��

l

Type U

l

Type U

Type U

Type U

si(l)

(b) After the reduction.

2Y

����
si(l)

Y1

l
l l

�
�
�

�
�
�

���������������
���������������
���������������
���������������

����������������
����������������
����������������
����������������

��
��
��
��

��
��
��
��

�����
�����
�����
�����

�
�
�
�

��
��
��
��
��
��
��
�� g

h i

Type U

f
l

ed

Type U
cba

Type U
Type U

l

(c) A permissible permutation of the tree in (b), where nodes

a, b, c, d, e, f, g, h, and i are between the sequence indicator si(l)
and all potential leaves l.

Figure 5.4: Example of top down reduction of near pairs suggested in [Kan92].

All potential leaves denoted as l form a near pair with the sequence indicator
si(l). Other ignored nodes are drawn white. Full nodes are shaded. �

�
�
�

marks

the �middle� of a Type U Q-node. Example is taken from [Lei96].

74



· · · · · · · · ·

· · · · · ·

· · ·

l1 l2

si(l)
.

.

.

.

.

.

Y1 Yk

Z
Z2

Z1

Figure 5.5: Only one of the potential leaves l1 and l2 can be reduced.

Suggested solutions

The �rst problem demands that a maximal subset of the potential leaves
forming near pairs with si(l) is found, which guarantees that all leaves of
the subset can be reduced together. This can be solved by following the
steps of ReduceNear as before, reducing the near pairs in the frontier of

Y1, Y2, . . . , Yk. But when a Type U node is encountered, only one set of
the children is kept. Furthermore, when an ordinary P - or Q-node, with
children that have both ignored and pertinent children, is encountered, a
choice resembling the choice made for Type U nodes will have to be made,
so that no reduced leaf can cause non planarity in the graph. See �g. 5.5.

For the second problem, the reduction of a near pair l, si(l) has to make l
and si(l) a consecutive sequence in all permissible permutations. This is ex-
actly what the templates of [BL76] do. But since the reduction for near pairs
involves not two, but four types of nodes, new templates must be introduced.
The four types are as follows: Pertinent nodes, ignored nodes with part of
the near pair as a descendant (ignored-pertinent nodes), ignored nodes with

no such descendants (ignored-empty nodes), and full nodes with ignored-

pertinent leaves as descendants (pertinent-partial nodes). In addition, an
ignored-pertinent node may be ignored-partial if it has both ignored-empty
and ignored-pertinent children. New templates must be found for all new

situations that may occur, some of them will also involve Type U nodes

[Lei96].

The third problem turns out to be most di�cult. An ordering of near
pairs, if more than one is present, has to be found, such that the reduction
of one near pair does not hinder the reduction of the others. The fact that

near pairs may intersect, aggravates the possibilities of computing a suitable

order of reductions, and no solution to this problem is presented by Leipert.

According to [JLM96], the suggested solutions to the �rst two problems
are far beyond any reasonable implementation.

75



5.2.4 An attack on the approach of [JTS89, Kan92]

In [JLM96] two major problems with the approach of [JTS89] are detected,

both based on the use of the st-numbering of G. In [JTS89], a biconnected

Gp was a condition for MaxPlanarize to work correctly. But Jayakumar

et al. did not compute a new st-numbering for Gp, in order to be able to con-

struct the same sequence of PQ-trees as in the �rst phase. The st-numbering

of G is used instead, a numbering that is not necessarily a legal st-number-

ing for Gp. An st-numbering for G does not imply an st-numbering for a

biconnected subgraph of G. All outgoing edges of a vertex in G may have

been deleted by Planarize, even if Gp is biconnected. The same argument

Jayakumar et al. used to show that Gp had to be biconnected for their al-

gorithm MaxPlanarize to �nd a maximal planar subgraph (section 5.1.3,

�g. 5.1) is used in [JLM96] to show that Gp must have a legal st-numbering.

l1 l2 l3 k1 k2 l· · · · · ·

Figure 5.6: MaxPlanarize of
[JTS89] does not work when the

st-numbering is not legal for Gp.

In �g. 5.6, part of a reduction step of
MaxPlanarize for a biconnected Gp is

shown. When the incoming vertices of ver-
tex l, l < k, are reduced, leaves k1 and k2

are between l and its maximal pertinent
sequence in all permutations of the PQ-
tree, so l is deleted. Assume vertex k has
no outgoing edges in Gp. Thus, the new

node added to Tk will be an ignored node.
If this node and all its children, representing the outgoing edges of vertex k
in G, are later deleted from the tree, then edge el can be added to G

′

p without

destroying planarity. Accordingly, G
′

p is not maximal planar.

Kant seems to avoid the problem of a legal st-numbering for Gp since G
is the input graph to his version of MaxPlanarize, and leaves such as l are
kept in the graph as potential leaves. But as already pointed out, his version

of MaxPlanarize has other �aws.

The second problem presented by [JLM96] is not so easily solved. Lemma1
(page 19) gives the invariant that allowed [LEC67] to test a graph for pla-

narity by constructing a sequence of bush forms Bi, 1 ≤ i ≤ n. The lemma
states that in a given embedding of a planar, st-numbered graph G, all in-
coming edges to vertex i + 1 are embedded in the outer face of the induced

subgraph Gi. This invariant is not obeyed by MaxPlanarize. To �nd a
maximal planar subgraph, some edges may have to be embedded in an inner
face of some Gi. MaxPlanarize will not detect this. It only embeds edges

that can be embedded in the outer face of Gk. This problem is partly based

in the question of a legal st-numbering for the obtained subgraph. None

of the corrections suggested by [Kan92] or [Lei96] solves this problem. An

76



example of this situation is given in section 6.4, where one way of getting

around it is sketched. The three problems with the reduction of near pairs

in [Kan92] pointed out by [Lei96], are repeated in [JLM96], but no further

solutions are presented.

5.2.5 A new approach

The aim of the next chapter is to work out a new approach, based on the

additional data structure of chapter 4, which tries to avoid the problems

of the approach of [JTS89, Kan92]. The presented heuristic will produce a

maximal planar subgraph in a single run through the PQ-tree, except for

situations matching the second problem of [JLM96] stated above.

Unfortunately, the present form of the algorithm presented in chapter 6

seems to have time complexity O(nm), hence no better than the straight
forward approach. It is believed that further development can improve on
that to give an O(n2) time bound.

77



78



Chapter 6

Towards a skewness algorithm

The previous chapter showed that no algorithm based on PQ-trees, is known

that produces a maximal planar subgraph for all biconnected graphs G. Such
an algorithm would be a heuristic for the skewness number, so the focus of
this chapter is to �nd such an algorithm, based on the data structure of
chapters 3 and 4.

The skewness number of a graph G(V,E) is the size of the minimum set
E
′
of edges that must be removed from G to make the resulting subgraph

G
′
(V,E − E

′
) planar. Then the remaining set of edges, E − E

′
, induces a

maximum planar subgraph of G.

Chapter 4 introduced additional data structure to the PQ-tree that pro-
vides extra information about structures in the outer face of the embedded
subgraph of the bush form (de�nition 3.2). This extra information was used
in [Kar90] to exhibit a non planar subgraph homeomorphic to K3,3 or K5

when Planar [BL76], described in section 3.2.2, �nds the graph to be non

planar. The conclusion of that chapter, however, was that the additional
templates proposed by [Kar90] are not immediately suitable for constructing
a planar subgraph that is maximal.

Chapter 5 reviewed what has been done in the �eld of maximal planar

subgraph algorithms based on PQ-trees. As the last few years have shown
([Lei96, JLM96]), the approaches made by [JTS89] and [Kan92] do not pro-

vide a correct algorithm, computing a maximal and planar subgraph for all

graphs. In addition, all the corrections and modi�cations proposed have
lead to an algorithm that is no longer implementable with reasonable e�orts
[JLM96].

Therefore, the aim of this chapter will be to come up with a new ap-

proach using PQ-trees, that can give a better, and hopefully more intuitive,

algorithm for �nding a maximal planar subgraph. As we shall see, the result-

ing proposal will produce a maximal planar subgraph in all but a few cases

79



(discussed in section 6.4). Thus, it can also act as a fairly good skewness

heuristic based on PQ-trees. This aspect is further elaborated in the last

section.

6.1 Combining Planarize and Boundary

As mentioned in chapter 5, procedures Compute and DeleteNodes of

section 5.1 will be used to �nd the leaves causing a PQ-tree to be irreducible.
The �ndings of [Kan92] and [Lei96] presented in section 5.2, concerning near

pairs and how they should be determined to ensure a maximal and planar

subgraph, are taken advantage of. Thus, some terminology of chapter 5, as

well as of chapter 3 and section 4.1, will be used in this chapter.

MaxPlanarize of section 5.2 is based on two passes through the PQ-
tree. In the �rst phase, Planarize, edges found to prevent reducibility are
carelessly thrown away. Then, in the second phase, the same edges are kept
as ignored leaves of the PQ-tree, long enough to �nd those that did not

prevent planarity after all.

If Boundary is used to maintain information about edges that prevent
planarity, only one pass through the PQ-tree is needed. This requires that
no Boundary containing such information is lost. Deleting a leaf with only
one sibling from the PQ-tree will cause their parent to be deleted. The sibling

is either a leaf or an internal node with a Boundary of its own, thus making it
di�cult for the PQ-tree to keep the Boundary containing information about
the deleted leaf. This can be solved by not deleting these leaves, and instead
mark them as ignored right away. This enables both the current and the
following PQ-trees to disregard these leaves. Ignored leaves will thus not

prevent a PQ-tree from being reducible.

We will follow the terminology of [Kan92], and call ignored leaves in the

PQ-tree potential leaves. A virtual edge corresponding to a potential leaf has
both its tail and head vertex embedded in the subgraph, but is not embedded
itself. Since it may still be added to the subgraph, the edge is not included in

the set E
′
, estimating the skewness of the graph, either. Thus virtual edges

in the bush form, corresponding to potential leaves in the PQ-tree, will be
called stray edges. Their virtual vertices are called stray vertices.

The embedded head vertex of a stray edge is referred to as its home

vertex. The boundary element corresponding to a home vertex is called a
home element. Again, to ensure that a Boundary object will maintain this

information in the PQ-tree, a special node, called a home node, will be

placed as a child of the new node added in the vertex addition step, if the

corresponding vertex is a home vertex.

80



The concept of home node is the same as the sequence indicator of

[Kan92], in so far as they both mark the place of the pertinent sequence

and new node in the tree. The reason for introducing new terminology con-

cerning this node, is the di�erence in the function they serve in the PQ-tree.
The home node and corresponding potential leaf take no part in determining

near pairs in Skew. Skew rely on Boundary to detect near pairs. The ig-

nored nodes are merely kept for Boundary to be able to maintain the proper

information. Since the Boundary represents parts of the outer face of the bush

form, near pairs will be de�ned in terms of the bush form in this chapter.

De�nition 6.1 follows de�nition 5.1 of the previous chapter.

De�nition 6.1 A stray edge is near its home vertex if the edge can be em-

bedded in the outer face of the bush form by only crossing other stray edges.

Such a near pair is said to be embedded if the stray edge is added to the

planar subgraph.

As explained in section 5.2.2, not all near pairs can be embedded. Boundary
will have responsibility to detect near pairs and embed as many as possible.

Before the procedure �nding these near pairs in the Boundary is pre-
sented, the procedure that marks leaves as potential and stores information
in Boundary is described.

6.1.1 RemoveNodes

DeleteNodes(Ti) of section 5.1.2 deletes all pertinent leaves made TypeW,

according to the [w,h,a]-numbers computed by Compute(Ti) of section 5.1.1.
All internal nodes thus left without children are also deleted, and the PQ-
tree Ti is updated accordingly. As argued above, Skew needs these nodes

to be kept in the PQ-tree. A modi�ed version of DeleteNodes, Remove-

Nodes, will perform this task. In addition to updating the nodes of the

PQ-tree and pruned subtree about the correct number of descendant leaves,
RemoveNodes(Ti) will also update the Boundary of each node about poten-
tial children and descendants. In addition, a set Pi+1 will be built, containing
all pertinent leaves made potential by RemoveNodes(Ti). Nodes with only

potential leaves as descendants will be ignored by the PQ-tree, and are thus
marked as ignored.

For each leaf made potential, the Boundary of the parent receives a pointer
to this child. If parent is a Q-node or non proper P -node, the pointer is

given to the corresponding element on the Boundary, representing the child.

This element will place the pointer in a potential set. If the parent is a

proper P -node, the pointer is also placed in a potential set, held directly by

81



7 8 6

10 11 12

9

9 14

13

15 9

[3,2,1]

[1,0,0]

[1,0,0]

[1,0,0]

[1,0,0]

[1,0,0]

(a) After Compute(T8)

7 8 6

10 11 12

9

9 14

13

15 9

9

9

j e e

2-7-4-8-5-6

(b) After Remove-

Nodes(T8)

Figure 6.1: Pertinent subtree of T8.

7 6

10 11 12

9 9 14 13

15 9

9

9,�9

j e
�

e

2-7-4-9 -8-5-6

(a) After Reduce(T8)

2

7 4 9 8 5 6

10 11 12 10 11 14 13 15 9

(b) B9

Figure 6.2: Pertinent subtree of T8 after Reduce, and bush form B9.

the Boundary. The potential leaf receives a pointer to this potential set in
return. The set and the leaf will follow each other for as long as they stay in

the PQ-tree. No maintenance is necessary until the leaves are deleted.

Parent's Boundary is updated in the same way when an internal node is

marked ignored. If the ignored node is a Q-node or non proper P -node, the
potential sets of its boundary elements are placed in a list, that are again

placed in a potential set. This set corresponds to the potential set of proper

P -nodes, and it is these sets that their parent's Boundary receives a pointer
to. Accordingly, the potential sets will re�ect the structures of the PQ-tree.
They may contain pointers to ignored leaves or to other sets, representing

ignored children of P - or Q-nodes. A �gure illustrating this structure can be

found on page 87.

RemoveNodes traverses the tree top down, from ROOT(T, Si) to the
pertinent leaves to be made potential, carrying with it information about
how many descendant leaves of each node will end up as potential. This

information is left in the Boundary of every node, as a total count and a

count for each i. RemoveNodes also knows when it reaches the node that

will be root of the new pertinent subtree. Thus, any ancestor of this node

82



will be marked as ancestor of the new home node. The new root itself is not

marked, since this will be done by Reduce.

Figs. 6.1 and 6.2 give an example of how RemoveNodes works. The

pertinent root in �g. 6.1(a) is not reducible, since the minimum of h and a of

its [w,h,a]-number is not 0. a is the smaller, so the root is made Type A

and RemoveNodes(T8) called. The element added in the Boundary of

ROOT(T8, S9) in �g. 6.1(b) is the count of potential descendants; there is

one, corresponding to an incoming edges of vertex 9. In �g. 6.2(a), the new

element, added by templateQ3, is marked as a home element (the circum�ex

symbolizes a roof). This mark is actually placed in a potential set. Fig. 6.2(b)

is the corresponding part of the bush form after vertex 9 has been added.

6.2 Finding near pairs

The information left by RemoveNodes gives every node complete know-
ledge of potential leaves and home nodes among its descendants. The ques-
tion is thus how to detect all near pairs that form, and embed all edges

that do not create crossings in the planar subgraph. The approach presented
here will maintain the bush form as an invariant, never creating a PQ-tree
that does not match the corresponding bush form. This is necessary for the
boundary to maintain information and decide when near pairs are formed
and can be embedded.

6.2.1 A closer look at the bush form

The bush form is de�ned to be a planar drawing, with all virtual vertices

drawn in the outer face. Thus edges must be deleted from the bush form

when they create crossings.

When a home vertex j is made internal to a biconnected component, it

cannot form a near pair with any of its stray edges anymore. Accordingly,
all stray vertices labeled j are deleted from the bush form together with the
corresponding edges. If any stray vertices are caught inside the sequence of

virtual vertices labeled i in Bi−1, like the stray vertex labeled k in �g. 6.3,

they are deleted to avoid edge crossings. And when a near pair is embedded,

all stray edges thereby crossed are also deleted.

This gives all situations that cause stray edges to be deleted from the bush
form, and thereby from the planar subgraph. Disregarding the embedding

of near pairs, only the embedding of new vertices is left. As long as the

maximal pertinent sequence of Bi−1 consists of at least two virtual vertices

labeled i, embedding vertex i to form the next bush form Bi will create new

83



i k i

Rest of Bi−1

i

k

Rest of Bi

Bi−1, i > k Bi, k creates an edge crossing

Figure 6.3: Situation causing a stray edge to be deleted.

The stray edge, drawn as a dashed, gray line, causes an edge crossing after

vertex i is embedded. The stray edge corresponds to a potential leaf in the

PQ-tree Ti−1, interior to the pertinent sequence in all permutations of Ti−1.

The potential leaf will be deleted form Ti−1 in the vertex addition step. The

squares are virtual vertices whose labels are indi�erent to the example.

inner faces in the embedded subgraph. Fig. 6.4 shows an example of such
new inner faces.

All near pairs can be found by checking only new inner faces. In the PQ-
tree, this corresponds to only checking for near pairs within the pertinent
sequence of the Boundary. To make this task a little simpler, one exception
is made. If RemoveNodes detects that a near pair is present in the subtree

rooted at a node made ignored, it will be embedded right away, instead of
waiting until the root of this subtree becomes part of a pertinent sequence.

As stated above, whenever a home vertex is made internal to a bicon-
nected component, the corresponding stray edges are removed from the bush

form. In the PQ-tree, this happens when home nodes are interior to a per-

tinent sequence, and are deleted in the vertex addition step. When the
home node labeled i is deleted, the set Pi, built by RemoveNodes(Ti−1),

is emptied. Each leaf that were in Pi is removed from the PQ-tree, and
the corresponding edges added to E

′
, the set estimating the skewness of the

graph. The information in the potential sets holding pointers to the deleted

leaves can be updated thanks to the reverse pointer set by RemoveNodes.

The last bush form created when embedding a graph, is Bn, a planar
embedding of the graph itself. When testing for planarity, the PQ-trees
are only constructed as far as Tn−1; it is reducible by default. To be able to

detect near pairs forming in the new inner faces created by embedding vertex

n, and in the outer face of the planar subgraph, all boundaries of Tn−1 must

be checked for near pairs as well.

84



5

6

7

8

9

10

11

12

13

14

15

25 18 19 1617 16 2016

Rest of B15

A

B

(a) B15

5

6

7

8

9

10

11

12

13

14

15

16

25 18 19 17 18 19 20

Rest of B16

A

B

(b) B16

Figure 6.4: New inner faces.
A and B mark the new inner faces of the biconnected component created by
embedding vertex 16. In (a), bold lines mark the new outer mesh, stapled
lines the new inner faces.

6.2.2 A closer look at Boundary

RemoveNodes provides Boundary with information about potential leaves
and home nodes. To locate near pairs, the boundary must search the new
inner faces created. Some small changes to the procedures of section 4.2.1

will add to the pertinent sequence enough elements to represents the vertices

bounding each new inner face.

Fig. 6.5 shows the extended boundary of the new biconnected component
created in �g. 6.4 with all vertices of the outer mesh represented. Since idle

elements represent vertices that are indi�erent to the existence of near pairs,

they do not have to be represented in the Boundary any more. Thus, no
chains will need to be inserted either. A natural way to obtain the dou-

ble occurrence of elements, as element 12 of �g. 6.5(a), is to disconnect the
doubly linked list of boundary elements for partial boundaries during a re-

duction. The two endmost elements will both represent the joint. These

two elements will also be the empty and full end of the partial boundary,
and automatically give the double occurrences needed to represent new in-

ner faces. This should of course not be done for the Boundary of the node

85



11
25

18 19

17 16 16 16 20

j e e

5-6-11-12-15-14-12-13-9

E E F F F

T T T F T

(a) Part of T15

11 16
25

18 19

17

18 19

20

j e e

5-6-11-12-15-16-13-9

E E E E E

T T T T T

(b) Part of T16

Figure 6.5: Q-nodes and boundaries corresponding to bush forms in �g. 6.4.

In (a), all nodes on the new outer mesh is present, causing two occurrences

of element 12. (b) is the Q-node after vertex addition. Multiple occurrences

of element 12 were removed when the new element was added.

that is ROOT(T, Si), as this Boundary, after vertex addition, should again
represent only the outer mesh.

