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Abstract—Theory for random arrays predicts a mean sidelobe level given distributed and unaffected by the element distribution. The peak

by the inverse of the number of elements. In practice, however, the sidelobe gjde|obe may be as high as 10 dB above the average sidelobe
level fluctuates much around this mean. In this paper two optimization level

methods for thinned arrays are given: one is for optimizing the weights of
each element, and the other one optimizes both the layout and the weights. ~ As an example a sparse random array with 256 elements will
The_ W_elght optlmlzatl'on algorithm is ba;ed on Ilnear_ programming an(_j have an average sidelobe leveldi4 dB and peak sidelobes up
minimizes the peak sidelobe level for a given beamwidth. It is used to in- . . .
vestigate the conditions for finding thinned arrays with peak sidelobe level to _M dB. This ShO_UId b_e compared tothe re_qu”ement of hlgh-
at or below the inverse of the number of elements. With optimization of the quality ultrasound imaging where a peak sidelobe level better
weights of a randomly thinned array, it is possible to come quite close and than —30 dB (one-way beampattern) is usually desirable. In
even below this value, especially for 1D arrays. Even for 2D sparse arrays the far-field CW case. the two-way beampattern is obtained by
a large reduction in peak sidelobe level is achieved. Even better solutions o ' . .
are found when the thinning pattern is optimized also. This requires an al- Multiplying the transmit and receive beampatterns. This is also
gorithm that uses mixed integer linear programming. In this case solutions the case at the focal point for a focused array, and to a first order
with lower peak sidelobe level than the inverse number of elements can be approximation it is also valid for the pulsed case [3] Thus a

found both in the 1D and the 2D cases. . . .
two-way sidelobe level of-60 dB is desirable.

I. INTRODUCTION A. Sparse Array Optimization

The 3D ultrasound imaging is one of the main innovations Several different approaches to overcome the high sidelobe
in medical ultrasound in this decade. It has applications in #vel of random arrays have been proposed. They can be dis-
clinical areas where ultrasound is applied. To take the field tfiguished by whether the element distributions are random or
cardiology as an example, the advantages are improved surg@irdom-like, or periodic, butitis even more useful to distinguish
cal planning due to better diagnosis of complex anatomy liks whether the receiver and transmit element configurations are
valves and septal defects, unrestricted “any-plane” 2D image same or different.
ing, and improved volume quantification [1]. In most of the There is a long history in the radar literature for analysis of
demonstrated 3D systems, the data acquisition has been bagseghpatterns for sparse arrays when the receiver and transmit-
on mechanical scanning in at least one of the dimensions. Qe elements are the same. In the far-field CW case, this is
of the main problems of 3D ultrasound is the limited frame ratgyuivalent to analysis of the one-way beampattern. In ultra-
achievable due to the slow data acquisition, but 2D arrays wibund imaging, this was the approach used in [7] where it was
electronic scanning in both dimensions have the greatest potgartially confirmed that Steinberg’s results for average one-way
tial for acceptable frame rates. This is due to the greater begdlelobe levels can be squared to estimate the levels for the two-
agility and the possibility for parallel beams [2], [3]. way beampattern for pulsed 2-D arrays. In [8] an optimization

The topic of this paper is the study of the beam pattern of 263 element placement was reported. The optimization criterion
arrays. The 2D arrays in ultrasound represent a technologigals to find the best approximation to the full array’s two-way
challenge not the least because of the high channel count [28}v beampattern. The solution was an optimal thinning pattern
For this reason sparse 2D arrays, where elements are remaviidlrandom-like appearance.
by thinning, are considered to be necessary [5]. Steinberg [6\When one allows the transmit and receive thinning patterns
has given a comprehensive theory for the unweighted randordybe different, there is some more freedom. Davidseal.
thinned array. The main results for the far-field continuous wagg did a search for the random-like thinning patterns that op-
(CW) beampattern are: timized the beam profile in the focal range of interest by min-

« The probability distribution of the elements’ position deterimizing the peak sidelobe level and the beamwidth. Instead of
mines the main lobe’s shape and the nearby sidelobes in exaatlsearch or optimization, it has been proposed to use periodic
the same way as they are determined by the weighting in a fillinning patterns on both receive and transmit. The desired two-
array. way beampattern is obtained by letting the transmit zeros cancel
« The sidelobe level can be described in a statistical sense #rareceive grating lobes and vice versa, based on the first order
away from the main lobe, the ratio of the mean sidelobe powagsproximation to the far-field CW case. This principle has pre-
to the main lobe peak power ig K where K is the number of viously been proposed for design of 1D array systems and was
remaining elements. This result is independent of the statistieplplied to 2D arrays in [3]. The method has been further devel-
distribution of the elements. oped by Lockwooekt al. [10], [11] and good results from imag-