Embedding of near pairs

New inner faces are checked for near pairs as they are created by the template
matchings in Reduce. A procedure SearchNear walks the path de�ning
a new inner face, from one pertinent element to the next. The pertinent child
of both pertinent elements have already been checked for near pairs, and all
potential leaves and home vertices interior to the new inner faces have been

deleted. The potential sets of the pertinent elements are therefore up to date,

containing no elements that are prevented from forming near pairs.

Any potential set held by elements encountered by SearchNear on this
walk, is put on a stack. A list is maintained of how many potential leaves
are found, and what vertex they are incoming to. This count has been set by

RemoveNodes. When a home element x̂ is found, the list is checked to see

if a near pair can be found. If the entry for x in the list is not zero, one or
more near pairs can be formed. Potential sets are popped o� the stack until

one containing x is found. If elements without any occurrences of x is popped
before all x's are found, all potential leaves in these sets are deleted. They
correspond to stray edges being crossed by the embedding of near pairs. The

corresponding edges are deleted forever from the subgraph, and added to E
′
,

the set of edges estimating the skewness number.

Fig. 6.6(a) gives an example of a new inner face in a Boundary containing

near pairs. u and z are perinent elements whose pertinent descendants de�ne

a new inner face. SearchNear starts up in u. The potential set held by

86



a xb

c x

f

x
e
x

i c
x

e x

âx̂

���
���
���
���

���
���
���
���

��������������������
��������������������
��������������������
��������������������

d

...

...

d -   - xa - b - x

f

...

...

i
x

a

- u - v - w - z - 

(a)

i

âx̂

d - ea - b

c

a b d e

���
���
���

���
���
���

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

Type U

...

...

f

...

...
x

- u - v - w - z - 

f
ia

c

(b)

Figure 6.6: A new inner face is checked for near pairs in Ti−1.

The boundary is not complete, only interesting part is shown. The two leaves
labeled i are pertinent, de�ning a new inner face. All other descendants of
the Q-node included in the �gure are ignored. Home vertices are represented

by . Ovals represent potential sets. Bold lines mark Type U sets.

element v is put on the stack. The next element encountered is w, holding
home element x̂. Obviously, some leaves preventing the potential leaves la-

beled x from being consequtive with the maximal pertinent sequence, have
been deleted. The probable cause is that they became potential themselves,
and were deleted when their home nodes were deleted. The corresponding

element on the Boundary is therefore idle, and not interesting anymore. The
list kept by SearchNear counts four occurrences of potential leaves that

can form a near pair with x̂. The top element of the stack, containing only
g, is popped. The corresponding potential leaf is removed from the PQ-tree,
and the edge added to E

′
. The next potential set on the stack contains all

four occurrences of x. A procedure Embed is called. Embed will make sure
that all embeddable near pairs are found, and that the potential sets are

updated correctly, so that only those potential leaves corresponding to edges

that will create crossings in the embedded subgraph, are deleted.

All potential leaves that belong to the same home node and are descen-
dants of the same ignored node, will form a near pair if one of them does. The
challenge is to �nd the potential leaves corresponding to stray edges that do

not create crossings when these near pairs are embedded. Such leaves need

not be deleted. In �g. 6.6(a), when all potential leaves labeled x forming

near pairs with x̂ have been embedded, only potential leaves from one of the

87



sets a− b and d− e can be embedded without creating a crossing. Which set

that should be kept cannot be decided at this point.

The idea behind the Type U node (de�nition 5.2) introduced by [Kan92]

is used to solve this problem. Here a special set is de�ned, called a Type U

set (U stands for unknown).

De�nition 6.2 A Type U set has at least two elements
1
. These elements are

potential sets, containing one or more elements themselves. Only elements

from one of these potential sets can be embedded, and when one is chosen,

all other potential sets in the Type U set is deleted.

A Type U set is used when a choice between two or more potential sets

must be taken, without the appropriate information present. A Type U set

is, among other matters, used when interior children of an ignored Q-node is
embedded. One side of the Q-node will end up on the outer face, but which
one cannot be decided yet. The two sequences obtained by walking from
the endmost children towards the potential children forming near pairs, will

make up the list for each of the two elements of the Type U set. When a
Type U set is encountered by Embed, only one of the sets it contains can
be used. The others are discarded, and the contained potential leaves with
them.

After Embed has embedded all near pairs formed with home node x̂, the

sets held by the ignored nodes look like �g. 6.6(b). The last element checked
by SearchNear is z. A new home node, a, is encountered. The potential
set of element v is still on the stack, and the count still shows one potential
leaf marked a. When the set containing a is found and removed, the other
potential set of the Type U set is deleted.

Since z is pertinent, SearchNear stops searching for near pairs, it has

reached the end of the path de�ning the new inner face. All potential sets
still held by the potential elements between u and z are deleted. They will
all be internal to the new inner face determined by the pertinent descen-

dants of u and z. Since a near pair has formed with home node a inside the

new inner face, vertex a, as well as vertex x, will be internal to the bicon-

nected component after the vertex addition step. All leaves in Pa and Px are
deleted form the PQ-tree, and the corresponding edges added to E

′
. The

corresponding potential sets are updated, and if left empty, deleted along

wiht the corresponding idle element.

When SearchNear has checked the new inner faces on both sides of an

interior pertinent element holding a potential set, the potential set is deleted.

1The word `element' of de�nition 6.2 refers strictly to the set elements. It is not to be
confused with the boundary elements of the Boundary.

88



It cannot form any more near pairs. If, on the other hand, the element is

endmost in the pertinent sequence, what is left of the potential set is kept.

The contents may still form near pairs in later reductions.

To ensure that all near pairs are embedded correctly, Embed can also

be called by RemoveNodes. If a node made ignored by RemoveNodes is

least common parent of a potential leaf and its home node, they form a near

pair that should be embedded right away. In such cases, Embed is called to

embed this near pair, delete the necessary potential leaves, and update the

potential sets. This way, no potential sets representing an ignored subtree

contain near pairs when encountered by SearchNear.

Embed

Embed descends through the potential set and all its subsets, subtracting
all leaves that form a near pair with the given home element, creating new
Type U sets when necessary, deleting the appropriate potential leaves, and
updating the counts of potential descendant leaves. The last task can easily
be done if Embed makes a list of what is deleted. After Embed is �nished,

SearchNear can update the count according to this list.

6.3 Skewness algorithm

Since most of the new procedures determining the planar subgraph is called
by Reduce and the template procedures of the Boundary, there is not much

di�erence between the outline of Skew and the outline of Planarize of
[JTS89] given on page 68. The main di�erence lies in the extra work done
by RemoveNodes, Reduce, and Boundary to obtain a maximal planar
subgraph in one run through the PQ-tree.

algorithm Skew(G)
begin

construct initial tree T1;
for i = 2 to n do

BubblExt(Ti−1, Si);
Compute(Ti−1);
if min{h, a} 6= 0 for ROOT(Ti−1, Si) then

{Deletion step}

make ROOT(Ti−1, Si) Type H or A corresponding to minimum of h and a;
RemoveNodes(Ti−1);

�;
Reduce(Ti−1, Si);
{Vertex addition step}

make Ti by replacing full nodes with new P -node X with all outgoing edges

89



of vertex i as children of X;
od;

end;

After BubblExt has built the complete pruned subtree, Compute of

[JTS89] computes the [w,h,a]-numbers, ignoring the presence of ignored nodes

in the PQ-tree. If the PQ-tree is not reducible, the type of the root of the

pertinent subtree is descided, and RemoveNodes is called. If h = a > 0,
no speci�c rule is given in [JTS89] of what type to make ROOT(T, Si). Our
testing indicates that Type A is to prefer in such cases. It seems that the

Boundary will provide better information this way.

The necessary leaves are made potential byRemoveNodes, the potential

sets updated, and the set Pi built. If a near pair is detected, Embed is called.

During Reduce, all new inner faces are checked for near pairs. The template
procedures called in the Boundary of each node takes care of this.

There has not been enough time to develop every detail of Skew. When

this is done, and the result tested, better solutions than those proposed for
the information keeping and determining of near pairs, may be found. But
those proposed here will work, and in deed �nd a maximal planar subgraph
for most graphs.

6.3.1 Time complexity

None of the procedures called directly from Skew takes more than O(n2)
time. This has been stated earlier for BubblExt (section 4.1.3), Compute
(section 5.1.1) andReduce (section 3.1.2). The additional updating of nodes
performed by RemoveNodes takes constant time for each node. Thus,
RemoveNodes is O(n2), just as DeleteNodes (section 5.1.2).

SearchNear and Embed are the only ones that can disturbe the com-
plexity of O(n2). All searching for, and embedding of near pairs are per-

formed by these procedures. The number of faces of an embedded planar
graph is O(n). So SearchNear can be called at most O(n) times. The
total number of existing near pairs has an upper bound of O(m). Hence,

Embed can be called at most O(m) times. Without further analysis, this
gives an upper time bound of O(nm), the same complexity as the straight

forward algorithm for maximal planar subgraph problem. This analysis is

not complete.
The sketched approach of SearchNear and Embed are intuitive �rst

ideas on how to detect and embed near pairs in the Boundary. Accordingly,

the preferred overall timebound of O(n2) may still be obtainable, and it is

my conjecture, given the resemblance with the O(n2) data structure and

algorithm of [Kan92], that this is possible. (See also section 7.1).

90



6.4 Remaining problems

Since Skew is a one-phase algorithm, the problems of [JTS89, Kan92] based

in the two phases of MaxPlanarize are avoided. The Type U sets ensures

that no edge is faulty included in the planar subgraph. All near pairs are

found and embedded by SearchNear and Embed.

But the second problem of [JLM96] still remains. An example is given

in �gs. 6.7 and 6.8. A bush form Bk−1 is given in �g. 6.7, where only three

of the four virtual vertices labeled k can be made consecutive. The forth is

thus not embedded when the new vertex is added. The corresponding PQ-
tree Tk−1 is given in �g. 6.8. Assume that when all vertices of G has been
embedded in the planar subgraph, there is a path from at least one of the
vertices causing k4 not to be embedded in Bk−1, to vertex n. Thus, Skew
cannot have embedded the corresponding edge in the planar subgraph, since
this edge and the corresponding home vertex have not been part of the same

new inner face, or at any point formed a near pair. Assume further that no
outgoing edges of vertex k is embedded in the planar subgraph. This means
that the deleted edge, incoming to vertex k, can be made adjacent to vertex k
when the structures of the biconnected component are as in �g. 6.7. Vertex k
is made part of the same old inner face as the tail vertex of the deleted edge,

by �ipping part of the biconnected component. This enables the deleted edge
to be embedded in this face. Fig. 6.7(b) shows how this would look in bush
form Bk.

It seems that this situation cannot be detected by adding a reasonable

amount of extra information to the PQ-tree. But the situation is easy to

detect after Skew has �nished. A vertex in G that has no outgoing edges

in Gp, as well as deleted incoming edges, may resemble the situation of k
in �g. 6.7. Some of these incoming edges may thus be embeddable in Gp

without destroying planarity. To see if that is the case, they can be added to
Gp, creating G

′

p. G
′

p is given a new st-numbering, and its biconnected blocks

can then be tested for planarity, or run through Skew again. How much a

second run through Skew will improve the result, has not been analysed.
But it seems that the situation of �g. 6.7 is so rare that the number of edges
added to G

′

p will be small. Accordingly, a maximal planar subgraph can

be e�ciently obtained from Gp by testing if planarity is preserved for one

edge at a time. Improvement is possible if some heuristic can be found that

estimates the optimal order in which to test these edges.

91



k
3

k
4

k
2

k
1

�
�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�

�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
��

�

�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
��

�

��������
��������
��������
��������

��������
��������
��������
��������

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��

��

��

��

��

��

��

��

��

��

��

��

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�

(a)

e
k 4

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�
�

�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

�
�

�
�

�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
��

�

�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
��

�

�������
�������
�������
�������
�������

�������
�������
�������
�������
������� ��

��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
� k

(b)

Figure 6.7: Example of embeddable edge not discovered by the PQ-tree.
Shaded areas are embedded biconnected components.

k
1

k
3

k
2

k
4

��
��
��
��

�����������������
�����������������
�����������������
�����������������

Figure 6.8: Pertinent Q-node corresponding to biconnected component of
�g. 6.7.

92



6.4.1 In search for perfection

The planar subgraph determined by Skew is not necessarily very close to the

optimum, maximal or not. Some additional approaches are suggested, that

will improve on the size of the obtained subgraph, if not on the simplicity of

Skew. Deleting a pertinent leaf in the maximal pertinent sequence might

lead to additional near pairs being embedded. This actually corresponds

to deleting empty leaves from an irreducible PQ-tree. As pointed out by

Jayakumar et al. [JTS89], this cannot be done uncritically. If all pertinent

leaves are deleted, there is nowhere to add the new node, and the subgraph

may end up disconnected. But when several new inner faces form, they can

be joined. Always keeping the two endmost pertinent nodes ensures that the

new node can be added, and that the structures in the outer face of the bush

form remain unaltered. This is important for maintaining the bush form as
an invariant to the PQ-tree. An e�cient way to decide if an edge should be

deleted in favor of a set of embeddable near pairs, will thus have to be found.

The tests performed withObstructions and Cases of chapter 4, showed

that edge (1, n) often blocks several other edges from being embedded. This
implies that testing several di�erent st-numberings of a graph may pay o�.
Since the edge (s, t) can be an argument to the st-numbering algorithm, rules
determining smart choices for this edge may be developed.

There is another aspect of the PQ-tree where the choice of st-numbering
can strongly in�uence the result. Once an edge has been embedded in the
subgraph, it cannot be removed by the PQ-tree. If an edge, essential in the
minimum sets of edges that can be removed, is embedded before the graph

is discovered to be non planar, then a minimum set cannot be discovered,

and the estimate will not be optimum. A good example is an example graph
from [Kan92], used there to demonstrate the superiority of his version of
MaxPlanarize over the algorithm of [DT89] and an earlier version of the

algorithm of [CHT93]. The graph is given in �g. 6.9(a).

Fig. 6.9(b) gives the result of MaxPlanarize. Five edges have been

deleted from the graph, (8, 41), (9, 42), (10, 43), (11, 44), and (12, 45). In

[GT94], only three edges are deleted from this graph, determining the skew-
ness number to be 3. There are several sets of size three that will make

the resulting graph planar. In �g. 6.9(c), edges (1, 2), (3, 4), and (5, 6) have

been removed. Another set is (1, 14), (2, 3), and (4, 5). We have reached
the conclusion that at least one of edges (1, 2), (2, 3), and (3, 4) is contained
in all minimum sets for this graph. Since the PQ-tree cannot discover non

planarity before at least four vertices have been embedded, these sets cannot

be determined by the present st-numbering. Accordingly, the estimate for

the skewness number, and the obtained planar subgraph, may be increased

93



1

2

3

4

5

6
7

8

9

10

11

12

13
14

15

20

25

30

35

40

41

42

43

44

45

(a) Graph

1

2

3

4

5

6
7

8

9

10

11

12

13
14

15

20

25

30

35

40

41

42

43

44

45

(b) Result in
[Kan92]

1

2

3

4

5

6
7

8

9

10

11

12

13
14

15

20

25

30

35

40

41

42

43

44

45

(c) Result in
[GT94]

Figure 6.9: Example graph from [Kan92] and [GT94].

(c) is a maximum planar subgraph of the graph in (a)

94



by running the graph through the PQ-tree more than once, with di�erent

st-numberings.

95



96



Chapter 7

Conclusion

If I were to write this thesis all over again, both the focus and the result
would probably have been di�erent. The new results of [JLM96] came to my
attention too late to have a larger impact on this thesis. As it is, the focus
of this thesis has been on exploring the possibilities that the PQ-tree data

structure gives, in order to design a heuristic for solving the maximal planar
subgraph problem and, ultimately, the skewness problem. My own research
as well as that of [JTS89, Kan92, Lei96, JLM96] has shown that the PQ tree
data structure may not be the structure of choice when attempting to solve
those problems.

A survey of previously published articles attempting to solve the maximal
planar subgraph problem is given. My augmentation of the PQ-tree data
structure is described and partially implemented. This part of the thesis
ended up being much smaller than originally planed, in favor of a more
theoretical emphasis. Finally, a new approach for a heuristic to the maximal

planar subgraph and skewness number heuristic is given.

7.1 Further work

The algorithm proposed in chapter 6 has not been implemented and tested.

It is my belief that, if time for a more thorough analysis of how to organize the
information and search for near pairs had been available, a version of Skew

with better complexity could be obtained. Implementing the algorithm and
performing tests can determine how well this approach can compete with

other algorithms such as [CHT93, GT94], both in the time complexity and

in the number of deleted edges.

The Obstructions algorithm of chapter 4 can be extended into a pla-

narizing algorithm. With extensive testing, it may very well prove to be

97



a good and simple heuristic for the skewness number for some families of

graphs.

Section 6.4 presented some thoughts on how the chosen st-numbering

may in�ict on the results of MaxPlanarize and Skew. Further analysis

of this may give interesting results that can provide new approaches to the

maximal planar subgraph and skewness problems, based on the PQ-tree data

structure.

98



Bibliography

[BL76] K. S. Booth and G. S. Lueker. Testing for the consecutive ones

property, interval graphs and graph planarity using PQ-tree al-

gorithms. J. Comput. System Sci, 13(3):335�379, 1976.

[CHT93] J. Cai, X. Han, and R. E. Tarjan. An O(m log n)-time algorithm
for the maximal planar subgraph problem. SIAM J. Comput.,
22(6):1142�1162, 1993.

[Cim95] R. Cimikowski. On heuristics for determining the thickness of a

graph. Information Sciences, 85(1-3):87�98, 1995.

[CNAO85] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm
for embedding planar graphs using PQ-trees. J. Comput. System

Sci., 30(1):54�76, 1985.

[DT89] G. Di Battista and R. Tamassia. Incremental planarity testing.
In Proc. 30th Annual Symposium an Foundations of Computer

Science, pages 436�441. IEEE Comput. Soc. Press, 1989.

[ET76] S. Even and R. E. Tarjan. Computing an st-numbering. Theo-

retical Computer Science, 2(3):339�344, September 1976.

[ET77] S. Even and R. E. Tarjan. Corrigendum: Computing an st-

numbering. Theoretical Computer Science, 4(1):123, February

1977.

[Eve79] S. Even. Graph Algorithms. Pitman, 1979.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co, New York, 1979.

[GJ83] M. R. Garey and D. S. Johnson. Crossing number is NP-
complete. SIAM J. Algebraic and Discrete Methods, 4(3):312�

316, 1983.

99



[Gri94] R. P. Grimaldi. Discrete and Combinatorial Mathematics, An

Applied Introduction. Addison-Wesley Publishing Co., 3 edition,

1994.

[GT94] O. Goldschmidt and A. Takvorian. An e�cient graph planariza-

tion two-phase heuristic. Networks, 24:69�73, 1994.

[Guy72] R. K. Guy. Crossing number of graphs. In Y. Alavi, D. R. Lick,

and A. T. White, editors, Proc. Graph Theory and Applications:

Western Michigan University, May, 1972, volume 303 of Lecture

Notes in Mathematics, pages 111�124. Springer Verlag, 1972.

[Har69] F. Harary. Graph Theory. Addison-Wesley Publishing Company,

1969.

[HT74] J. Hopcroft and R. Tarjan. E�cient planarity testing. J. of the
Association for Computing Machinery, 21(4):549�568, 1974.

[JLM96] M. Jünger, S. Leipert, and P. Mutzel. On computing a maximal

planar subgraph using PQ-trees. Technical report, Informatik,
Universität zu Köln, 1996. ftp://ftp.zpr.uni-koeln.de/pub/
paper/zpr96-227.ps.gz.

[Joh98] J.-E. Bye Johansen. Master Thesis. To appear. Implements the

embedding algorithm of [CNAO85], May 1998.

[JTS89] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. O(n2)
algorithms for graph planarization. IEEE Trans. on Computer-

Aided Design, 8(3):257�267, 1989.

[Kan92] G. Kant. An O(n2) maximal planarization algorithm based on
PQ-trees. Technical Report RUU-CS-92-03, Dept. of Comp. Sci-
ence, Utrecht University, 1992. ftp://ftp.cs.ruu.nl/pub/RUU/

CS/techreps/CS-1992/1992-03.ps.gz.

[Kar90] A. Karabeg. Classi�cation and detection of obstructions to pla-
narity. Linear and Multilinear Algebra, 26(1-2):15�38, 1990.

[Kur30] K. Kuratowski. Sur le problème des courbes gauches en topologie.
Fund. Math., 15:271�283, 1930.

[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for pla-

narity testing of graphs. In P. Rosenstiehl, editor, Theory of

Graphs: International symposium: Rome, Italy, July 1966, pages
215�232. Gordon and Breach, New York, 1967.

100



[Lei96] S. Leipert. The problem of computing a maximal planar sub-

graph using PQ-trees is still not solved. In Special Proceedings

for Students, European Consortium of Mathematics in Industry,

Kaiserslautern, Germany, 1994, EMCI'94, aug 1996.

[Lei97] S. Leipert. PQ-trees, an implementation as template class in

C++. Technical report, Informatik, Universität zu Köln, 1997.

http://www.mpi-sb.mpg.de/LEDA/www/leps/pq_tree.html.

[LG79] P. C. Liu and R. C. Geldmacher. On the deletion of nonplanar

edges of a graph. In Proc. 10th S-E Conf. Combinatorics, Graph

Theory, and Computing: Boca Raton, Florida, pages 727�738,

1979.

[Man83] A. Mans�eld. Determinig the thickness of graphs is NP-hard.
Math. Proc. of Cambridge. Philos. Soc., 93:9�23, 1983.

[May72] J. Mayer. Décomposition de K16 en trois graphes planaires. J.

Combin. Theory B, 13:71, 1972.

[Mut94] P. Mutzel. The Maximum Planar Subgraph Problem. PhD thesis,
Mathematisch-Naturwissenschaftlichen Fakultät der Universität
zu Köln, 1994.

[OT81] T. Ozawa and H. Takahashi. A graph-planarization algorithm and
its application to random graphs. In N. Saito and T. Nishizeki,
editors, Proc. Graph Theory and Algorithms: Sendai, Japan, Oc-

tober 24-25, 1980, volume 108 of Lecture Notes in Computer Sci-

ence, pages 95�107, New York, 1981. Springer Verlag.

[Str97] Bjarne Stroustrup. The C++ programming language. Addison

Wesley, 1997.

[Tho95] C. Thomassen. Embeddings and minors. In R. L. Graham,

M. Grötschel, and L. Lovàsz, editors, Handbook of Combinatorics,

volume 1, chapter 5. Elsevier Science B. V., Amsterdam, Nether-

lands, 1995.

101



102



Appendix A

Implementation of mypqtree

The newest version of Leipert's implementation of PQ-tree [Lei97] is available
at http://www.mpi-sb.mpg.de/LEDA/.

Files are stored at /home/skidbladnir/e/gorrilv/hovedfag/OPPGAVE/
Prog/.

A.1 Guidelines

Input �les should look like the �le in �g. A.1

The derived subclass of PQTree is called pqtree. pqtree is implemented
only to work with parameter types edge, Chain, and Boundary. Thus, it is

no longer a template in itself.

12

2 3 4 5 12 0

1 3 7 0

1 2 8 0

1 9 0

1 6 0

5 7 12 0

2 6 10 11 0

3 9 0

4 8 11 0

7 11 0

7 9 10 12 0

1 6 11 0

Figure A.1: Example of input �le

103



Figure A.2: Example of �le displayed by vbcTool

A.1.1 vbcTool

Leipert has provided a visual debugging tool, vbcTool, that visualizes the
PQ-tree. Print procedures have been added to classes edge, chain, and
boundary in order to present this additional information as well in these

drawings. vbcTool can be downloaded from
http://www.informatik.uni-koeln.de/ls_juenger/projects/vbctool.html.
Fig. A.2 shows a typical tree, one of the trees obtained from running the
graph in �g. A.1. Dark grey nodes are P -nodes, colored red. Black node is
Q-node. Leaves are colored blue. When full, they are colored green. Fig. A.3

shows the �le generated by Bubble, and displayed by vbcTool in �g. A.2.

A.1.2 Altered �les of Leipert's implementation

All *.cc �les provided with the template classes of Leipert's implementation,
were altered, since the present implementation is not a template. PQTree.cc
is given as an example. For all �les, edge.h, chain.h, and boundary.hmust

be included, in addition to those speci�ed by Leipert's implementation.

/************************************************************************

Filename : PQTree.cc
Version : 1.0 1997
Author : Sebastian Leipert
Language : C++

************************************************************************/

#include "PQTree.h"

#include "key.h"

104



#TYPE: COMPLETE TREE

#TIME: NOT

#BOUNDS: NONE

#INFORMATION: STANDARD

#NODE_NUMBER: NONE

n 1 \iROOT: P-NODE, ID#: 0, Status: EMPTY , Vertex 1 fChs: 0 \i

c 1 4

e 1 2

n 2 \i LEAF ID#: 12, Status: EMPTY Chain: 1-4-9 (4,9)\i

c 2 8

e 1 3

n 3 \i Q-NODE ID#: 18, Status: EMPTY , Vertex 6 Bound:

1(j)(E)(F) - 5(E)(F) - 6(l)(E)(T) - 7(E)(T) - 2(E)(F) - 3(r)(E)(T) fChs: 0 \i

c 3 6

e 1 4

n 4 \i LEAF ID#: 5, Status: EMPTY (1,12)\i

c 4 8

e 3 5

n 5 \i LEAF ID#: 16, Status: EMPTY (6,12)\i

c 5 8

e 3 6

n 6 \i LEAF ID#: 10, Status: EMPTY (3,8)\i

c 6 9

e 3 7

n 7 \i P-NODE ID#: 19, Status: EMPTY , Vertex 7 fChs: 0 \i

c 7 4

e 7 8

n 8 \i LEAF ID#: 20, Status: EMPTY (7,10)\i

c 8 8

e 7 9

n 9 \i LEAF ID#: 21, Status: EMPTY (7,11)\i

c 9 8

Figure A.3: File represented in �g. A.2.

105



#include "edge.h"

#include "chain.h"

#include "boundary.h"

template class PQTree<edge,chain,boundary>;

A.2 Code �les main.cc and mypqtree.h

A.2.1 main.cc

/**********************************************************************
File: main.cc

Author: Gørril Vollen
Last update: 20/02/1998

***********************************************************************/

#include <stdio.h>
//#de�ne DEBUG /* remove // if debugging */
//#de�ne PRINT /* remove // if using vbcTool */

#include <iostream.h>
#include <fstream.h>
#include "mypqtree.h"

#include "edge.h"

#include "chain.h"

#include "boundary.h"

/***********************************************************************
TallTilTekst

Transforms an integer into it's equivalent character string.
Only used for debugging purposes.

Arguments: number the integer to be transformed
width number of characters in the string to be returned

Returns: a pointer to the character string
***********************************************************************/

char * TallTilTekst(int number, int width)
{

ostrstream string;
char r[width];

string << number << ends;
strcpy(r, string.str());
strstreambuf * buf_ptr = string.rdbuf();
buf_ptr >freeze(0);
return r;

};

int main(int argc, char *argv[])
{

char *readFile = argv[1];
pqtree<edge, chain, boundary>* mytree = new pqtree<edge, chain, boundary>();
if (argc == 2)

mytree >readStNumbering(readFile);
if(!mytree >Planar()) cout << "Not ";

cout << "planar!" << endl;
}

106



A.2.2 pqtree
All procedrues called in mypqtree.h, not part of any �les presented here, are part of PQTree or other parts
of Leipert's implementation. Documentation of these procedures are found in [Lei97].

/**********************************************************************
File: pqtree.h

Author: Gørril Vollen
Last update: 18/02/1998

***********************************************************************/
#ifndef MYPQTREE_H
#de�ne MYPQTREE_H
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <fstream.h>
#include <map.h>

#include "PQTree.h"

#include "key.h"

#include "internal.h"

#include "nodeInfo.h"

#de�ne MAXNODES 100

/***********************************************************************

class pqtree
De�nition of class pqtree implemented as a subclass of the template

class PQTree. PQTree is part of an implementation of the PQ tree data
structure (Booth & Lueker) by S. Leipert. This subclass extends PQTree
with the planarity testing algorithm in the procedrue planar, as well

as handling of the additional data structure of boundary and chain
(Karabeg).

Bubble is also extended to always build a pruned subtree, regardless of
whether or not the graph is planar.

***********************************************************************/

template<class T, class X, class Y>
class pqtree : public PQTree<T, X, Y>
{

typedef map<int, edge, less<int> > maps;
maps incoming[MAXNODES]; /* set for storing incoming edges

for nodes, i.e. S[i] sets */

maps outgoing[MAXNODES]; /* set for storing outgoing edges
for nodes, i.e. S'[i] sets */

int N, M;
int iterationNumber;

int NumberOfNodes;

int NumberOfEdges;

stack<element*> *pertinentElements; /* elements whose attributes are
changed during a reduction is
placed on this stack, to be

cleaned up by cleanUpElem */
public:

void readStNumbering(char *�lename);
int Planar();

107



void destroyNodeAndChildren(node<T,X,Y>* node_ptr);
void cleanUpElem();
node<T,X,Y>* �ndParent(node<T,X,Y>* child);

int Initialize(int numberOfElements, key<T,X,Y>** ArrayOfElements);

#ifdef DEBUG
int Bubble(int numberOfConsecutiveElements,

key<T,X,Y>** ArrayOfElements,
int redNumber);

#else

int Bubble(int numberOfConsecutiveElements,
key<T,X,Y>** ArrayOfElements);

#endif

#ifdef PRINT
int Reduce(int numberOfConsecutiveElements,

key<T,X,Y>** ArrayOfElements,
int iterationNumber,int printYes); /* If printYes is set to TRUE,

a �le will be made after every template matching */
#else

int Reduce(int numberOfConsecutiveElements,
key<T,X,Y>** ArrayOfElements);

#endif

int template_L1(node<T,X,Y> *node_ptr,

int isRoot);

int template_P1(node<T,X,Y> *node_ptr,
int isRoot);

int template_P2(node<T,X,Y> **node_ptr);

int template_P3(node<T,X,Y> *node_ptr);

int template_P4(node<T,X,Y> **node_ptr);

int template_P5(node<T,X,Y> *node_ptr);

int template_P6(node<T,X,Y> **node_ptr);

int template_Q1(node<T,X,Y> *node_ptr,

int isRoot);

int template_Q2(node<T,X,Y> *node_ptr,
int isRoot);

int template_Q3(node<T,X,Y> *node_ptr);

};

/***********************************************************************
pqtree::readStNumbering

readStNumbering reads from a given �le an st numbered graph,
and produces the data for the incoming and outgoing sets of edges
as well as setting the NumberOfNodes and NumberOfEdges variables
***********************************************************************/

template<class T, class X, class Y>
void pqtree<T,X,Y>::readStNumbering(char *�lename)
{

int edg;

108



int j;
int edgecount = 0;
maps sh;
edge *ep;
ifstream inClientFile(�lename, ios::in);

inClientFile >> NumberOfNodes;

for(j = 1; j <= NumberOfNodes; j++)
{

inClientFile >> edg;

while(edg != 0)
{

if(edg > j)
{

edgecount++;
ep = new edge(edgecount, j, edg);
incoming[edg 1][edgecount] = *ep;
outgoing[j 1][edgecount] = *ep;

}

inClientFile >> edg;
}

}

NumberOfEdges = edgecount;
}

/***********************************************************************

pqtree::cleanUpElem
cleanUpElem resets the appropriate attributes of the elements on stack
pertinentElements after each step of the reduction. Elements marked as

TO_BE_DELETED are deleted.
***********************************************************************/

template<class T, class X, class Y>
void pqtree<T,X,Y>::cleanUpElem()
{

element *elem;

while (!pertinentElements >stackEmpty())

{
elem = pertinentElements >pop();
switch(elem >status())
{
case EMPTY:

break;
case TO_BE_DELETED:

delete elem;
break;

case PARTIAL:
elem >reset(EMPTY, TRUE, NULL, TRUE);
break;

case PERTINENT:
elem >reset(EMPTY, TRUE, NULL, FALSE);
break;

case FULL:
if (elem >child() == TRUE)

elem >reset(EMPTY, TRUE, NULL, TRUE);

else /* child is FALSE */
elem >reset(EMPTY, FALSE, NULL, FALSE);

break;
default:

109



cerr << "boundary::cleanUpElem: unknown status: "

<< elem >status() << endl;
}

}
} //cleanUpElem

/***********************************************************************
pqtree::Planar
Planar checks a given st numbered graph for the planarity property.
The edges incident to each vertex of the graph has been partitioned
into two sets: incoming and outgoing. Based on the algorithm of
Booth & Lueker, Planar utilizes the PQ tree data structure to
successibely add vertices of the graph while checking if the graph
remains planar. A number of sets, U,S, and Sm (s'), are used and these
are implemented as arrays of pointers of type key. In addition, all
new internal nodes constructed are given a boundary object. In the
vertex addition step, a chain is maintained if necessary.

Variables: Edges pointer to array of key. Used to hold all edges in
the graph.

U pointer to array fo key. Used to initialze pqtree
S pointer to array of key. Holds the set of incoming edges

of the current vertex to be added.

Sm pointer to array of key. Holds the set of outgoing
edges of the current vertex to be added.

+ a number of iterator variables, pointers to di�erent types
of nodes (needed for accessing node data) and counters.

Returns: TRUE (de�ned as 1) if graph is planar
**********************************************************************/

template<class T, class X, class Y>
int pqtree<T,X,Y>::Planar()
{

int i; /* iterator variable */

int success;
int U_Size = outgoing[0].size();

int S_Size, Sm_Size;
maps::iterator it;
key<T,X,Y> **Edges; /* holds pointers to all edges */

key<T,X,Y> **U; /* U = S'[1] */
key<T,X,Y> **S;

key<T,X,Y> **Sm; /* S'[] */
pqNode<T,X,Y> *newPnode = NULL;
pqNode<T,X,Y> *newNode = NULL;
leaf<T,X,Y> *newLeaf = NULL;
node<T,X,Y> *�rstNode = NULL;

node<T,X,Y> *currentNode = NULL;
node<T,X,Y> *pertinentRoot = NULL;

node<T,X,Y> *emptyNode = NULL;
node<T,X,Y> *replacement = NULL;
chain *newChain = NULL;
boundary *newBoundary = NULL;
nodeInfo<T,X,Y> *newInfo = NULL;
internal<T,X,Y> *newInternal = NULL;

Edges = new key<T,X,Y>*[NumberOfEdges];
for (i = 1; i <= NumberOfEdges; i++)

Edges[i 1] = NULL;

/* U = the set of edges whose lower numbered vertex is 1 i.e.
outgoing[0] */

110



U = new key<T,X,Y>*[U_Size];
it = outgoing[0].begin();

for(i = 1; i <= U_Size; i++)
{

U[i 1] = new key<T,X,Y>((*it).second);
Edges[(*it).�rst 1] = U[i 1];
it++;

}

/* Make T(U,U) */

Initialize(U_Size, U);

/* Main loop of planar algorithm */

for(iterationNumber=2; iterationNumber < NumberOfNodes; iterationNumber++)
{

/* S = the set of edges whose higher numbered vertex is

iterationNumber, i.e. incoming[iterationNumber 1] */

S_Size = incoming[iterationNumber 1].size();

S = new key<T,X,Y>*[S_Size];

it = incoming[iterationNumber 1].begin();

for(i = 1; i <= S_Size; i++)
{

S[i 1] = Edges[(*it).�rst 1];

it++;
}

/* BUBBLE(T,S) */

#ifdef DEBUG

success = Bubble(S_Size, S, iterationNumber);
#else

success = Bubble(S_Size, S);
#endif

if(!success) return success;

/* REDUCE(T,S) */

#ifdef PRINT
success = Reduce(S_Size, S, iterationNumber, TRUE);

#else

success = Reduce(S_Size, S);

#endif

if(!success) return success;

#ifdef DEBUG
else cout << "reduce success" << endl;

#endif

/* S' = the set of edges whose lower numbered vertex is
iterationNumber, i.e. outgoing[iterationNumber 1] */

Sm_Size = outgoing[iterationNumber 1].size();
Sm = new key<T,X,Y>*[Sm_Size];

it = outgoing[iterationNumber 1].begin();

111



#ifdef DEBUG
printOutCurrentTree("PQ_R_Print",TallTilTekst(iterationNumber,3));
cout << "S'[" << iterationNumber << "] = ";

#endif

for(i = 1; i <= Sm_Size; i++)
{

Sm[i 1] = new key<T,X,Y>((*it).second);
Edges[(*it).�rst 1] = Sm[i 1];
it++;

}

/* Make T(S',S') */
/* If pertinent root is replaced, its chain must be passed on */
if (_pertinentRoot >status() == FULL)

newInfo = _pertinentRoot >getNodeInfo();
if (Sm_Size > 1)
{

newBoundary = new boundary(iterationNumber);
newInternal = new internal<T,X,Y>(*newBoundary);

/* Make P node and attach leaves, if chain exists, keep it */

if (S_Size==1) /* pertinentRoot is LEAF */
{

/* If parent has boundary, short chains need to be kept too. */

if ((newInfo == NULL) &&
((_pertinentRoot >_parentType == Q_NODE) ||
(_pertinentRoot >_parent >getInternal() >
userStructInternal() >joint() != NULL)))

{
newChain = new chain(

_pertinentRoot >getKey() >userStructKey() >from(),

iterationNumber);
newInfo = new nodeInfo<T,X,Y>(*newChain);

}
}

if (newInfo != NULL)
newNode = new pqNode<T,X,Y>(_identi�cationNumber++,

P_NODE, EMPTY, newInternal,
newInfo);

else

newNode = new pqNode<T,X,Y>(_identi�cationNumber++,
P_NODE, EMPTY, newInternal);

addNewLeavesToTree(newNode, Sm, Sm_Size);
replacement = newNode;
newInfo = NULL;
newChain = NULL;

}
else /* T(S',S') consists of only 1 leaf, |S'|==1 */
{

if (S_Size == 1)
{

/* A chain is being built */

if (newInfo != NULL)
newChain = newInfo >userStructInfo();

if (newChain == NULL)
{

newChain = new chain(

_pertinentRoot >getKey() >userStructKey() >from(),
iterationNumber,Sm[0] >userStructKey() >to());

}
else /* newChain != NULL */

112



newChain >insert(Sm[0] >userStructKey() >to());
}
else if (newInfo != NULL) /* old chain must be continued */

newInfo >userStructInfo() >
insert(Sm[0] >userStructKey() >to());

if (newInfo == NULL && newChain != NULL)
{

newInfo = new nodeInfo<T,X,Y>(*newChain);
newChain >setInfo(newInfo);

}
if (newInfo != NULL)

newLeaf = new leaf<T,X,Y>(_identi�cationNumber++,
EMPTY, Sm[0], newInfo);

else

newLeaf = new leaf<T,X,Y>(_identi�cationNumber++,
EMPTY, Sm[0]);

replacement = newLeaf;
newChain = NULL;
newInfo = NULL;

}

_pertinentNodes >push(replacement);

pertinentRoot = _pertinentRoot;

switch(pertinentRoot >type())
{

case Q_NODE:
/* replace the full children of ROOT(T,S) and their

descendants by T(S',S') */

if (pertinentRoot >_identi�cationNumber == 1)

{

/* ROOT(T,S) is a pseudo node. All children of
ROOT(T,S) must be replaced with T(S',S') */

�rstNode = pertinentRoot >fullChildren >pop();
while(!pertinentRoot >fullChildren >stackEmpty())

{
currentNode = pertinentRoot >fullChildren >pop();
removeChildFromSiblings(currentNode);
destroyNodeAndChildren(currentNode);

}
exchangeNodes(�rstNode, replacement);
destroyNodeAndChildren(�rstNode);

}
else if (pertinentRoot >status() == FULL)

{

/* All children of the Q node are full so delete it and
replace with T(S',S') */

exchangeNodes(pertinentRoot, replacement);
destroyNodeAndChildren(pertinentRoot);

}
else

{

if ((pertinentRoot >childCount()
pertinentRoot >fullChildren >count()) == 1)

{

113



/* ROOT(T,S) is a Q node with only 1 empty child.
The Q node should be replaced with a P node */

/* The empty child of Q_Node must be located on
either endmost slot*/

if (pertinentRoot >_leftEndmost >status() == EMPTY)
emptyNode = pertinentRoot >_leftEndmost;

else

emptyNode = pertinentRoot >_rightEndmost;