« The sidelobe amplitude away from the main lobe is Rayleighg of a phantom using a 1D array have been presented. For the
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pulsed case and away from the focal point, this approach g8:/eThe Beam Pattern of a Planar Array

even better results than a random sparse array. Others [12] hfi\zﬁ_le far-field continuous wave (CW) beampattern of an array

reported that in 2D array simulations the random-like and peri- L .
o . with an even numbet, = 2N, of omnidirectional elements is
odic thinning approaches have given comparable performancge“./en as [20]:

Although much interest has been generated by the periodic . IN -
thinning approach, it is believed that there is still more potential W(k) = wyel™ ™ 1)
for performance improvements by optimizing random-like ele- n=1

ment distributions. This work is an attempt to find the properti€gnere the array element locations ate € R? with the corre-

of the random-like thinning patterns. It is based on Optimiz%’ponding weightss,, € R. The wavenumber vectdre R3 has
tion of the one-way response by either changing the elem I '

o o Gc'\irﬂrt1plitude|13| = 27/ where\ is the wavelength.
apodization or the element positions or both. L . .
Let the unit direction vector besgy = (sin¢cosb,

There have been previous attempts to apodize sparse arrdys? sinf, cos ¢) in rectangular coordinates (Fig. 1). Then the
This has been reported to have no effect, but this was becayg¥enumber vector is = 275, 9/ .
regular apodization functions were sampled [7]. In [13] we The elements of a 2D planar array are located ixijiplane
showed that it is possible to find apodization functions or elavith elementr at,, = (x,,yn,0). Thus the beampattern is:
ment weights for a given thinning pattern that give the beampat-
tern optimal properties. An important point is that these func- 2N, _
tions r?ave Iit'ﬁe gr no resemblapnce Witﬁ the corresponding full W ke, ky) = Z wpel ke mnthyun) 2)
array’s apodization function. A limitation of this work was that n=1

is was not possible to optimize the full angular extent of the . o
: : . The beampattern has the following properties:
sidelobe region for a sparse array. This was due to the algo-

rithm used (Remez exchange algorithm). In [14] this approathFor real weights, the beampattern is conjugate symmetric, i.e.

was extended from 1D to 2D arrays, and improved results wetelkes ky) = W= (=ks, —ky).

reported. By using the linear programming algorithm for opte: SYMmMetric arrays with symmetric weights give a real beam-
mization, it was possible to optimize the whole sidelobe regioRattem-

Due to the properties of 2D array elements (high impedance When the two properties are combined, the beampattern for
low sensitivity) it is undesirable to apodize the elements of a 280 array with an even number of elements is real and equal to:
transducer array. The goal of this work is, therefore, not pri-

marily to propose practical weighting functions, but rather th o 2 -

optimization methods are used to find properties of the beaﬁq‘-/(d)’ 0) = 2) wpcos <_5¢>9 x") (3)
pattern of such arrays. Of special interest is to determine the
minimum peak sidelobe level and compare it with the predic-
tions from random theory. Finally a method is also described
for optimizing the element positions of a randome-like sparse ar-

ray. This optimization gives results that are more directly usefighich gives the array response to a monochromatic wave from

in an array design. Other related work on joint optimization Qfirection(¢, §). A similar expression for an odd number of ele-
thinning pattern and weights has been reported in the contexi@énts can easily be found.

sonar arrays in [15] and [16]. Like all of the previously cited Using matrix notation one gets

papers our approach is based on allowing elements only on a

fixed underlying grid of positions as opposed to what was done W(¢,0) = v(¢,0)w (4)
in [17]. ’ ’

n=1

N
2
= 2 Z Wy, COS (% sin ¢(x,, cos 6 + y, sin 0))
n=1

IMvherew =[wy - wN]T are the element weights and the ker-

The optimization criterion used is also very important. .
é\&l row vector is given as:

many cases a minimization of the maximum sidelobe is us
This is a criterion which is related to imaging of a strong re-

. . . . - 21 R 21 R
flecting point target in a nonreflecting background containingv(¢, 0) = |2 cos(—Sy,0 - Z1) , -+, 2¢08(—=—5p,0 - Tn)
other point targets. An alternative criterion is to minimize the A A
integrated sidelobe energy. In an imaging system, this is related
to imaging of a nonreflecting area like a cyst or a ventricle in
a background of reflecting tissue. Some results on weight op-
timization for 1D arrays using this criterion and the quadratic Two optimization problems will be formulated as linear pro-
optimization algorithm of [18] have been reported in [19]. Botlgramming problems. The first is a minimization of the maxi-
of the optimization criteria are relevant to clinical ultrasounthum sidelobe level by varying element weights. The second
imaging. In this paper we find the properties of arrays basptbblem gives rise to a mixed integer linear programming prob-
on minimization of the peak sidelobe, because this has beenldra which is considerably harder to solve. It is a minimiza-
most common criterion until now, and it is straightforward tdion of the number of active elements and an optimization of the
formulate optimization algorithms for it. weights in order to achieve a specific maximum sidelobe level.