/* remove ROOT(T,S), make new P node and attach
empty child of ROOT(T,S) and newNode */

newInternal = pertinentRoot >getInternal();
newInfo = pertinentRoot >getNodeInfo();
if (newInfo != NULL)

newPnode = new pqNode<T,X,Y>(_identi�cationNumber++,
P_NODE, EMPTY,
newInternal, newInfo);

else

newPnode = new pqNode<T,X,Y>(_identi�cationNumber++,
P_NODE, EMPTY,

newInternal);
_pertinentNodes >push(newPnode);

while(!pertinentRoot >fullChildren >stackEmpty())
{

currentNode = pertinentRoot >fullChildren >pop();
removeChildFromSiblings(currentNode);

destroyNodeAndChildren(currentNode);
}

addNodeToNewParent(newPnode, emptyNode);
addNodeToNewParent(newPnode, replacement, emptyNode, NULL);

exchangeNodes(pertinentRoot, newPnode);
destroyNode(pertinentRoot);

}
else

{

/* The Q node has at least 2 empty children so only the full

children of ROOT(T,S) should be destroyed and replaced */

if (pertinentRoot >_leftEndmost >status() != FULL &&
pertinentRoot >_rightEndmost >status() != FULL)

{
/* both endmost are empty */

�rstNode = pertinentRoot >fullChildren >pop();

while(!pertinentRoot >fullChildren >stackEmpty())
{

currentNode = pertinentRoot >fullChildren >pop();
removeChildFromSiblings(currentNode);
pertinentRoot >_childCount ;
destroyNodeAndChildren(currentNode);

}
exchangeNodes(�rstNode, replacement);
destroyNodeAndChildren(�rstNode);

}
else

{
/* one of the endmost is full */

114



if (pertinentRoot >_leftEndmost >status() == FULL)
�rstNode = pertinentRoot >_leftEndmost;

else

�rstNode = pertinentRoot >_rightEndmost;
if (�rstNode >status() != FULL)

cout << "ERROR!" << endl;

exchangeNodes(�rstNode, replacement);
while(!pertinentRoot >fullChildren >stackEmpty())
{

currentNode = pertinentRoot >fullChildren >pop();
if (currentNode != �rstNode)
{

removeChildFromSiblings(currentNode);
pertinentRoot >_childCount ;
destroyNodeAndChildren(currentNode);

}
}
destroyNodeAndChildren(�rstNode);

}

}
}
break;

case LEAF:

/* easy case: replace ROOT(T,S) with T(S',S') */

exchangeNodes(pertinentRoot, replacement);
destroyNode(pertinentRoot);
break;

case P_NODE:

/* ROOT(T,S) is a P node so replace it and it's full children with
T(S',S'). ROOT(T,S) will only have full children. */

if (pertinentRoot >status() == FULL)

{
exchangeNodes(pertinentRoot, replacement);
destroyNodeAndChildren(pertinentRoot);

}
else

cout << "ERROR: not full P_NODE!";
break;

default:
cout << "something's wrong" << endl;

return 0;
break;

}

cleanUpElem();
emptyAllPertinentNodes();

delete S;
delete Sm;

}
return 1;

}

/************************************************************************
pqtree::destroyNodeAndChildren

115



Marks the subtree rooted at a given node TO_BE_DELETED. This subtree is
then deleted, freeing memeory occupied by node objects, when the pqtree
is cleaned up between each iteration of the planar algorithm, by calling
emptyAllPertinentNodes. The procedure is based on the front procedure
from PQTree.h.
Arguments: node_ptr pointer to the root of the subtree to be deleted.
************************************************************************/

template<class T, class X, class Y>
void pqtree<T,X,Y>::destroyNodeAndChildren(node<T,X,Y>* node_ptr)
{

node<T,X,Y>* checkNode = NULL;
node<T,X,Y>* �rstSon = NULL;
node<T,X,Y>* nextSon = NULL;
node<T,X,Y>* oldSib = NULL;
node<T,X,Y>* holdSib = NULL;
node<T,X,Y>* lastSon = NULL;

queue<node<T,X,Y>*> *helpqueue = new queue<node<T,X,Y>*>;
helpqueue >enQueue(node_ptr);

while(!helpqueue >queueEmpty())
{

checkNode = helpqueue >deQueue();
checkNode >status(TO_BE_DELETED);

if(checkNode >type() == P_NODE)
{

if(checkNode >_referenceChild != NULL)
{

�rstSon = checkNode >_referenceChild;
helpqueue >enQueue(�rstSon);

if(�rstSon >_sibRight != NULL)
nextSon = �rstSon >_sibRight;

while(nextSon != �rstSon)
{

helpqueue >enQueue(nextSon);
nextSon = nextSon >_sibRight;

}

}
}

else if (checkNode >type() == Q_NODE)
{

oldSib = NULL;
holdSib = NULL;

�rstSon = checkNode >_leftEndmost;
helpqueue >enQueue(�rstSon);

lastSon = checkNode >_rightEndmost;
helpqueue >enQueue(lastSon);

nextSon = lastSon >getNextSib(oldSib);
oldSib = lastSon;
while (nextSon != �rstSon)
{

helpqueue >enQueue(nextSon);
holdSib = nextSon >getNextSib(oldSib);
oldSib = nextSon;
nextSon = holdSib;

}

116



}
}
delete helpqueue;

}

/************************************************************************
pqtree::Initialize
Derived from PQTree::Initialize. Builds the universal tree, a P node with
all elements of U as children. The P node is given a boudnary object with
vertex number 1.
Arguments: ArrayOfElements the elements of U

numberOfElements the size of U
Returns: True if successfull initialization
************************************************************************/

template<class T,class X,class Y>
int pqtree<T,X,Y>::Initialize(int numberOfElements,key<T,X,Y>** ArrayOfElements)
{

pqNode<T,X,Y> *_newNode = NULL;
pqNode<T,X,Y> *_newNode2 = NULL;
boundary *bp = new boundary(1);

internal<T,X,Y> *ip = new internal<T,X,Y>(*bp);

_pertinentNodes = new stack<node<T,X,Y>*>;
pertinentElements = new stack<element*>;

if ( numberOfElements > 0)
{

_newNode = new pqNode<T,X,Y>(_identi�cationNumber++,P_NODE,EMPTY,ip);
_root = _newNode;
_root >_sibLeft = _root;

_root >_sibRight = _root;

_newNode2 = new pqNode<T,X,Y>( 1,Q_NODE,PARTIAL);
_pseudoRoot = _newNode2;

return addNewLeavesToTree(_newNode,ArrayOfElements, numberOfElements);
}

else return FALSE;
}

/************************************************************************
pqtree::�ndParent

A utility procedure for Bubble. Traverses all siblings of a node until
a valid parent pointer is found.

Arguments: child the node needing a parent pointer
Returns: the parent pointer found

Note! �ndParent is not fully implemented as described in thesis.
Will always �nd a parent pointer for every child of a Q node sent as

a parameter. New mark BLOCKED_WITH_PARENT is not included.
************************************************************************/

template<class T,class X,class Y>
node<T,X,Y>* pqtree<T,X,Y>::�ndParent(node<T,X,Y>* child)
{

node<T,X,Y>* nextSib;
node<T,X,Y>* newSib;
node<T,X,Y>* oldSib;

nextSib = child >getNextSib(NULL);
oldSib = child;

117



while (nextSib >mark() != UNBLOCKED && !nextSib >endmostChild())
{

newSib = nextSib >getNextSib(oldSib);
oldSib = nextSib;
nextSib = newSib;

}
return nextSib >parent();

}

/************************************************************************
pqtree::Bubble
Bubble has been extended to implement BubblExt of thesis. Will always
build a complete pruned subtree, without using a pseudonode.
Arguments: ArrayOfElements the current S, de�ning the pertinent leaves

number the size of S
redNumber used if DEBUG is de�ned in printing out
information to a degub �le, readable with the vbcTool provided
by S. Leipert

Returns: always TRUE, as the pruned subtree is always completed.

Note: Not fully implemented as described in thesis. New mark

BLOCKED_WITH_PARENT is not included. Thus �ndParent is called for
every blocked node on stack blocks.

Note: If the part of Bubble that is repeated by BubbleExt is made

into a procedure of its own, handleBlockedNodes, the loop of
pqtree::Bubble will be a lot shorter and easier to manage.

This has not been done here since the procedure would have to be
external to pqtree::Bubble.

************************************************************************/

#ifdef DEBUG

template<class T,class X,class Y>
int pqtree<T,X,Y>::Bubble(int number,

key<T,X,Y>** ArrayOfElements,
int redNumber)

#else

template<class T,class X,class Y>
int pqtree<T,X,Y>::Bubble(int number,

key<T,X,Y>** ArrayOfElements)
#endif

{
queue<node<T,X,Y>*> *_processNodes = new queue<node<T,X,Y>*>;

#ifdef DEBUG
stack<node<T,X,Y>*> *_processLeaves = new stack<node<T,X,Y>*>;

#endif

stack<node<T,X,Y>*> *blocks = new stack<node<T,X,Y>*>;
/* Stack of all nodes that are marked blocked */

int _blockCount = 0;
int _blockedNodes = 0;
int _o�TheTop = 0;

int _blockedSiblings = 0;
int i = 0;

node<T,X,Y>* _checkLeaf = NULL;

node<T,X,Y>* _checkNode = NULL;
node<T,X,Y>* _checkSib = NULL;
node<T,X,Y>* _holdSib = NULL;
node<T,X,Y>* _oldSib = NULL;

118



node<T,X,Y>* _parent = NULL;
node<T,X,Y>* _lastBlocked = NULL;

for (i = 0; i <= (number 1); i++)
{

_checkLeaf = ArrayOfElements[i] >nodePointer();
_checkLeaf >mark(QUEUED);
_processNodes >enQueue(_checkLeaf);
_pertinentNodes >push(_checkLeaf);

#ifdef DEBUG
_checkLeaf >status(FULL);
_processLeaves >push(_checkLeaf);

#endif

}

#ifdef DEBUG
char nb[INFOSIZE];
sprintf(nb,"%d",redNumber);
printOutCurrentTree("PQ_B_Print",nb);
while (!_processLeaves >stackEmpty())
{

_checkLeaf = _processLeaves >pop();
_checkLeaf >status(EMPTY);

}

#endif

while ((_processNodes >queueSize() + _blockCount + _o�TheTop) > 1)
{

if (_processNodes >queueSize() == 0) /* HandleBlockedNodes */
{ /* The tree is not reducible */

while (!blocks >stackEmpty() && _blockCount > 0)
{

_checkNode = blocks >pop();
if (_checkNode >mark() == BLOCKED)

{
_parent = �ndParent(_checkNode);

/* Since the root is never blocked, a parent pointer
will always be found */

_checkNode >parent(_parent);
_checkNode >mark(UNBLOCKED);

/* Pass parent pointer on to all blocked siblings */
if (clientSibLeft(_checkNode) != NULL)
{

_checkSib = clientSibLeft(_checkNode);
_oldSib = _checkNode;
_holdSib = NULL;
while (_checkSib >mark() == BLOCKED)

{
_checkSib >mark(UNBLOCKED);
_checkSib >_parent = _parent;
_blockedNodes ;
_parent >_pertChildCount++;

_holdSib = clientNextSib(_checkSib,_oldSib);
_oldSib = _checkSib;
_checkSib = _holdSib;

if (_checkSib == NULL)
{

cout << "ERROR: PQTree >Bubble: Blocked node "

<< "as endmost child of a Q_NODE."

119



<< endl;
_checkSib = _oldSib;

}
}

}

if (clientSibRight(_checkNode) != NULL)
{

_checkSib = clientSibRight(_checkNode);
_oldSib = _checkNode;
_holdSib = NULL;
while (_checkSib >mark() == BLOCKED)
{

_checkSib >mark(UNBLOCKED);
_checkSib >_parent = _parent;
_blockedNodes ;
_parent >_pertChildCount++;

_holdSib = clientNextSib(_checkSib,_oldSib);
_oldSib = _checkSib;
_checkSib = _holdSib;

if (_checkSib == NULL)
{

cout << "ERROR: PQTree >Bubble: Blocked node as "

<< " endmost child of a Q_NODE." << endl;
_checkSib = _oldSib;

}
}

}
_parent >_pertChildCount++;
if (_parent >mark() == UNMARKED)

{
_processNodes >enQueue(_parent);
_pertinentNodes >push(_parent);
_parent >mark(QUEUED);

}
_blockCount = _blockCount _blockedSiblings;

_blockedSiblings = 0;

}

}
_blockCount = 0;

_blockedNodes = 0;
}
/* If HandleBlockedNodes leave the queue empty,

Bubble is �nished here */

if (!_processNodes >queueEmpty())
{

_checkNode = _processNodes >deQueue();
_checkNode >mark(BLOCKED);
_blockedSiblings = 0;

if ((_checkNode >_parentType != P_NODE) && (_checkNode != _root))
// _checkNode is son of a Q_NODE.
// Check if it is blocked.

{
if (clientSibLeft(_checkNode) == NULL)

// _checkNode is endmost child of
// a Q_NODE. It has a valid pointer

// to its parent.
{

120



_checkNode >mark(UNBLOCKED);
if (clientSibRight(_checkNode) >mark() == BLOCKED)

_blockedSiblings++;
}
else if (clientSibRight(_checkNode) == NULL)

// _checkNode is endmost child of
// a Q_NODE. It has a valid pointer
// to its parent.

{
_checkNode >mark(UNBLOCKED);
if (clientSibLeft(_checkNode) >mark() == BLOCKED)

_blockedSiblings++;
}
else

// _checkNode is not endmost child of
// a Q_NODE. It has not a valid pointer
// to its parent.

{
if (clientSibLeft(_checkNode) >mark() == UNBLOCKED)

// _checkNode is adjacent to an
// unblocked node. Take its parent.

{
_checkNode >mark(UNBLOCKED);
_checkNode >_parent = clientSibLeft(_checkNode) >_parent;

}
else if (clientSibLeft(_checkNode) >mark() == BLOCKED)

_blockedSiblings++;

if (clientSibRight(_checkNode) >mark() == UNBLOCKED)
// _checkNode is adjacent to an
// unblocked node. Take its parent.

{
_checkNode >mark(UNBLOCKED);

_checkNode >_parent = clientSibRight(_checkNode) >_parent;
}

else if (clientSibRight(_checkNode) >mark() == BLOCKED)
_blockedSiblings++;

}
}
else

// _checkNode is son of a P_NODE
// and children of P_NODEs

// cannot be blocked.
_checkNode >mark(UNBLOCKED);

if (_checkNode >mark() == UNBLOCKED)
{

_parent = _checkNode >_parent;
if (_blockedSiblings > 0)

{
if (clientSibLeft(_checkNode) != NULL)
{

_checkSib = clientSibLeft(_checkNode);
_oldSib = _checkNode;
_holdSib = NULL;
while (_checkSib >mark() == BLOCKED)
{

_checkSib >mark(UNBLOCKED);

_checkSib >_parent = _parent;
_blockedNodes ;
_parent >_pertChildCount++;

121



_holdSib = clientNextSib(_checkSib,_oldSib);
_oldSib = _checkSib;
_checkSib = _holdSib;
if (_checkSib == NULL)
{

cout << "ERROR: PQTree >Bubble: Blocked node as "

<< " endmost child of a Q_NODE." << endl;
_checkSib = _oldSib;

}
}

}

if (clientSibRight(_checkNode) != NULL)
{

_checkSib = clientSibRight(_checkNode);
_oldSib = _checkNode;
_holdSib = NULL;
while (_checkSib >mark() == BLOCKED)
{

_checkSib >mark(UNBLOCKED);
_checkSib >_parent = _parent;

_blockedNodes ;
_parent >_pertChildCount++;

_holdSib = clientNextSib(_checkSib,_oldSib);
_oldSib = _checkSib;

_checkSib = _holdSib;
if (_checkSib == NULL)

{
cout << "ERROR: PQTree >Bubble: Blocked node as "

<< " endmost child of a Q_NODE." << endl;

_checkSib = _oldSib;
}

}
}

}

if (_parent == NULL)
{

// _checkNode is root of the tree.
_o�TheTop = 1;

}

else

// _checkNode is not the root.

{
_parent >_pertChildCount++;

if (_parent >mark() == UNMARKED)
{

_processNodes >enQueue(_parent);
_pertinentNodes >push(_parent);
_parent >mark(QUEUED);

}
}
_blockCount = _blockCount _blockedSiblings;
_blockedSiblings = 0;

}
else /* _checkNode is blocked */

{
_blockCount = _blockCount + 1 _blockedSiblings;
_blockedNodes++;
_lastBlocked = _checkNode;

122



blocks >push(_checkNode);
}

}
}

if (_blockCount == 1)
{

/* The ordinary Q3 situation, but the use of _pseudoNode is avoided */
_parent = �ndParent(_lastBlocked);
_lastBlocked >_parent = _parent;
_parent >_pertChildCount = 1;
if (clientSibLeft(_lastBlocked) != NULL)
{

_checkSib = clientSibLeft(_lastBlocked);
_oldSib = _lastBlocked;
_holdSib = NULL;
while (_checkSib >mark() == BLOCKED)
{

_checkSib >mark(UNBLOCKED);
_checkSib >_parent = _parent;
_parent >_pertChildCount++;
_holdSib = clientNextSib(_checkSib,_oldSib);
_oldSib = _checkSib;
_checkSib = _holdSib;

if (_checkSib == NULL)
{

cerr << "ERROR: PQTree >Bubble: Blocked node as "

<< " endmost child of a Q_NODE." << endl;

_checkSib = _oldSib;
}

}

}

if (clientSibRight(_lastBlocked) != NULL)
{

_checkSib = clientSibRight(_lastBlocked);
_oldSib = _lastBlocked;

_holdSib = NULL;
while (_checkSib >mark() == BLOCKED)
{

_checkSib >mark(UNBLOCKED);
_checkSib >_parent = _parent;

_parent >_pertChildCount++;
_holdSib = clientNextSib(_checkSib,_oldSib);
_oldSib = _checkSib;
_checkSib = _holdSib;
if (_checkSib == NULL)
{

cerr << "ERROR: PQTree >Bubble: Blocked node as "

<< " endmost child of a Q_NODE." << endl;
_checkSib = _oldSib;

}
}

}
}

delete _processNodes;

return TRUE;
}

/************************************************************************

123



pqtree::Reduce
The only di�erence between pqtree::Reduce and PQTree::Reduce, is the
numbering of additional debugging �les made. For further explantion,
see [Lei97].

Note: If PRINT is de�ned, and prinitYes is set to TRUE by the call to
Reduce, a �le is made for each iteration of the while loop.
************************************************************************/

#ifdef PRINT
template<class T,class X,class Y>
int pqtree<T,X,Y>::Reduce(int number,key<T,X,Y> **ArrayOfElements,

int iterationNumber,int printYes)
#else

template<class T,class X,class Y>
int pqtree<T,X,Y>::Reduce(int number,

key<T,X,Y> **ArrayOfElements)
#endif

{

int i = 0;
node<T,X,Y>* _checkLeaf = NULL;

node<T,X,Y>* _checkNode = NULL;
int _pertLeafCount = 0;

queue<node<T,X,Y>*>* _processNodes = new queue<node<T,X,Y>*>;

#ifdef PRINT
int _tens;
int _count = 1;

char _number[8];
#endif

for (i = 0; i <= (number 1); i++)
{

_checkLeaf = ArrayOfElements[i] >nodePointer();
_checkLeaf >status(FULL);
_checkLeaf >_pertLeafCount = 1;

_processNodes >enQueue(_checkLeaf);
_pertLeafCount++;

}

_checkNode = _processNodes >front();
while ((_checkNode != NULL) && (_processNodes >queueSize() > 0))
{

_checkNode = _processNodes >deQueue();
if (_checkNode >_pertLeafCount < _pertLeafCount)
{

_checkNode >_parent >_pertLeafCount =
_checkNode >_parent >_pertLeafCount + _checkNode >_pertLeafCount;

_checkNode >_parent >_pertChildCount ;
if (!_checkNode >_parent >_pertChildCount)

_processNodes >enQueue(_checkNode >_parent);

if (!template_L1(_checkNode,FALSE))
if (!template_P1(_checkNode,FALSE))

124



if (!template_P3(_checkNode))
if (!template_P5(_checkNode))
if (!template_Q1(_checkNode,FALSE))
if (!template_Q2(_checkNode,FALSE))

_checkNode= NULL;

#ifdef PRINT
if (printYes)
{

_tens = iterationNumber*10;
if (_tens > 99) _tens = _tens*10;
_tens = _tens + _count++;
sprintf(_number,"%d",_tens);
printOutCurrentTree("RED_",_number);

}
#endif

}
else

{
if (!template_L1(_checkNode,TRUE))
if (!template_P1(_checkNode,TRUE))

if (!template_P2(&_checkNode))
if (!template_P4(&_checkNode))
if (!template_P6(&_checkNode))

if (!template_Q1(_checkNode,TRUE))
if (!template_Q2(_checkNode,TRUE))

if (!template_Q3(_checkNode))
_checkNode = NULL;

#ifdef PRINT
if (printYes)

{
_tens = iterationNumber*10;

_tens = _tens + _count++;
sprintf(_number,"%d",_tens);

printOutCurrentTree("RED_",_number);
}

#endif

}
}

_pertinentRoot = _checkNode;

delete _processNodes;

if (_pertinentRoot == NULL)
return FALSE;

else

return TRUE;
}

/************************************************************************
Template procedrues.
Only changes from PQTree is the calls to procedures in Boundary.
The appropriate information is obtained, both to decide what procedure
to call, and to supply the needed parameters.

a description of what is done is found in thesis (4.2)
************************************************************************/

/************************************************************************
template_L1

************************************************************************/

125



template<class T,class X,class Y>
int pqtree<T,X,Y>::template_L1(node<T,X,Y> *node_ptr,

int isRoot)
{

int numb = 0;
chain* ch_ptr = NULL;
element* elem = NULL;

if ((node_ptr >type() == LEAF) && (node_ptr >status() == FULL))
{

if (!isRoot)
{

node_ptr >_parent >fullChildren >push(node_ptr);

/* UPDATE PARENT BOUNDARY */
if (node_ptr >getNodeInfo() != NULL)
{

ch_ptr = node_ptr >getNodeInfo() >userStructInfo();
numb = ch_ptr >�rst();
node_ptr >setNodeInfo(NULL);
/* Chain will be held by parent's boundary */

}
else numb = node_ptr >getKey() >userStructKey() >from();

if (node_ptr >_parent >identi�cationNumber() != 1)
elem = node_ptr >_parent >getInternal() >userStructInternal() >

updateBound(numb, FULL, ch_ptr);
if (elem != NULL)

pertinentElements >push(elem);
}

#ifdef PRINT

cout << "Template L1 successfull for node "

<< node_ptr >identi�cationNumber() << endl;

#endif

return TRUE;

}
else

return FALSE;
}

/************************************************************************
template_P1

************************************************************************/

template<class T,class X,class Y>
int pqtree<T,X,Y>::template_P1(node<T,X,Y> *node_ptr,

int isRoot)

{
if (node_ptr >type() != P_NODE ||

node_ptr >fullChildren >count() != node_ptr >_childCount)
return FALSE;

else

{
node<T,X,Y> *parent = NULL;
nodeInfo<T,X,Y> *info_ptr = NULL;
chain *ch_ptr = NULL;
boundary *bound = NULL;
element *elem = NULL;

int numb = 0;
int from = 0;

node_ptr >status(FULL);

126



/* CREATE CHAIN */
if (node_ptr >getNodeInfo() != NULL) /* Chain exists */

ch_ptr = node_ptr >getNodeInfo() >userStructInfo();
bound = node_ptr >getInternal() >userStructInternal();

if (bound >joint() == NULL) /* proper P node */
{

parent = node_ptr >_parent;
if (parent != NULL && parent >identi�cationNumber() != 1 &&

parent >getInternal() >userStructInternal() >joint() == NULL)
from = parent >getInternal() >userStructInternal() >vertexNumber();

bound >properP1(iterationNumber, from,
node_ptr >fullChildren >count(), &ch_ptr);

numb = bound >vertexNumber();
}
else /* non proper P node */
{

bound >Q1(iterationNumber, &ch_ptr);
numb = bound >joint() >number();

}

if (!isRoot)
{

if (ch_ptr != NULL)
{

numb = ch_ptr >�rst();
node_ptr >_parent >fullChildren >push(node_ptr);
node_ptr >setNodeInfo(NULL);
/* Chain will be held by parent's boundary */

}

/* UPDATE PARENT BOUNDARY */

if (node_ptr >_parent >identi�cationNumber() != 1)
elem = node_ptr >_parent >getInternal() >userStructInternal() >

updateBound(numb, FULL, ch_ptr);
if (elem != NULL)

pertinentElements >push(elem);
}
else if (node_ptr >getNodeInfo() == NULL && ch_ptr != NULL)

{
/* A new chain has been built, give it to the P node, ROOT(T,S), */

/* to pass on to the new vertex */
info_ptr= new nodeInfo<T,X,Y>(*ch_ptr);
ch_ptr >setInfo(info_ptr);
node_ptr >setNodeInfo(info_ptr);

}

#ifdef PRINT

cout << "Template P1 succesfull for node "

<< node_ptr >identi�cationNumber() << endl;
#endif

return TRUE;
}

}

/************************************************************************
template_P2

************************************************************************/

template<class T,class X,class Y>
int pqtree<T,X,Y>::template_P2(node<T,X,Y> **node_ptr)

127



{
node<T,X,Y> *_newNode = NULL;
nodeInfo<T,X,Y> *_newInfo = NULL;
chain *ch_ptr = NULL;

if ((*node_ptr) >type() != P_NODE ||
(*node_ptr) >partialChildren >count() > 0)
return FALSE;

else

{
(*node_ptr) >_childCount = (*node_ptr) >_childCount

(*node_ptr) >fullChildren >count() + 1;
// Gather all full children of node_ptr
// as children of the new P node.
// Delete them from node_ptr.

_newNode = createNodeAndCopyFullChildren((*node_ptr) >fullChildren);
// Correct parent pointer and
// sibling pointers of the new P node.

_newNode >_parent = (*node_ptr);
_newNode >_sibRight = (*node_ptr) >_referenceChild >_sibRight;
_newNode >_sibLeft = _newNode >_sibRight >_sibLeft;
_newNode >_sibLeft >_sibRight = _newNode;
_newNode >_sibRight >_sibLeft = _newNode;

_newNode >_parentType = P_NODE;

/* CREATE CHAIN */
(*node_ptr) >getInternal() >userStructInternal() >

P2(_newNode >_childCount, &ch_ptr);

if (ch_ptr != NULL)
{

_newInfo = new nodeInfo<T,X,Y>(*ch_ptr);
ch_ptr >setInfo(_newInfo);
_newNode >setNodeInfo(_newInfo);

}

// The new P node now is the root of
// the pertinent subtree.
(*node_ptr) = _newNode;

#ifdef PRINT

cout << "Template P2 succesfull."

<< (*node_ptr) >identi�cationNumber() << endl;
#endif

return TRUE;

}
}

/************************************************************************

template_P3
************************************************************************/

template<class T,class X,class Y>
int pqtree<T,X,Y>::template_P3(node<T,X,Y> *node_ptr)
{

pqNode<T,X,Y> *_newNode = NULL;

node<T,X,Y> *_newQnode = NULL;
node<T,X,Y> *_newPnode = NULL;
node<T,X,Y> *_emptyNode = NULL;
internal<T,X,Y> *_newInternal = NULL;

128



boundary *_bound = NULL;
boundary *_bound_2 = NULL;
element *elem = NULL;
int number = 0;
int fullCount = 0;

if (node_ptr >type() != P_NODE || node_ptr >partialChildren >count() > 0)
return FALSE;

else

{
_newNode = new pqNode<T,X,Y>(_identi�cationNumber++,Q_NODE,PARTIAL);
_newQnode = _newNode;
_pertinentNodes >push(_newQnode);

exchangeNodes(node_ptr,_newQnode);
node_ptr >_parent = _newQnode;
node_ptr >_parentType = Q_NODE;

_newQnode >_leftEndmost = (node_ptr);
_newQnode >_childCount = 1;

fullCount = node_ptr >fullChildren >count();

if (fullCount > 0)
{

node_ptr >_childCount = node_ptr >_childCount fullCount;

_newPnode = createNodeAndCopyFullChildren(node_ptr >fullChildren);
_newPnode >_parentType = Q_NODE;

// Update _newQnode.
_newQnode >_childCount++;
_newQnode >fullChildren >push(_newPnode);
// Update sibling pointers.

node_ptr >_sibRight = _newPnode;
_newPnode >_sibLeft = node_ptr;

_newQnode >_rightEndmost = _newPnode;
_newPnode >_parent = _newQnode;

}

// Check if node_ptr contains only one son.

// If so, node_ptr will be deleted from the tree.
_emptyNode = node_ptr >_referenceChild;
checkIfOnlyChild(_emptyNode,node_ptr);
// Update partial_children stack of
// the parent of the new Q node.

_newQnode >_parent >partialChildren >push(_newQnode);

_bound = node_ptr >getInternal() >userStructInternal();

if (_bound >joint() == NULL) /* Proper P node */
{

elem = _bound >properP3(fullCount);
pertinentElements >push(elem);

number = _bound >vertexNumber();
/* If node_ptr is kept in the tree, it must get a new boundary,

and loose its chain if it had one*/
if (node_ptr >status() != TO_BE_DELETED)
{

_bound_2 = new boundary(_bound >vertexNumber());

129



_newInternal = new internal<T,X,Y>(*_bound_2);
node_ptr >setInternal(_newInternal);

}
}
else

{ /* Non proper P node. node_ptr is deleted from the tree */
_bound >nonRootQ2(NULL, NULL); /* Calls setFull() */
number = _bound >joint() >number();

}

/* Give new Q node boundary and chain of old P node */

_newQnode >setInternal(node_ptr >getInternal());
if (node_ptr >getNodeInfo() != NULL)
{

_newQnode >setNodeInfo(node_ptr >getNodeInfo());
number = node_ptr >getNodeInfo() >userStructInfo() >�rst();
/* number holds number of element to update if parent has boundary */
node_ptr >setNodeInfo(NULL); /* If P node is kept, it doesn't */

/* have a chain anymore */
}

/* UPDATE PARENT BOUNDARY */
if (node_ptr >_parent >identi�cationNumber() != 1)

elem =_newQnode >parent() >getInternal() >userStructInternal() >
updateBound(number, PARTIAL, NULL);

if (elem != NULL)
pertinentElements >push(elem);

#ifdef PRINT
cout << "Template P3 succesfull."

<< node_ptr >identi�cationNumber() << endl;
#endif

return TRUE;

}
}

/************************************************************************
template_P4

************************************************************************/

template<class T,class X,class Y>
int pqtree<T,X,Y>::template_P4(node<T,X,Y> **node_ptr)
{

node<T,X,Y> *_partialChild = NULL; // pointer to the _partialChild
boundary *partialBound = NULL;

boundary *nodeBound = NULL;
chain *partialChain = NULL;

int count;

if ((*node_ptr) >type() != P_NODE ||
(*node_ptr) >partialChildren >count() != 1)
return FALSE;

else

{
count = (*node_ptr) >fullChildren >count();
_partialChild = (*node_ptr) >partialChildren >pop();

copyFullChildrenToPartial(*node_ptr,_partialChild);

130



partialBound = _partialChild >getInternal() >userStructInternal();
nodeBound = (*node_ptr) >getInternal() >userStructInternal();
if (_partialChild >getNodeInfo() != NULL)
{

partialChain = _partialChild >getNodeInfo() >userStructInfo();
_partialChild >setNodeInfo(NULL); /* The chain will be thrown away */

}
if (nodeBound >joint() == NULL) /* P node proper */

/* Both boundaries are updated correctly */
nodeBound >properP4(partialBound, count, iterationNumber,

partialChain);
else /* P node not proper, it has one partial and one full child! */
{ /* Its boundary resembles template Q2. */

nodeBound >rootQ2(partialBound, partialChain, iterationNumber);
/* node_ptr will disappear from the tree, its boundary must be

transferred to _partialChild */
_partialChild >setInternal((*node_ptr) >getInternal());
delete partialBound; /* HERE? Something rootQ2 should handle?? */

}
// If node_ptr does not have any
// empty children, then it has to

// be deleted and the partial node
// is occupying its place in the tree.
checkIfOnlyChild(_partialChild,*node_ptr);

/* If node_ptr is deleted from the tree, its chain must be passed on */

if ((*node_ptr) >status() == TO_BE_DELETED &&
(*node_ptr) >getNodeInfo() != NULL)

_partialChild >setNodeInfo((*node_ptr) >getNodeInfo());

// The partial child now is

// root of the pertinent subtree.
*node_ptr = _partialChild;

#ifdef PRINT

cout << "Template P4 succesfull."

<< (*node_ptr) >identi�cationNumber() << endl;

#endif

return TRUE;
}

}

/************************************************************************
template_P5

************************************************************************/

template<class T,class X,class Y>
int pqtree<T,X,Y>::template_P5(node<T,X,Y> *node_ptr)
{

node<T,X,Y> *_partialChild = NULL;
node<T,X,Y> *_checkNode = NULL;
node<T,X,Y> *_emptyNode = NULL;
internal<T,X,Y> *_newInternal = NULL;
boundary *nodeBound = NULL;
boundary *partialBound = NULL;
boundary *_bound_2 = NULL;
chain *partialChain = NULL;

element *elem = NULL;
int _emptyChildCount = 0;

int hasEmpty = FALSE;
int number = 0;

131



if ((node_ptr >type() != P_NODE) || (node_ptr >partialChildren >count() != 1))
return FALSE;

else

{
_emptyChildCount = node_ptr >_childCount

node_ptr >fullChildren >count() 1;
_partialChild = node_ptr >partialChildren >pop();
node_ptr >_parent >partialChildren >push(_partialChild);

removeChildFromSiblings(_partialChild);
exchangeNodes(node_ptr,_partialChild);

copyFullChildrenToPartial(node_ptr,_partialChild);

if (_emptyChildCount > 0)
{

hasEmpty = TRUE;
if (_emptyChildCount == 1)
{

_emptyNode = node_ptr >_referenceChild;
removeChildFromSiblings(_emptyNode);

}
else

{
_emptyNode = node_ptr;

_emptyNode >_childCount = _emptyChildCount;
}

if (clientLeftEndmost(_partialChild) >status() == EMPTY)
{

_checkNode = _partialChild >_leftEndmost;

_partialChild >_leftEndmost = _emptyNode;
}

else if (clientRightEndmost(_partialChild) >status() == EMPTY)
{

_checkNode = _partialChild >_rightEndmost;
_partialChild >_rightEndmost = _emptyNode;

}
else

printf("template_P5: ERROR Endmost_child not found\n");

linkChildrenOfQnode(_checkNode,_emptyNode);

_emptyNode >_parent = _partialChild;
_emptyNode >_parentType = Q_NODE;
_partialChild >_childCount++;

}

// If node_ptr did not have any empty
// children it has to be deleted.
if (_emptyChildCount <= 1)

destroyNode(node_ptr);

nodeBound = node_ptr >getInternal() >userStructInternal();
partialBound = _partialChild >getInternal() >userStructInternal();
if (_partialChild >getNodeInfo() != NULL)
{

partialChain = _partialChild >getNodeInfo() >userStructInfo();
_partialChild >setNodeInfo(NULL); /* The chain will be thrown away */

}
if (nodeBound >joint() == NULL) /* Proper P node */
{ /* boundary of partial child is updated. */

nodeBound >properP5(partialBound,hasEmpty,partialChain);

132



number = nodeBound >vertexNumber();
/* If node_ptr is kept in the tree, it must get a new boundary,

and loose its chain if it had one*/
if (node_ptr >status() != TO_BE_DELETED)
{

_bound_2 = new boundary(number);
_newInternal = new internal<T,X,Y>(*_bound_2);
node_ptr >setInternal(_newInternal);

}
}
else /* Non proper P node */
{

nodeBound >nonProperP5(partialBound,hasEmpty,partialChain);
/* node_ptr is deleted, partial node inherits boundary. */
_partialChild >setInternal(node_ptr >getInternal());
delete partialBound;
if (node_ptr >status() == TO_BE_DELETED)

number = nodeBound >joint() >number();
}

if (node_ptr >getNodeInfo() != NULL)
{

number = node_ptr >getNodeInfo() >userStructInfo() >�rst();
/* This chain now belongs to the partial node */
_partialChild >setNodeInfo(node_ptr >getNodeInfo());
node_ptr >setNodeInfo(NULL);
/* If the P node is kept, it no longer has a chain */

}
if (node_ptr >_parent >identi�cationNumber() != 1)

elem = _partialChild >parent() >getInternal() >
userStructInternal() >updateBound(number, PARTIAL, NULL);

if (elem != NULL)
pertinentElements >push(elem);

#ifdef PRINT

cout << "Template P5 succesfull."

<< node_ptr >identi�cationNumber() << endl;
#endif

return TRUE;

}
}

/************************************************************************
template_P6

************************************************************************/

template<class T,class X,class Y>
int pqtree<T,X,Y>::template_P6(node<T,X,Y> **node_ptr)

{

node<T,X,Y> *_partial_1 = NULL;
node<T,X,Y> *_partial_2 = NULL;
node<T,X,Y> *_fullEnd_1 = NULL;
node<T,X,Y> *_fullEnd_2 = NULL;
node<T,X,Y> *_emptyEnd_2 = NULL;

node<T,X,Y> *_realEmptyEnd_2 = NULL;
boundary *nodeBound = NULL;
boundary *bound1 = NULL;
boundary *bound2 = NULL;

133



chain *chain1 = NULL;
chain *chain2 = NULL;
int proper = TRUE;
if ((*node_ptr) >type() != P_NODE || (*node_ptr) >partialChildren >count() != 2)

return FALSE;
else

{
_partial_1 = (*node_ptr) >partialChildren >pop();
_partial_2 = (*node_ptr) >partialChildren >pop();

nodeBound = (*node_ptr) >getInternal() >userStructInternal();
if (nodeBound >joint() != NULL) proper = FALSE;
bound1 = _partial_1 >getInternal() >userStructInternal();
bound2 = _partial_2 >getInternal() >userStructInternal();
if (_partial_1 >getNodeInfo() != NULL)
{

chain1 = _partial_1 >getNodeInfo() >userStructInfo();
_partial_1 >setNodeInfo(NULL); /* The chain will be thrown away */

}
if (_partial_2 >getNodeInfo() != NULL)
{

chain2 = _partial_2 >getNodeInfo() >userStructInfo();
_partial_1 >setNodeInfo(NULL); /* The chain will be thrown away */

}

removeChildFromSiblings(_partial_2);

(*node_ptr) >_childCount ;
copyFullChildrenToPartial(*node_ptr,_partial_1);

if (clientLeftEndmost(_partial_1) >status() == FULL)
_fullEnd_1 = _partial_1 >_leftEndmost;

else if (clientRightEndmost(_partial_1) >status() == FULL)
_fullEnd_1 = _partial_1 >_rightEndmost;

else

cout << "ERROR: template_5: "

<< "partial child with no FULL endmost child detected."

<< endl;

if (clientLeftEndmost(_partial_2) >status() == FULL)
_fullEnd_2 = _partial_2 >_leftEndmost;

else if(clientLeftEndmost(_partial_2) >status() == EMPTY)
{

_emptyEnd_2 = _partial_2 >_leftEndmost;
_realEmptyEnd_2 = clientLeftEndmost(_partial_2);

}
else

cout << "ERROR: template_5: partial child with "

<< "no FULL or EMPTY endmost child detected" << endl;

if (clientRightEndmost(_partial_2) >status() == FULL)
_fullEnd_2 = _partial_2 >_rightEndmost;

else if(clientRightEndmost(_partial_2) >status() == EMPTY)
{

_emptyEnd_2 = _partial_2 >_rightEndmost;
_realEmptyEnd_2 = clientRightEndmost(_partial_2);

}
else

cout << "ERROR: template_5: partial child with "

<< "no FULL or EMPTY endmost child detected" << endl;

if (_fullEnd_2 == _emptyEnd_2)
cout << "ERROR: template_5: partial child with "

134



<< "same type of endmost child detected" << endl;

while (!_partial_2 >fullChildren >stackEmpty())
_partial_1 >fullChildren >push(_partial_2 >fullChildren >pop());

linkChildrenOfQnode(_fullEnd_1,_fullEnd_2);
if (_partial_1 >_leftEndmost == _fullEnd_1)

_partial_1 >_leftEndmost = _emptyEnd_2;
else

_partial_1 >_rightEndmost = _emptyEnd_2;

_emptyEnd_2 >_parent = _partial_1;
_emptyEnd_2 >_parentType = Q_NODE;

_realEmptyEnd_2 >_parent = _partial_1;
_realEmptyEnd_2 >_parentType = Q_NODE;

_partial_1 >_childCount = _partial_1 >_childCount +
_partial_2 >_childCount;

if (proper)

nodeBound >properP6(bound1, bound2, chain1, chain2, iterationNumber);
else

{

nodeBound >rootQ3(bound1, bound2, chain1, chain2, iterationNumber, 2);
/* _partial_1 will take node_ptr's place in the tree,

and should have its boundary */
_partial_1 >setInternal((*node_ptr) >getInternal());

}

destroyNode(_partial_2);

// If node_ptr does not have any
// empty children, then it has to

// be deleted and the partial node
// is occupying its place in the tree.

checkIfOnlyChild(_partial_1, *node_ptr);

/* If node_ptr dissappears from the tree, its chain, if it has any,
must be given to the partial node */

if (((*node_ptr) >status() == TO_BE_DELETED) &&

((*node_ptr) >getNodeInfo() != NULL))
_partial_1 >setNodeInfo((*node_ptr) >getNodeInfo());

// _partial_1 is now root of the
// pertinent subtree.
*node_ptr = _partial_1;

#ifdef PRINT
cout << "Template P6 succesfull."