()

II. OPTIMIZATION OF BEAMPATTERN
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A. Optimization of Element Weights A very fast and reliable LP solver, CPLEX [23], was used.

The objective is to minimize the sidelobe level in a continuodlgn'is_iS an optimization Iibrar_y for solving finear programming
regionR of the ¢6-plane (Fig. 2), which is the equivalent of gand integer linear programming proplems. The pmb'e”? (8) may
filter’'s stopband. Since the beampattern is symmetric about H'FeSOIVed for problems corresponding to 2D arrays with thoq-
g-axis; W (—o, §) = W (¢, ), only the right halfplane is neces-Sands of elements where several hundreds of them are active.

sary for the optimization. The passband in this case is minimafus: the main work of the_ |mplem_entat|on Is to genera_te the
in the sense that it consists only of thexis. correct entries in the coefficient matrix and vectors. The simplex

The element weight optimization problem is to minimize th@!gorithm (a part of CPLEX) was used for solving the problem.
beampattern in the stopband by varying the element weight Vér&_ordder o speedhup |t(;]e ?Igorﬁhrg (r?Uth by affactor of 3'_'t
tor subject to the constraint of having a normalized mainlob&/Me out) one should solve the dual problem of (8) or, equiv-

This problem may be formulated and solved as a linear prograﬂlﬁnﬂy’ use the_dual simplex algorithm. Briefly, the dl_Jal prob-
ming problem as discussed next lem is an associated LP problem where the role of variables and

A linear programming (LP) problem is the minimization ofonstraints are interchanged in a certain sense (for a more accu-
a linear objective function subject to a (finite) set of linear infate dezfrlptlon,hsee [21], [22]). The mz;m gomlt IS tk?lat’ V\r']h'le
equalities and linear equations [21], [22]. In matrix form an th-'he problem (8) hagM + 1 constraints, the dual problem has

problem may be written as only N constraints (recall thad/ is considerably larger than
N). Now, it is the general experience (also confirmed in theory)
minimize c¢’'x 6 that the main contribution to computational time of the simplex
subjectto Ax<Db (6) algorithm is caused by the number of constraints; the number

of variables are not that important. Thus, one can solve the dual

wherex is a vector ofn variables, and the data is given by th%roblem a lot faster than (8), and the optimal solution of (8) may
m x n-matrix A and the vectors andb. Today large-scale LP 5i54 pe found directly out of this.

problems can be solved efficiently on standard computers with ) . o )

good algorithms and implementations. The routines in the Optimization toolbox in MATLAB [18]
The stopband regioR is discretized into a set i/ grid- Were also used to solve the weight optimization problem and

POINESR — { (&, Bn) : m — 1,..., M}. Introduce thelf x N Worked well for 1D arrays, except that for larger problems

matrix VV with the mth row being theV-dimensional row vector CPLEX was considerable faster, as expected.

V(¢m, 0:nm) given in (5), orv,, for short. For a given element It should be mentioned that more specialized algorithms for
weight vectoiw the maximum sidelobe levél; on the discrete solving the element weight optimization problem may be de-

setR is defined as: veloped. Itis, for instance, straightforward to change the norm
S (W) = max{ VW] : 1 < m < M} = from the min-max t_o the sum of absolut_e values. This may be

N (7) used for minimization of the average sidelobe level. Another

max{| >, _; Umntwn| : 1 <m < M}. natural extension is to assign different sidelobe requirements to

different angles. One could for instance take element directivity
subject tav,,w| < & for 1 < m < M, and a normalization cor- into accognt by a_llowmg the angles far away from the m_alnlobe
to have higher sidelobes than the smaller angles. This can be

responding to a unit response for zero azimuth angle, = 1, . _ AT
wherevy — [1,..., 1]. This is a nonlinear optimization prob-_aCh'eved by using an angle-dependent error weighting in (8). It

lem, but a standard reformulation [22], may be used to turnist also possible to develop more efficient algorithms by elim-
into,an LP problem. Consider the LP pr,oblem' inating some of the variables. It should be pointed out, how-

ever, that for the problems in this study the algorithms described

Thus the element weight optimization problem is to minimize

minimize ) above were all suitable.

subject to

(i VoW = 1; (8)

(i) VW < g form < M, B. Optimization of Element Layout and Weights
(iii) VW <§ form < M.