<< (*node_ptr) >identi�cationNumber() << endl;
#endif

return TRUE;
}

}

/************************************************************************
template_Q1

************************************************************************/

template<class T,class X,class Y>
int pqtree<T,X,Y>::template_Q1(node<T,X,Y> *node_ptr,

int isRoot)

135



{
node<T,X,Y>* _seqStart = NULL;
node<T,X,Y>* _seqEnd = NULL;
nodeInfo<T,X,Y> *info_ptr = NULL;
chain *ch_ptr = NULL;
element *elem = NULL;
int numb = 0;

if (node_ptr >type() == Q_NODE && node_ptr != _pseudoRoot &&
clientLeftEndmost(node_ptr) >status() == FULL &&
clientRightEndmost(node_ptr) >status() == FULL)

{
if (checkChain(node_ptr,clientLeftEndmost(node_ptr),&_seqStart,&_seqEnd))
{

node_ptr >status(FULL);
if (node_ptr >getNodeInfo() != NULL) /* Chain exists */

ch_ptr = node_ptr >getNodeInfo() >userStructInfo();
node_ptr >getInternal() >userStructInternal() >

Q1(iterationNumber, &ch_ptr);

if (!isRoot)

{
node_ptr >_parent >fullChildren >push(node_ptr);
/* UPDATE PARENT BOUNDARY */

if (ch_ptr != NULL)
{

numb = ch_ptr >�rst();
node_ptr >setNodeInfo(NULL);
/* chain will be held by parent's boundary */

}
else numb = node_ptr >getInternal() >userStructInternal() >

joint() >number();
if (node_ptr >_parent >identi�cationNumber() != 1)

elem = node_ptr >_parent >getInternal() >
userStructInternal() >updateBound(numb, FULL, ch_ptr);

if (elem != NULL)
pertinentElements >push(elem);

}
else if (node_ptr >getNodeInfo() == NULL && ch_ptr != NULL)
{

/* A new chain has been built, give it to the Q node to pass */
/* on to the new vertex */

info_ptr= new nodeInfo<T,X,Y>(*ch_ptr);
ch_ptr >setInfo(info_ptr);
node_ptr >setNodeInfo(info_ptr);

}
#ifdef PRINT

cout << "Template Q1 succesfull for node "

<< node_ptr >identi�cationNumber() << endl;

#endif

return TRUE;
}
else return FALSE;

}
else return FALSE;

}

/************************************************************************

template_Q2
************************************************************************/

template<class T,class X,class Y>

136



int pqtree<T,X,Y>::template_Q2(node<T,X,Y> *node_ptr, int isRoot)
{

node<T,X,Y> *_fullNode = NULL;
node<T,X,Y> *_sequenceBegin = NULL;
node<T,X,Y> *_sequenceEnd = NULL;
node<T,X,Y> *_partialChild = NULL;
boundary *partialBound = NULL;
chain *partialChain = NULL;
element *elem = NULL;
int _sequenceCons = FALSE;
int numb = 0;

if (node_ptr >type() != Q_NODE || node_ptr >partialChildren >count() > 1)
return FALSE;

else

{
if (node_ptr >fullChildren >count() > 0)
{

if (node_ptr >_leftEndmost != NULL)
{

_fullNode = clientLeftEndmost(node_ptr);

if (_fullNode >status() != FULL) _fullNode = NULL;
}
if (node_ptr >_rightEndmost != NULL && _fullNode == NULL)

{
_fullNode = clientRightEndmost(node_ptr);

if (_fullNode >status() != FULL) _fullNode = NULL;
}

if (_fullNode != NULL)
_sequenceCons = checkChain(node_ptr,_fullNode,

&_sequenceBegin,&_sequenceEnd);
if (_sequenceCons && (node_ptr >partialChildren >count() == 1))

{
node_ptr >partialChildren >startAtBottom();

_partialChild = node_ptr >partialChildren >readNext();
_sequenceCons = FALSE;

if (clientSibLeft(_sequenceEnd) == _partialChild ||
clientSibRight(_sequenceEnd) == _partialChild)

_sequenceCons = TRUE;
}

}
else

{
if (!node_ptr >partialChildren >stackEmpty())
{

node_ptr >partialChildren >startAtBottom();
_partialChild = node_ptr >partialChildren >readNext();
if ((clientLeftEndmost(node_ptr) == _partialChild) ||

(clientRightEndmost(node_ptr) == _partialChild))
_sequenceCons = TRUE;

}
}

if (_sequenceCons)
{

removeBlock(node_ptr,isRoot);

if (_partialChild != NULL)
{

if (_partialChild >getNodeInfo() != NULL)
{

137



partialChain = _partialChild >getNodeInfo() >userStructInfo();
_partialChild >setNodeInfo(NULL);
/* The chain will be thrown away */

}
partialBound = _partialChild >getInternal() >userStructInternal();

}
if (isRoot)

node_ptr >getInternal() >userStructInternal() >
rootQ2(partialBound, partialChain, iterationNumber);

else

{
node_ptr >getInternal() >userStructInternal() >

nonRootQ2(partialBound, partialChain);
if (node_ptr >getNodeInfo() != NULL)

numb = node_ptr >getNodeInfo() >userStructInfo() >�rst();
else numb = node_ptr >getInternal() >

userStructInternal() >joint() >number();
if (node_ptr >_parent >identi�cationNumber() != 1)

elem = node_ptr >_parent >getInternal() >
userStructInternal() >updateBound(numb, PARTIAL, NULL);

if (elem != NULL)

pertinentElements >push(elem);
}

#ifdef PRINT

cout << "Template Q2 succesfull for node "

<< node_ptr >identi�cationNumber() << endl;

#endif

}

return _sequenceCons;
}

}

/************************************************************************

template_Q3
************************************************************************/

template<class T,class X,class Y>
int pqtree<T,X,Y>::template_Q3(node<T,X,Y> *node_ptr)

{

node<T,X,Y> *_fullChild = NULL;
node<T,X,Y> *_fullStart = NULL;

node<T,X,Y> *_fullEnd = NULL;
node<T,X,Y> *partial_1 = NULL;
node<T,X,Y> *partial_2 = NULL;
boundary *bound_1 = NULL;
boundary *bound_2 = NULL;
chain *chain_1 = NULL;
chain *chain_2 = NULL;
int cons_sequence = FALSE;
int found = FALSE;
int numberOfPartials = 0;

if (node_ptr >type() != Q_NODE || node_ptr >partialChildren >count() >= 3)
return FALSE;

else

{
numberOfPartials = node_ptr >partialChildren >count();

if (!node_ptr >fullChildren >stackEmpty())
{

node_ptr >fullChildren >startAtBottom();

138



_fullChild = node_ptr >fullChildren >readNext();
cons_sequence = checkChain(node_ptr,_fullChild,&_fullStart,&_fullEnd);
if (cons_sequence)
{

node_ptr >partialChildren >startAtBottom();
while (!node_ptr >partialChildren >readLast())
{

partial_1 = node_ptr >partialChildren >readNext();
found = FALSE;
if ( (clientSibLeft(_fullStart) == partial_1) ||

(clientSibRight(_fullStart) == partial_1) ||
(clientSibLeft(_fullEnd) == partial_1) ||
(clientSibRight(_fullEnd) == partial_1) )

found = TRUE;
if (!found)

cons_sequence = found;
}

}
}

else if (node_ptr >partialChildren >count() == 2)

{
node_ptr >partialChildren >startAtBottom();
partial_1 = node_ptr >partialChildren >readNext();
partial_2 = node_ptr >partialChildren >readNext();
if ( (clientSibLeft(partial_1) == partial_2) ||

(clientSibRight(partial_1) == partial_2) )
found = TRUE;

cons_sequence = found;
}

int isRoot = TRUE;
if (cons_sequence)

{
if (node_ptr != _pseudoRoot)

{
if (numberOfPartials > 0)

{
node_ptr >partialChildren >startAtBottom();
partial_1 = node_ptr >partialChildren >readNext();
bound_1 = partial_1 >getInternal() >userStructInternal();
if (partial_1 >getNodeInfo() != NULL)

{
chain_1 = partial_1 >getNodeInfo() >userStructInfo();
partial_1 >setNodeInfo(NULL);
/* The chain will be thrown away */

}
if (numberOfPartials == 2)
{

partial_2 = node_ptr >partialChildren >readNext();
bound_2 = partial_2 >getInternal() >userStructInternal();
if (partial_2 >getNodeInfo() != NULL)
{

chain_2 = partial_2 >getNodeInfo() >userStructInfo();
partial_2 >setNodeInfo(NULL);
/* The chain will be thrown away */

}
}

}

removeBlock(node_ptr,isRoot);

139



node_ptr >getInternal() >userStructInternal() >
rootQ3(bound_1, bound_2, chain_1, chain_2, iterationNumber,

numberOfPartials);
}

#ifdef PRINT
cout << "Template Q3 succesfull for node "

<< node_ptr >identi�cationNumber() << endl;
#endif

}
return cons_sequence;

}
}

#endif

A.3 Code �les for parameter types

A.3.1 edge
/*******************************************************

File: edge.h

Author: Gørril Vollen

Last update: 18/02/1998
*******************************************************/

#ifndef EDGE_H
#de�ne EDGE_H

/*******************************************************
class edge

De�nition of class edge. Class edge is teh type of the
information stored by every key/leaf in the tree, type T

*******************************************************/

#include <iostream.h>

class edge

{
private:

int _from; /* number of tail vertex */
int _to; /* number of head vertex */
int _mapNumber; /* number used to handle edges outside of PQ tree */

public:
edge() {} /* default constructor */
edge(int count, int f, int t)
{

_from = f;

_to = t;
_mapNumber = count;

}
�edge() {} /* default destructor */
int from() { return _from; }
int to() { return _to; }
void print() {cout << "(" << _from << "," << _to << ")";}

};

#endif

140



A.3.2 Chain
/**********************************************************************

File: chain.h

Author: Gørril Vollen
Last update: 20/02/1998

***********************************************************************/
#ifndef CHAIN_H
#de�ne CHAIN_H
#include <strstream.h>
#include <iostream.h>
#include "element.h"

#include "stack.h"

#include "nodeInfo.h"

#include "node.h"

class edge;

class boundary;

/***************************************************************************
class chain
Class chain is the type of the information stored at every

node in the tree, type X.
Attributes: _chainSt stack of integers, the numbers of the

vertices in the chain this chain represents.
info_ptr pointer to the nodeInfo object that points to

this chain object.
***************************************************************************/
class chain

{
/*Invariant: When read, the �rst call is �rst(), then getNext

while return value > 0. If used by insertChain, ALWAYS call
last() before reading the rest. */

private:
stack<int>* _chainSt;

nodeInfo<edge, chain, boundary>* info_ptr;

public:
chain() { _chainSt = new stack<int>; }
chain(int from, int to)
{

_chainSt = new stack<int>;
insert(from); insert(to);

}
chain(int from, int number, int to)
{

_chainSt = new stack<int>;
insert(from); insert(number); insert(to);

}
chain(chain &c) { _chainSt = c._chainSt; }
�chain()
{

delete _chainSt;
_chainSt = NULL;
delete info_ptr;
info_ptr = NULL;

}

141



void setInfo(nodeInfo<edge, chain, boundary>* info)
{

info_ptr = info;
}

void insert(int number) /*insert new number into stack;*/
{

_chainSt >push(number);
}

chain* getChain() /*returns this object if _chainSt not empty, else NULL*/
{

if (!_chainSt >stackEmpty()) return this;
else return NULL;

}

int �rst() /*returns the bottom number on the stack*/
{

_chainSt >startAtBottom();
return _chainSt >readNext();

}

int last() /*removes and returns top number on the stack*/

{
return _chainSt >pop();

}

int getNext() /*returns the next read number (bottom up), 1 if all read*/
{

if (!_chainSt >readLast()) return _chainSt >readNext();
else return 1;

}

void addChain(chain* addition) /* stack of addition is placed */

{ /* on top of this stack. */
int i;

if (_chainSt >stackEmpty)
cout << "ERROR in chain::addChain: this chain is empty!" << endl;

else

{
i = last();

if (i != addition >�rst()) /*Make sure this number is not*/
insert(i); /*doubly on the stack*/

i = addition >�rst();
while (i != 1)
{

insert(i);
i = addition >getNext();

}
}
delete addition;

}

char* print()
{

ostrstream txt;
char out[INFOSIZE];

int i;

if (!_chainSt >stackEmpty())
{

142



txt << " Chain: ";
_chainSt >startAtBottom();
i = _chainSt >readNext();
txt << i;
while (!_chainSt >readLast())
{

i = _chainSt >readNext();
txt << " " << i;

}
txt << ends;

}
strcpy(out, txt.str());
strstreambuf * buf_ptr = txt.rdbuf();
buf_ptr >freeze(0);
return out;

}
};

#endif

A.3.3 Boundary

/**********************************************************************
File: boundary.h

Author: Gørril Vollen
Last update: 20/02/1998

***********************************************************************/

/*******************************************************
Class boundary is the type of the internal information,
designed for P and Q nodes. Type Y.

*******************************************************/
#ifndef BOUNDARY_H

#de�ne BOUNDARY_H
#include "element.h"

#include "node.inc"

#include "internal.h"

//#de�ne DEBUG

class edge;
class chain;

class boundary
{

private:
int _vertexNumber;

element* _joint;

element* _end1; /* Following the 'left' pointer out
of 'joint' leads to 'end1' �rst */

element* _end2; /* Following the 'right' pointer out
of 'joint' leads to 'end2' �rst */

element* _begFull; /* When set, begFull will be encountered */
element* _endFull; /* before endFull, walking from left to */
/* right out of joint. */

element* _begEmpty; /* The element "to the left of" begFull */
element* _endEmpty; /* The element "to the right of" endFull */

stack<chain*> *_fullChains;

143



internal<edge,chain,boundary>* internal_ptr;

public:
boundary()
{

_vertexNumber = 0;
_joint = NULL; _end1 = NULL; _end2 = NULL;
_endEmpty = NULL; _begEmpty = NULL;
_begFull = NULL; _endFull = NULL;
_fullChains = NULL; internal_ptr = NULL;

}
boundary(int vertexNumber)
{

_vertexNumber = vertexNumber;
_joint = NULL; _end1 = NULL; _end2 = NULL;
_endEmpty = NULL; _begEmpty = NULL;
_begFull = NULL; _endFull = NULL;
_fullChains = NULL; internal_ptr = NULL;

#ifdef DEBUG
cout << "boundary " << _vertexNumber << endl;

#endif

}
boundary(int vertexNumber, internal<edge,chain,boundary>* ptr)
{

_vertexNumber = vertexNumber;
internal_ptr = ptr;

_joint = NULL; _end1 = NULL; _end2 = NULL;
_fullChains = new stack<chain*>;

#ifdef DEBUG
cout << "boundary " << _vertexNumber << endl;

#endif

}
�boundary() {delete _fullChains;}

int vertexNumber() {return _vertexNumber;}

void vertexNumber(int number) {_vertexNumber = number;}

element* joint() {return _joint;}

element* end1() {return _end1;}
void end1(element* elem) {_end1 = elem;}

element* end2() {return _end2;}
void end2(element* elem) {_end2 = elem;}

element* begFull() {return _begFull;}
void begFull(element* elem) {_begFull = elem;}

element* endFull() {return _endFull;}
void endFull(element* elem) {_endFull = elem;}

element* begEmpty() {return _begEmpty;}
element* endEmpty() {return _endEmpty;}

int fullChains() { return _fullChains ? _fullChains >count() : 0; }

void removeFullCh() {if (_fullChains != NULL) _fullChains >cleanupStack();}

internal<edge,chain,boundary>* getInternal() {return internal_ptr;}
void setInternal(internal<edge,chain,boundary>* ptr) {internal_ptr = ptr;}

void setFull();

144



element* updateBound(int number, int status, chain* ch_ptr);

element* �ndElem(int number);

void removeElements(element *from, element *�rst, element *to);

void insertChain(element *end1, element *other1, element *end2,
element *other2, chain *ch_ptr);

void partialConnect(element* emptyEnd, element* oldEmpty,
element* fullEnd, element* oldFull,
chain* emptyChain, chain* fullChain,
int i, element **e1, element **e2);

void partialConnect(element* emptyEnd, element* oldEmpty,
element* fullEnd, element* oldFull,
chain* partialChain, element **e1, element **e2);

void doubleConnect(boundary *bound1, boundary *bound2,
chain *chain1, chain *chain2, int i);

void connectToJoint(element* elem, int direction);

void properP1(int i, int from, int count, chain **ch_ptr);

void P2(int count, chain **ch_ptr);

element* properP3(int count);

void properP4(boundary* bound, int count, int i, chain* partialChain);
void partialP4(int jointNo, int i, chain* nodeChain, chain* partialChain);

void nonProperP4(boundary* bound, int i, chain* partialChain);

void properP5(boundary* bound, int hasEmpty, chain* chain1);

void partialP5(int jointNo, int hasEmpty, chain* chain1);

void nonProperP5(boundary* bound, int hasEmpty, chain* chain1);

void properP6(boundary* partial1, boundary* partial2, chain* chain1,
chain* chain2, int i);

void partialP6(int jointNo, chain* chain1, int i, boundary* partial2, chain* chain2);

void nonProperP6(boundary* bound1, boundary* bound2, chain* chain1,

chain* chain2, int i);

void Q1(int i, chain **ch_ptr);

void rootQ2(boundary* bound, chain* partialChain, int i);

void nonRootQ2(boundary* bound, chain* partialChain);

void rootQ3(boundary* bound1, boundary* bound2, chain* chain1,
chain* chain2, int i, int numberOfPartials);

char* print();

};

#endif

/**********************************************************************

145



File: boundary.cc

Author: Gørril Vollen
Last update: 20/02/1998

***********************************************************************/
#include <iostream.h>
#include <fstream.h>
#include "def.inc"

#include "stack.h"

#include "boundary.h"

#include "element.h"

#include "chain.h"

/* **************** setFull **************** */

void boundary::setFull()
{

element* elem, *oldEl, *nextEl;
#ifdef DEBUG

cout << " setFull" << endl;
#endif

elem = _joint >left();
oldEl = _joint;
while (elem != _joint && elem >status() == EMPTY)

{
nextEl = elem >getNextEl(oldEl);
oldEl = elem;
elem = nextEl;

}
_begFull = elem;
_endEmpty = oldEl;

/* For å �nne _endFull, må jeg gå ut fra joint i den andre retningen! */
elem = _joint >right();
oldEl = _joint;
while (elem != _joint && elem >status() == EMPTY)

{
cout << elem >number() << " ";

nextEl = elem >getNextEl(oldEl);
oldEl = elem;
elem = nextEl;

}
cout << endl;

_endFull = elem;
_begEmpty = oldEl;

} //setFull

/* **************** updateBound **************** */

element* boundary::updateBound(int number, int stat, chain* ch_ptr)

{
element *elem = NULL;

if (_joint != NULL) /* There is a boundary that needs updating */

{
elem = �ndElem(number);
if (elem != NULL) /* elem were found */
{

elem >setChain(ch_ptr);
elem >status(stat);
if (stat == FULL) elem >child(FALSE);
/* P3 is FULL,TRUE after inclusion in boundary, */
/* while FULL nodes will be idle */

146



}
}

if (stat == FULL && ch_ptr != NULL)
{

if (!_fullChains) _fullChains = new stack<chain*>;
_fullChains >push(ch_ptr);

}
return elem;

} //updateBound

/* **************** �ndElement **************** */

element* boundary::�ndElem(int number)
/* Used by extendBoundary and addChild */

{
element *elem, *oldEl, *nextEl;

elem = _joint;
if (elem >number() == number) return elem;
else {

oldEl = elem;

elem = elem >getNextEl(NULL);
while (elem >number() != number && elem != _joint)
{

nextEl = elem >getNextEl(oldEl);
oldEl = elem;

elem = nextEl;
}

if (elem >number() == number) return elem;
else

{

cerr << "ERROR in boundary::findElem: No element found!" << endl;
return NULL;

}
};

} //�ndElement

/* **************** removeElements **************** */

void boundary::removeElements(element *from, element *�rst, element *to)
{

element *elem, *nextEl, *oldEl;

if (from != to)

{
elem = �rst;
oldEl = from;
while (elem != to)
{

elem >status(TO_BE_DELETED);
nextEl = elem >getNextEl(oldEl);
oldEl = elem;
elem = nextEl;

}
}

} //removeElements

/* **************** insertChain **************** */

void boundary::insertChain(element *end1, element *old1, element *end2,

element *old2, chain *ch_ptr)
{

147



element *elem = NULL;
element *oldEl = NULL;
int _�rst, _last, i;

if (ch_ptr == NULL) {/*MARKER;*/}
else

{
_�rst = ch_ptr >�rst();
_last = ch_ptr >last();
if ((end1 >number() == _�rst) && (end2 >number() == _last))
{

i = ch_ptr >getNext();
if (i != 1)
{

elem = new element(i, EMPTY, FALSE, end1, NULL);
end1 >changeElements(old1, elem);
i = ch_ptr >getNext();
while (i != 1)
{

oldEl = elem;
elem = new element(i, EMPTY, FALSE, oldEl, NULL);

oldEl >setNextEl(elem);
i = ch_ptr >getNext();

}

elem >setNextEl(end2);
end2 >changeElements(old2, elem);

}
}

else if ((end2 >number() == _�rst) && (end1 >number() == _last))
{

i = ch_ptr >getNext();
if (i != 1)
{

elem = new element(i, EMPTY, FALSE, end2, NULL);
end2 >changeElements(old2, elem);

}
i = ch_ptr >getNext();
while (i != 1)
{

oldEl = elem;
elem = new element(i, EMPTY, FALSE, oldEl, NULL);
oldEl >setNextEl(elem);

i = ch_ptr >getNext();
}
elem >setNextEl(end1);
end1 >changeElements(old1, elem);

}

else cerr << "ERROR in boundary::insertChain: "

<< "first and/or last number in chain did not match "

<< "with connection points!" << endl;

delete ch_ptr;
}

} //insertChain

/* **************** partialConnect **************** */
/* (Parent root of pertinent subtree) */

/* Connect this boundary to emptyEnd and fullEnd, */
/* insert new element i, clean up. */

/* oldEmpty is partial element on parents boundary. */

148



void boundary::partialConnect(element* emptyEnd, element* oldEmpty,
element* fullEnd, element* oldFull,
chain* emptyChain, chain* fullChain,
int i, element **e1, element **e2)

{
element *elem, *other, *newEl;
chain *ch_ptr;

if (oldEmpty != NULL) removeElements(emptyEnd, oldEmpty, fullEnd);

if (_joint == NULL) /* Only _end1 exists */
{

if (emptyChain != NULL)
{ /* oldEmpty will still be part of boundary*/

_joint = new element(oldEmpty >number(), EMPTY, FALSE,
_end1, emptyEnd);

_end1 >right(_joint);
emptyEnd >changeElements(oldEmpty, _joint);
insertChain(_joint, _end1, _end1, _joint, emptyChain);

}
else

{
emptyEnd >changeElements(oldEmpty, _end1);
_end1 >right(emptyEnd);

}
elem = new element(i, EMPTY, TRUE, fullEnd, _end1);

_end1 >left(elem);
ch_ptr = _end1 >getChain();
if (ch_ptr != NULL)

insertChain(_end1, elem, elem, _end1, ch_ptr);
if (fullChain != NULL)

insertChain(fullEnd, oldFull, elem, fullEnd, fullChain);
else

fullEnd >changeElements(oldFull, elem);
_end1 >status(FULL); /* end1 is no longer PARTIAL */

*e1 = _end1; //e1 is empty end
*e2 = elem; //e2 is full end

}
else /* Full boundary exists, setFull() already called */
{

/* Need to know the direction of this boundary, in order to
connect it correctly */

if (_end1 >status() == EMPTY)
{

if (emptyChain != NULL)
{ /*oldEmpty will still be part of boundary*/

newEl = new element(oldEmpty >number(), EMPTY, FALSE,

_joint, emptyEnd);
_joint >right(newEl);
emptyEnd >changeElements(oldEmpty, newEl);
insertChain(newEl, _joint, _joint, newEl, emptyChain);
if (_joint >child() == TRUE) _end1 = _joint;
/* partial was proper P5, _joint is real empty end. */

}
else

{
_joint >right(emptyEnd);
emptyEnd >changeElements(oldEmpty, _joint);

}
elem = new element(i, EMPTY, TRUE, fullEnd, _begFull);

other = _begFull >getNextEl(_endEmpty);
_begFull >changeElements(other, elem);

149



removeElements(_begFull, other, _joint);

ch_ptr = _begFull >getChain();
if (ch_ptr != NULL)

insertChain(_begFull, elem, elem, _begFull, ch_ptr);
if (fullChain != NULL)

insertChain(fullEnd, oldFull, elem, fullEnd, fullChain);
else

fullEnd >changeElements(oldFull, elem);
*e1 = _end1; //e1 is empty end
*e2 = elem; //e2 is full end

}
else if (_end2 >status() == EMPTY) /*must be complete boundary*/
{

if (emptyChain != NULL)
{ /*oldEmpty will still be part of boundary*/

newEl = new element(oldEmpty >number(), EMPTY, FALSE,
emptyEnd, _joint);

_joint >left(newEl);
emptyEnd >changeElements(oldEmpty, newEl);
insertChain(newEl, _joint, _joint, newEl, emptyChain);

if (_joint >child() == TRUE) _end2 = _joint;
/* partial was proper P5, _joint is real empty end. */

}

else

{

_joint >left(emptyEnd);
emptyEnd >changeElements(oldEmpty, _joint);

}
elem = new element(i, EMPTY, TRUE, _endFull, fullEnd);
other = _endFull >getNextEl(_begEmpty);

_endFull >changeElements(other, elem);
removeElements(_endFull, other, _joint);

ch_ptr = _endFull >getChain();
if (ch_ptr != NULL)

insertChain(_endFull, elem, elem, _endFull, ch_ptr);

if (fullChain != NULL)
insertChain(fullEnd, oldFull, elem, fullEnd, fullChain);

else

fullEnd >changeElements(oldFull, elem);
*e1 = _end2; //e1 is empty end

*e2 = elem; //e2 is full end
}
else cerr << "ERROR in boundary::partialConnect(pertinentRoot): "

<< "No empty end of boundary found!" << endl;
}

} //partialConnect (pertinentRoot)

/* **************** partialConnect **************** */
/* (Parent not root of pertinent subtree) */

/* Will need to be redesigned when cases are made. */

/* How much of partial boundary should substitute */
/* the partial element, and how much of parents full*/
/* sequence should be swallowed? */

/* P5 and Q2 can have only partial, so fullEnd might be idle. */
/* e1 and e2 wil be full and empty end of this boudary. */

void boundary::partialConnect(element* emptyEnd, element* oldEmpty,
element* fullEnd, element* oldFull,

150



chain* partialChain,
element** e1, element** e2)

{
element *newEl;

removeElements(emptyEnd, oldEmpty, fullEnd);
if (_joint == NULL) /* Only _end1 exists */
{

if (partialChain != NULL)
{ /* oldEmpty will still be part of boundary*/

_joint = new element(oldEmpty >number(), EMPTY, FALSE,
_end1, emptyEnd);

_end1 >right(_joint);
emptyEnd >changeElements(oldEmpty, _joint);
insertChain(_joint, _end1, _end1, _joint, partialChain);

}
else

{
_end1 >right(emptyEnd);
emptyEnd >changeElements(oldEmpty, _end1);

}

_end1 >left(fullEnd);
fullEnd >changeElements(oldFull, _end1);
_end1 >status(FULL); /* end1 is no longer PARTIAL */

*e1 = _end1; /* _end1 is partial and only element, */
*e2 = _end1; /* therefore both empty and full end. */

/* Up to caller to pick which one (if any) to update. */
}

else /* Full boundary exists, setFull() already called */
{

/* Need to know the direction of this boundary, in order to

connect it correctly */
if (_end1 >status() == EMPTY)

{
if (partialChain != NULL)

{ /*oldEmpty will still be part of boundary*/
newEl = new element(oldEmpty >number(), EMPTY, FALSE,

_joint, emptyEnd);
_joint >right(newEl);
emptyEnd >changeElements(oldEmpty, newEl);

insertChain(newEl, _joint, _joint, newEl, partialChain);
if (_joint >child() == TRUE) _end1 = _joint;

/* partial was proper P5, _joint is real empty end. */
}
else

{
_joint >right(emptyEnd);

emptyEnd >changeElements(oldEmpty, _joint);
}

fullEnd >changeElements(oldFull, _endFull);
_endFull >changeElements(_begEmpty, fullEnd);
removeElements(_endFull, _begEmpty, _joint);
*e1 = _end1; /* empty end */
*e2 = _endFull; /* _endFull == _end2 */

}
else if (_end2 >status() == EMPTY)
{

if (partialChain != NULL)

{
newEl = new element(oldEmpty >number(), EMPTY, FALSE,

emptyEnd, _joint);
_joint >left(newEl);

151



emptyEnd >changeElements(oldEmpty, newEl);
insertChain(newEl, _joint, _joint, newEl, partialChain);
if (_joint >child() == TRUE) _end2 = _joint;
/* partial was proper P5, _joint is real empty end. */

}
else

{
_joint >left(emptyEnd);
emptyEnd >changeElements(oldEmpty, _joint);

}
fullEnd >changeElements(oldFull, _begFull);
_begFull >changeElements(_begEmpty, fullEnd);
removeElements(_begFull, _endEmpty, _joint);
*e1 = _end2; /* empty end */
*e2 = _begFull; /* _begFull == _end1 */

}
else

{
cerr << "ERROR in boundary::partialConnect(pertinentRoot): "

<< "No empty end of boundary found!" << endl;
}

}
} //partialConnect (not pertinentRoot)

/* **************** doubleConnect **************** */

void boundary::doubleConnect(boundary *bound1, boundary *bound2,
chain *chain1, chain *chain2, int i)

{
/* bound1 is the boundary located at _begFull, and bound2 at _endFull */
element *other, *e1, *e2;

chain *ch_ptr;

/* Place the �rst boundary where the �rst partial is */
other = _endFull >getNextEl(_begEmpty);

if (_end1 == _begFull) /* _end1 will change */
bound1 >partialConnect(_endEmpty, _begFull, _endFull, other,

chain1, &_end1, &e2);
else /* _end1 will not change */

bound1 >partialConnect(_endEmpty, _begFull, _endFull, other, chain1, &e1, &e2);

/* Take care of the second partial */

other = _endFull >getNextEl(_begEmpty);
ch_ptr = _endFull >getChain();
if (_end2 == _endFull) /* _end2 will change */

bound2 >partialConnect(_begEmpty, _endFull, other, _endFull, chain2,

ch_ptr, i, &_end2, &e2);
else /* _end2 will not change */

bound2 >partialConnect(_begEmpty, _endFull, other, _endFull, chain2,
ch_ptr, i, &e1, &e2);

} //doubleConnect

/* **************** P1 **************** */
/* Extends chain if it exists, and builds a new one if not. */

void boundary::properP1(int i, int from, int count, chain **ch_ptr)
{

if (*ch_ptr != NULL)
{

if (_fullChains && count == _fullChains >count())
(*ch_ptr) >addChain(_fullChains >pop());

152



else

(*ch_ptr) >insert(i);
}
else if (from != 0)
{ /* This node is child of a proper P node, */

/* and chain should start there */
*ch_ptr = new chain();
(*ch_ptr) >insert(from);
if (_fullChains && count == _fullChains >count())

(*ch_ptr) >addChain(_fullChains >pop());
else

{
(*ch_ptr) >insert(_vertexNumber);
(*ch_ptr) >insert(i);

}
}
else

{
if (_fullChains && count == _fullChains >count())

*ch_ptr = _fullChains >pop();
else

*ch_ptr = new chain(_vertexNumber, i);
}
/* Since this boundary will be deleted by the end of this iteration,*/

/* there is no need to clean up _fullChains */
} //properP1

/* **************** P2 **************** */

/* Returns a chain in ch_ptr if every full child of P2 has one */

void boundary::P2(int count, chain **ch_ptr)

{
if (_fullChains)

{
if (_fullChains >count() == count)

*ch_ptr = _fullChains >pop();
_fullChains >cleanupStack();

}
} //P2

/* **************** properP3 **************** */
/* Instantiates the boundary with one element */

/* (_end1), to be able to take care of its */
/* chain, if it exists. */

element* boundary::properP3(int count)
{

element *elem;

elem = new element(_vertexNumber, FULL, TRUE);
if (_fullChains)
{

if (_fullChains >count() == count)
elem >setChain(_fullChains >pop());

_fullChains >cleanupStack();
}
_end1 = elem;
return elem;

} //properP3

/* ***************** properP4 ***************** */
/* Check if new full child of partial has chain.*/

153



/* Let partial extend its own boundary. */

void boundary::properP4(boundary* partialBound, int count, int i,
chain* partialChain)

{
chain* ch_ptr = NULL;

if (_fullChains)
{

if (_fullChains >count() == count)
ch_ptr = _fullChains >pop();

_fullChains >cleanupStack();
}
partialBound >partialP4(_vertexNumber, i, ch_ptr, partialChain);

} //properP4

/* **************** partialP4 **************** */
/* Cleans up full end. Makes a complete */
/* boundary for the new tree by including i. */

void boundary::partialP4(int jointNo, int i, chain* nodeChain,

chain* partialChain)
{

chain *ch_ptr =NULL;

element *elem, *other;

if (_joint == NULL) /* Partial is proper P3, has only _end1 */
{

_joint = new element(jointNo, EMPTY, FALSE, _end1, NULL);
_end2 = new element(i, EMPTY, TRUE, _joint, _end1);
_joint >right(_end2);
_end1 >left(_end2);
_end1 >right(_joint);

if (partialChain != NULL)

insertChain(_joint, _end1, _end1, _joint, partialChain);

/* properP3 has chain between end1 and end2 if end1 has chain */
ch_ptr = _end1 >getChain();
if (ch_ptr != NULL)

insertChain(_end1, _end2, _end2, _end1, ch_ptr);
if (nodeChain != NULL)

insertChain(_joint, _end2, _end2, _joint, nodeChain);
}
else /*Boundary has at least two elements*/
{ /*joint, end1 and end2 are all valid pointers.*/

if (_end1 >status() == EMPTY)
{

if (jointNo != _joint >number())
{

/*If this boundary is proper P5 (joint==end1),
it will always hit here.*/

elem = new element(jointNo, EMPTY, FALSE, _joint, _joint >right());
_joint >right(elem);
elem >right() >changeElements(_joint, elem);
/* Partial chain can only exist if new and old joint di�er*/

if (partialChain != NULL)
insertChain(elem, _joint, _joint, elem, partialChain);

if (_end1 >child() == FALSE) _end1 = _end2;
/* Old end2 is only active element on boundary. */

154



_joint = elem;
}
else if (_joint == _end1)

cerr << "ERROR in boundary::partialP4: _joint==_end1 "

<< "&& jointNo == _joint >number()" << endl;

elem = new element(i, EMPTY, TRUE, _joint, _begFull);
_joint >right(elem);
_end2 = elem;

/* Joint is now linked to _begFull via elem, the new _end2. */
/* Any elements thus removed from the boundary must be deleted.*/
other = _begFull >getNextEl(_endEmpty);
removeElements(_begFull, other, _joint);
_begFull >changeElements(other, elem);
ch_ptr = _begFull >getChain();
if (ch_ptr != NULL)

insertChain(_begFull, elem, elem, _begFull, ch_ptr);
if (nodeChain != NULL)

insertChain(_joint, elem, elem, _joint, nodeChain);
}

else if (_end2 >status() == EMPTY)
{

if (jointNo != _joint >number())
{

/*If this boundary is proper P5 (joint==end2), it will always hit here.*/

elem = new element(jointNo, EMPTY, FALSE, _joint >left(), _joint);
_joint >left(elem);

elem >left() >changeElements(_joint, elem);
/* Partial chain can only exist if new and old joint di�er*/
if (partialChain != NULL)

insertChain(elem, _joint, _joint, elem, partialChain);
_joint = elem;

}
elem = new element(i, EMPTY, TRUE, _endFull, _joint);

_joint >left(elem);
_end1 = elem;

/* Joint is now linked to _endFull via elem, the new _end1. */
/* Any elements thus removed from the boundary must be deleted.*/
other = _endFull >getNextEl(_begEmpty);
removeElements(_endFull, other, _joint);

ch_ptr = _endFull >getChain();
if (ch_ptr != NULL)

insertChain(_endFull, other, elem, _endFull, ch_ptr);
else

_endFull >changeElements(other, elem);

if (nodeChain != NULL)
insertChain(_joint, _joint >left(), elem, _joint, nodeChain);

}
else cerr << "ERROR in boundary::partialP4: no endmost were EMPTY!"

<< endl;
}

} //partialP4

/* **************** properP5 **************** */
/* */

void boundary::properP5(boundary *partialBoundary, int hasEmpty, chain* partialChain)
{

partialBoundary >partialP5(_vertexNumber, hasEmpty, partialChain);
if (_fullChains) _fullChains >cleanupStack();

155



}

/* **************** partialP5 **************** */
/* Extends partial boundary with new joint if necessary */

void boundary::partialP5(int jointNo, int hasEmpty, chain* partialChain)
{

element* elem;

if (_joint == NULL)
{

/* boundary will now consist of two elements only, */
/* _joint and _end1 points to new and _end2 to old one (old _end1) */
_end2 = _end1;
_joint = new element(jointNo, EMPTY, hasEmpty);
_joint >left(_end2);
_end2 >right(_joint);
if (partialChain != NULL)

insertChain(_joint, _end2, _end2, _joint, partialChain);
_end2 >left(_joint);
_joint >right(_end2);

_end1 = _joint;
_begFull = _end2;

_endFull = _end2;
_begEmpty = _joint;

_endEmpty = _end2 >getNextEl(_begEmpty);
/*will not be end1 if chain were inserted*/

}
else /* Boundary has at least two elements */
{

/* The existing boundary is extended if necessary */
if (_end1 >status() == EMPTY)

{
if (_joint >number() != jointNo)

{
/*If this boundary is proper P5 (joint==end1),*/

/*it will always hit here.*/
elem = new element(jointNo, EMPTY, hasEmpty, _joint, _joint >right());
_joint >right(elem);

elem >right() >changeElements(_joint, elem);
if (partialChain != NULL)

insertChain(elem, _joint, _joint, elem, partialChain);
_joint = elem;

}
else

{
/* If new joint was not needed, there cannot be a chain */
if (partialChain != NULL)

cerr << "ERROR in boundary::partialP5: Received "

<< "partialChain althoug joint was already "

<< "connected!" << endl;
_joint >child(hasEmpty);
/* _joint represents the vertex of P5, and must have the

correct child value */
}
if (hasEmpty) _end1 = _joint; /*joint is empty end*/

}

else if (_end2 >status() == EMPTY)
{

if (_joint >number() != jointNo)
{

156



elem = new element(jointNo, EMPTY, hasEmpty, _joint >left(), _joint);
_joint >left(elem);
elem >left() >changeElements(_joint, elem);
if (partialChain != NULL)

insertChain(elem, _joint, _joint, elem, partialChain);
_joint = elem;

}
else

{
/* If new joint was not needed, there cannot be a chain */
if (partialChain != NULL)

cerr << "ERROR in boundary::partialP5: Received "

<< "partialChain althoug joint was already "

<< "connected!" << endl;
_joint >child(hasEmpty);
/* _joint represents the vertex of P5, and must have the

correct value for child */
}
if (hasEmpty) _end2 = _joint; /*joint is empty end*/

}
setFull();

}
} //partialP5

void boundary::nonProperP5(boundary* bound, int hasEmpty, chain* partialChain)
{

nonRootQ2(bound, partialChain);
if (hasEmpty)

{
_joint >child(TRUE);
/* nonRootQ2 returns boundary with EMPTY and FULL end*/

if (_end1 >status() == EMPTY) _end1 = _joint;
else _end2 = _joint;

}
} //nonProperP5

/* **************** properP6 **************** */

/* Cleans up this node. Leaves all work to partial1 */

void boundary::properP6(boundary* partial1, boundary* partial2, chain* chain1,
chain* chain2, int i)

{

partial1 >partialP6(_vertexNumber, chain1, i, partial2, chain2);
if (_fullChains) _fullChains >cleanupStack();

} //properP6

/* **************** partialP6 **************** */

/* Connects this boundary to joint. */
/* Includes partial2 and i by calling */
/* partialConnect. */

void boundary::partialP6(int jointNo, chain* chain1, int i, boundary* partial2,
chain* chain2)

{
element *elem, *other, *e1;
chain *ch_ptr;

if (_joint == NULL) /* Partial is properP3, has only end1 */

{
/* jointNo will be di�erent than end1 >number() */
_joint = new element(jointNo, EMPTY, FALSE, _end1, NULL);
_end1 >right(_joint);

157



if (chain1 != NULL)
insertChain(_joint, _end1, _end1, _joint, chain1);

ch_ptr = _end1 >getChain();
partial2 >partialConnect(_joint, NULL, _end1, NULL,

chain2, ch_ptr, i, &_end2, &e1);
}
else /* Partial has complete boundary */
{

if (_end1 >status() == EMPTY)
{

if (jointNo != _joint >number())
{

elem = new element(jointNo, EMPTY, FALSE, _joint, _joint >right());
_joint >right(elem);
elem >right() >changeElements(_joint, elem);
if (chain1 != NULL)

insertChain(elem, _joint, _joint, elem, chain1);
_joint = elem;

}
ch_ptr = _begFull > getChain();
other = _begFull >getNextEl(_endEmpty);

partial2 >partialConnect(_joint, _joint >right(), _begFull, other,
chain2, ch_ptr, i, &_end2, &e1);

}

else if (_end2 >status() == EMPTY)
{

if (jointNo != _joint >number())
{

elem = new element(jointNo, EMPTY, FALSE, _joint >left(), _joint);
_joint >left(elem);
elem >left() >changeElements(_joint, elem);

if (chain1 != NULL)
insertChain(elem, _joint, _joint, elem, chain1);

_joint = elem;
}

ch_ptr = _endFull > getChain();
other = _endFull >getNextEl(_begEmpty);

partial2 >partialConnect(_joint, _joint >left(), _endFull, other,
chain2, ch_ptr, i, &_end1, &e1);

}
else cerr << "ERROR in boundary::partialP6: no endmost were empty!"

<< endl;

}

} //partialP6

/* **************** Q1 **************** */

/* If ROOT(T,S), builds chain of component of degree two, */
/* else in case it becomes part of the boundary of the new component */

void boundary::Q1(int i, chain **ch_ptr)
{

chain *chain1 = NULL;
chain *chain2 = NULL;
element* elem, *oldEl, *nextEl;

chain1 = _end1 >getChain();
chain2 = _end2 >getChain();

if (*ch_ptr == NULL)
{

*ch_ptr = new chain();
(*ch_ptr) >insert(_joint >number());

158



}
/* _joint is the top element of the chain */
if ((chain1 != NULL && chain2 != NULL) || chain1 == NULL)
{

/* Either both endmost has chain, or end1 don't */
/* Uses left side of boundary from joint to end1 */
if (_joint >left() != _end1)
{

elem = _joint >left();
oldEl = _joint;
while (elem != _end1)
{

(*ch_ptr) >insert(elem >number());
nextEl = elem >getNextEl(oldEl);
oldEl = elem;
elem = nextEl;

}
}
/* _end1 is next element to enter chain */
if (chain1 != NULL)

(*ch_ptr) >addChain(chain1);
else

{
(*ch_ptr) >insert(_end1 >number());
(*ch_ptr) >insert(i);

}

}
else

{
/* end1 has chain, end2 don't */
/* Uses right side of boundary form joint to end2 */

if (_joint >right() != _end2)
{

elem = _joint >right();
oldEl = _joint;

while (elem != _end2)
{

(*ch_ptr) >insert(elem >number());
nextEl = elem >getNextEl(oldEl);
oldEl = elem;

elem = nextEl;
}

}
/* _end2 is next element to enter chain */
if (chain2 != NULL)

(*ch_ptr) >addChain(chain2);
else

{
(*ch_ptr) >insert(_end2 >number());
(*ch_ptr) >insert(i);

}

if (_fullChains) _fullChains >cleanupStack();
}

} //Q1

/* ******************** rootQ2 ******************** */
/* RootQ2 must have at least two pertinent children,*/

/* and a full end. If it has a partial child, */
/* it must be interior. Partial boundary and i are */

/* included by calling partialConnect. */

159



void boundary::rootQ2(boundary* bound, chain* partialChain, int i)
{

element *other, *e1, *e2, *elem;
chain *ch_ptr = NULL;

setFull();
if (bound != NULL)
{ /* All FULL elements will be idle after this, so full end must get new endmost */

if (_end1 >status() == EMPTY && _end2 >status() == FULL)
{ /* end1 empty end, begFull == PARTIAL, end2 == endFull */

other = _endFull >getNextEl(_begEmpty);
ch_ptr = _endFull >getChain();
bound >partialConnect(_endEmpty, _begFull, _endFull, other,

partialChain, ch_ptr, i, &e1, &_end2);
}
else if (_end1 >status() == PARTIAL && _end2 >status() == FULL)
{ /* end1 == begFull & PARTIAL, end2 == endFull */

other = _endFull >getNextEl(_begEmpty);
ch_ptr = _endFull >getChain();
bound >partialConnect(_endEmpty, _begFull, _endFull, other,

partialChain, ch_ptr, i, &_end1, &_end2);

}
else if (_end2 >status() == EMPTY && _end1 >status() == FULL)
{ /* end2 empty end, endFull == PARTIAL, end1 == begFull */

other = _begFull >getNextEl(_endEmpty);
ch_ptr = _begFull >getChain();
bound >partialConnect(_begEmpty, _endFull, _begFull, other,

partialChain, ch_ptr, i, &e2, &_end1);

}
else if (_end2 >status() == PARTIAL && _end1 >status() == FULL)
{ /* end2 == endFull & PARTIAL, end1 == begFull */

other = _begFull >getNextEl(_endEmpty);
ch_ptr = _begFull >getChain();
bound >partialConnect(_begEmpty, _endFull, _begFull, other,

partialChain, ch_ptr, i, &_end2, &_end1);

}
else cerr << "ERROR in boundary::rootQ2: Q node did not have full and "

<< "empty end!" << endl;
}
else /* No partial child */
{ /* Include i in boundary, and clean up. */

if (_end1 >status() == FULL)
_end1 = new element(i, EMPTY, TRUE, _endFull, _begFull);

else /* end2 has status FULL */
_end2 = new element(i, EMPTY, TRUE, _endFull, _begFull);

/* The new endmost will be linked to endFull and begFull. */
/* Any element thus removed from the boundary, must be deleted. */
other = _begFull >getNextEl(_endEmpty);
removeElements(_begFull, other, _endFull);
ch_ptr = _begFull >getChain();
if (ch_ptr != NULL)

insertChain(_begFull, other, elem, _begFull, ch_ptr);
else

_begFull >changeElements(other, elem);
other = _endFull >getNextEl(_begEmpty);
ch_ptr = _endFull >getChain();
if (ch_ptr != NULL)

insertChain(_endFull, other, elem, _endFull, ch_ptr);

else

_endFull >changeElements(other, elem);

160



}
if (_fullChains) _fullChains >cleanupStack();

} //rootQ2

/* **************** nonRootQ2 **************** */

void boundary::nonRootQ2(boundary* bound, chain* partialChain)
{

element *other, *e1, *e2;

setFull();
if (bound != NULL)
{

if (_end1 >status() == EMPTY && _end2 >status() == PARTIAL)
{ /* end1 empty end, end2 full end & PARTIAL (only pertinent element) */

bound >partialConnect(_endEmpty, _begFull, _joint, _joint >right(),
partialChain, &e1, &_end2);

}
else if (_end1 >status() == EMPTY && _end2 >status() == FULL)
{ /* end1 empty end, begFull == PARTIAL, end2 full end */

other = _begFull >getNextEl(_endEmpty);

bound >partialConnect(_endEmpty, _begFull, other, _begFull,
partialChain, &e1, &e2);

}

else if (_end1 >status() == PARTIAL && _end2 >status() == FULL)
{ /* end1 == begFull (empty end), end2 full end */

other = _begFull >getNextEl(_endEmpty);
bound >partialConnect(_endEmpty, _begFull, other, _begFull,

partialChain, &_end1, &e2);
}
else if (_end2 >status() == EMPTY && _end1 >status() == PARTIAL)

{ /* end2 empty end, end1 full end & PARTIAL (only pertinent element) */
bound >partialConnect(_begEmpty, _endFull, _joint, _joint >left(),

partialChain, &e2, &_end1);
}

else if (_end2 >status() == EMPTY && _end1 >status() == FULL)
{ /* end2 empty end, end1 full end */

other = _endFull >getNextEl(_begEmpty);
bound >partialConnect(_begEmpty, _endFull, other, _endFull,

partialChain, &e2, &e1);

}
else if (_end2 >status() == PARTIAL && _end1 >status() == FULL)

{ /* end2 == endFull (empty end), end1 full end */
other = _endFull >getNextEl(_begEmpty);
bound >partialConnect(_begEmpty, _endFull, other, _endFull,

partialChain, &_end2, &e1);
}
else cerr << "ERROR in boundary::nonRootQ2: "

<< "no legal status for endmosts!" << endl;

setFull();
}

if (_fullChains) _fullChains >cleanupStack();
} //nonRootQ2

/* **************** rootQ3 **************** */

void boundary::rootQ3(boundary* bound1, boundary* bound2, chain* chain1,

chain* chain2, int i, int numberOfPartials)
{

int number1 = 0, number2 = 0;
element *elem, *other, *e1, *e2;

161



chain *ch_ptr;

setFull();
/* _begFull and _endFull will always be di�erent, since if there

was only one pertinent child, that child would be pertient root! */

if (numberOfPartials == 0)
{ /* bound1,bound2,chain1,chain2 == NULL */

/* insert i between begFull and endFull */
elem = new element(i, EMPTY, TRUE, _begFull, _endFull);
ch_ptr = _begFull >getChain();
other = _begFull >getNextEl(_endEmpty);
if (ch_ptr != NULL)

insertChain(_begFull, other, elem, _begFull, ch_ptr);
else

_begFull >changeElements(other, elem);
ch_ptr = _endFull >getChain();
other = _endFull >getNextEl(_begEmpty);
if (ch_ptr != NULL)

insertChain(_endFull, other, elem, _endFull, ch_ptr);
else

_endFull >changeElements(other, elem);
}
else if (numberOfPartials == 1)

{ /* Only one of bound1 and bound2 is != NULL */
if (bound1 != NULL)

{
if (_begFull >status() == PARTIAL)

{ /* begFull is empty end, endFull is full end */
ch_ptr = _endFull >getChain();
other = _endFull >getNextEl(_begEmpty);

bound1 >partialConnect(_endEmpty, _begFull, _endFull, other,
chain1, ch_ptr, i, &e1, &e2);

if (_end1 == _begFull) _end1 = e1; /* empty end */
if (_end2 == _endFull) _end2 = e2; /* full end */

}
else if (_endFull >status() == PARTIAL)

{ /* endFull is empty end, begFull is full end */
ch_ptr = _begFull >getChain();
other = _begFull >getNextEl(_endEmpty);

bound1 >partialConnect(_begEmpty, _endFull, _begFull, other,
chain1, ch_ptr, i, &e1, &e2);

if (_end2 == _endFull) _end2 = e1; /* empty end */
if (_end1 == _begFull) _end1 = e2; /* full end */

}
else cerr << "ERROR in boundary::rootQ3: the partial element were "

<< "not found!" << endl;

}
else if (bound2 != NULL)

{
if (_begFull >status() == PARTIAL)
{ /* begFull is empty end, endFull is full end */

ch_ptr = _endFull >getChain();
other = _endFull >getNextEl(_begEmpty);
bound2 >partialConnect(_endEmpty, _begFull, _endFull, other,

chain2, ch_ptr, i, &e1, &e2);
if (_end1 == _begFull) _end1 = e1; /* empty end */
if (_end2 == _endFull) _end2 = e2; /* full end */

}
else if (_endFull >status() == PARTIAL)
{ /* endFull is empty end, begFull is full end */

ch_ptr = _begFull >getChain();

162



other = _begFull >getNextEl(_endEmpty);
bound2 >partialConnect(_begEmpty, _endFull, _begFull, other,

chain2, ch_ptr, i, &e1, &e2);
if (_end2 == _endFull) _end2 = e1; /* empty end */
if (_end1 == _begFull) _end1 = e2; /* full end */

}
else cerr << "ERROR in boundary::rootQ3: the partial element were "

<< "not found!" << endl;
}
else cerr << "ERROR in boundary::rootQ3: no partial child when "

<< "numberOfPartials == 1!" << endl;
}
else if (numberOfPartials == 2)
{ /* both begFull and endFull is partial */

/* doubleConnect will do the job, but must prepare the attributes */

/* Find connection point of bound1 */
if (chain1 != NULL) number1 = chain1 >�rst();
else if (bound1 >joint() != NULL)

number1 = bound1 >joint() >number();
else number1 = bound1 >vertexNumber();

/* Find connection point of bound2 */
if (chain2 != NULL) number2 = chain2 >�rst();
else if (bound2 >joint() != NULL)

number2 = bound2 >joint() >number();
else number2 = bound2 >vertexNumber();

if (_begFull >number() == number1 && _endFull >number() == number2)
doubleConnect(bound1, bound2, chain1, chain2, i);

else if (_begFull >number() == number2 && _endFull >number() == number1)
doubleConnect(bound2, bound1, chain2, chain1, i);

else cerr << "ERROR in boundary::rootQ3: two partial were not at "

<< "ends of full sequence!" << endl;

}
else cerr << "ERROR in boundary::rootQ3: numberOfPartials had illegal "

<< "value!" << endl;

if (_fullChains) _fullChains >cleanupStack();
} //rootQ3

/* **************** print **************** */

char* boundary::print()
{

ostrstream txt;
char out[INFOSIZE];
element *elem, *nextEl, *oldEl;

txt << ", Vertex " << _vertexNumber;
if (_joint != NULL)
{

txt << " Bound: " << _joint >number() << "(j)";
if (_joint == _end1) txt << "(l)";

if (_joint >status() == FULL) txt << "(F)";
else if (_joint >status() == PARTIAL) txt << "(P)";

else if (_joint >status() == PERTINENT) txt << "(Pe)";
else if (_joint >status() == EMPTY) txt << "(E)";
else if (_joint >status() == TO_BE_DELETED) txt << "(D)";
else cout << "Unknown status in element: " << _joint >status()

163



<< endl;

if (_joint >child()) txt << "(T)";
else txt << "(F)";

if (_joint >chainQ()) txt << "(ch)";

oldEl = _joint;
elem = _joint >left();
while (elem != _joint)
{

if (elem == NULL)
{

cerr << " ERROR in aboundary::print: elem == NULL" << endl;
elem = _joint;

}
else

{
txt << " " << elem >number();
if (elem == _end1) txt << "(l)";
else if (elem == _end2) txt << "(r)";

if (elem >status() == FULL) txt << "(F)";
else if (elem >status() == PERTINENT) txt << "(Pe)";

else if (elem >status() == PARTIAL) txt << "(P)";
else if (elem >status() == EMPTY) txt << "(E)";

else if (elem >status() == TO_BE_DELETED) txt << "(D)";
else cout << "Unknown status in element: "

<< elem >status()<< endl;

if (elem >child()) txt << "(T)";

else txt << "(F)";

if (elem >chainQ()) txt << "(ch)";

nextEl = elem >getNextEl(oldEl);
oldEl = elem;

elem = nextEl;
}

}
}
else if (_end1 != NULL)

{
txt << " Bound: " << _end1 >number() << "(l)";

if (_end1 >status() == FULL) txt << "(F)";
else if (_end1 >status() == PARTIAL) txt << "(P)";

else if (_end1 >status() == PERTINENT) txt << "(Pe)";
else if (_end1 >status() == EMPTY) txt << "(E)";

else if (_end1 >status() == TO_BE_DELETED) txt << "(D)";
else cout << "Unknown status in element: " << _end1 >status()

<< endl;

if (_end1 >child()) txt << "(T)";
else txt << "(F)";

if (_end1 >chainQ()) txt << "(ch)";
}

txt << " fChs: " << fullChains() << ends;
strcpy(out, txt.str());
strstreambuf * buf_ptr = txt.rdbuf();
buf_ptr >freeze(0);

164



return out;
}

A.3.4 element
Class element is used by Boundary to build the doubly linked list of boundary elements.

/**********************************************************************
File: element.h

Author: Gørril Vollen
Last update: 20/02/1998

***********************************************************************/
#ifndef ELEMENT_H
#de�ne ELEMENT_H
#include "def.inc"

#include "node.inc"

//#de�ne DEBUG

class chain;

class element

{
private:

int _number;

int _status; /* EMPTY, FULL or PARTIAL */
int _child; /* TRUE if element has child, else FALSE */

element* _left;
element* _right;

chain* _chain;

public:

element() {}
element(int number)

{
_number = number;

_status = EMPTY; _child = FALSE;
_left = NULL;
_right = NULL;

_chain = NULL;
}
element(int number, int status, int child)
{

_number = number;
_status = status;

_child = child;
_left = NULL;
_right = NULL;
_chain = NULL;

}

element(int number, int status, int child, element* left, element* right)
{

_number = number;
_status = status;
_child = child;
_left = left;
_right = right;
_chain = NULL;

}

�element();

165



int number() const

{
return _number;

}
int status() const

{
return _status;

}
void status(int i)
{

_status = i;
}
int child() const

{
return _child;

}
void child(int b)
{

_child = b;
}

element* right()
{

return _right;

}
void right(element* elem)

{
_right = elem;

}
element* left()
{

return _left;
}

void left(element* elem)
{

_left = elem;
}

void reset(int stat, int child, chain* ch_ptr, int del);

int chainQ() /* Brukes av print i internal.h */
{

if (_chain == NULL) return FALSE;
else return TRUE;

}

void setChain(chain* ch_ptr)

{
if (ch_ptr != NULL) _chain = ch_ptr;

}

chain* getChain()
{

chain* ptr;
ptr = _chain;
_chain = NULL;

return ptr;
}

element* getNextEl(element* other)
{

if (_left != other)

166



return _left;
else

return _right;
}

int setNextEl(element* elem)
{

if (_left == NULL){
_left = elem;
return TRUE;

}
else if (_right == NULL){

_right = elem;
return TRUE;

}
else return FALSE;

}

int changeElements(element* oldEl, element* newEl)
{

if (oldEl == _left)

{
_left = newEl;
return TRUE;

}
else if (_right == oldEl)

{
_right = newEl;

return TRUE;
}
else

{
cout << "ERROR: element::changeElements: old element not found!"

<< " (number = " << oldEl >number() << ")" << endl;
return FALSE;

}
}

};

#endif

/**********************************************************************
File: element.cc

Author: Gørril Vollen

Last update: 20/02/1998
***********************************************************************/
#include "chain.h"

#include "element.h"

element::�element()
{

if (_chain != NULL) delete _chain;
}

void element::reset(int stat, int child, chain* ch_ptr, int del)
{

_status = stat;
_child = child;

if (del && _chain != NULL)
{

167



delete _chain;
_chain = NULL;

}
if (ch_ptr != NULL) _chain = ch_ptr;

}

168