The simultaneous weighting and thinning problem is a natu-

The variables are ando. This problem is of the form (6) with ral extension of the element weighting problem in the previous

— [ W S ]T oo [ 0 1 ]T section. Since the objective is to minimize the number of array
n ' n ’ elements, a binary variable, € {0,1} is introduced for each
Vo 0 1 element. The purpose is to lef = 1 indicate that the element
A— —Vo 0 , b= -1 is present, and,, = 0 indicates that the element is removed by
Vo -1 0 thinning.
-V -1 0

Note that the objective is now to minimize the number of ar-
where0Q is a vector of all ones. ray elements, rather than minimizing the sidelobe léveThe
In an optimal solution of (8) the variabl& equals the mini- sidelobe level is consequently a fixed paraméter this prob-
mum value ofd,; (w) in (7). This problem is, therefore, a min-lem as in [15]. Thus one considers the element weighting and
max problem. Thus the element weight optimization problethinning optimization problem: minimize the number of array
may be solved as the LP problem (8). elements subject to constraints assuring a normalized mainlobe
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and fixed sidelobe level. Consider the following problem [1l. EXAMPLES
minimize > T A. 1D Sparse Array
S_UbJeCt to A 3.5 MHz array with half wavelength spacing, 64 elements
0) VoW = 1; and Gaussian thinning to 48 elements was optimized. An exam-
ii N < 51 (9) ple of the beam patterns before and after optimization are shown
(i) v | WS 01; PIe
- in Fig. 3.
(iii) MNTp < wp < Yoin forn < N; Several such optimizations were performed for various
(iv) zn € {0,1} forn < N. beamwidths and thinning patterns. For each thinning pattern,

the start angl®; (the boundary between the mainlobe and side-
obe regions) was varied and an optimization was performed.
he resulting peak sidelobe ard dB beamwidth is plotted in
Fig. 4. Each curve is the result of between 5 and 18 such opti-
mizations. Fig. 4 shows two dash-dot lines which are the results
optimizing the weights to give uniform sidelobe levels for
the full arrays. The left-hand one is the performance for a full
64-element array, and the right-hand one for a full 48-element
maximum allowed dynamic range of the apodization hardward &- Only thinned arrays with performance. better than the 48-
The problem (9) is a mixed integer linear programming protg_lement curve are of interest. All the remaining curves are for
64-element array thinned to 48 elements. The upper solid line

lem, i.e., a linear programming problem where some or all vafl; A
ables are required to be integral. This particular problem m ows performance for the worst symmetric thinning that could
found, giving a minimum sidelobe level of about3 dB.

be written in matrix form similarly to what was shown in th wo dashed Ii ¢ lizati f random G .
previous section. In general, mixed integer LP problems :L € Wo dashed ines are two reafizations of random aussian
inning. Both of them start leveling off at17 to —18 dB side-

computationally very difficult optimization problems. Even thii S A )
particular problem is difficult, i.e., to find an optimal solutio obe level. This is in the vicinity of the mean sidelobe level

seems hard also for moderately-sized problems. This is maiH&diCtEd for a random array given as the inverse of the number
due to the complex structure of the matkixwhich comes in ofelements which is-16.8 dB. However, with the optimization

combination with the integrality constraints on the layout varHse_OI here this value is ach!eved as a peak value instead. )
Finally the two lower solid curves are the results from opti-

ablesz,,. In practice it turns out that it is only realistic to solve . . : L
problems of size corresponding to 1D arrays so far. At preséﬂ'lz'ng the weights for two near-optimal thinning patterns. They

only simplified heuristic methods may be used to solve for tEere obtained with the combined weight and layout optimiza-

larger problems [8], [16]. One important use of the mixed intéi-or:1 algolrithm_ Withh _sidelobe targets ?18 agdb—lli).S d.B' Trle |
ger linear programming algorithm is that it may be used to corfther values in t_ EIr curves were o taine Yy Keeping the lay-
pare the quality of different simplified heuristic methods for th@Ut and then_optlmlzm_g the v_velghts_only for d|f_'fer_ent values of
same problem. start-angles in the optimization. With such thinnings the peak

Small-scale problems may be solved by the branch and boﬂﬂ]ek)be level can be improved down to the ranrgd to —20
method in CPLEX [23]. This is a general method for solvinaB' . )
mixed integer linear programming problems in which the feasi- All the thinning patterns are shown in Table I. Examples of
ble region is gradually divided into finer subregions for whict{!® Weights required are shown in Fig. 5. They are quite differ-

a linear programming problem is solved. To (hopefully) contr&int from the much smoother weight functions that are obtained
the combinatorial explosion of these subdivisions, one cuts &ff full arrays (see the Dolph-Chebyshev weights of Figs. 46-49

in subdivisions that cannot lead to a further improvement of 1k [24])-
current best solution. B
For larger problems CPLEX will run “forever,” but even early™*
in this process it may find good solutions satisfying (9), that A 2D array for 3.5 MHz with 12 by 12 elements with half
may be of interest. The problem, however, is to prove that thesavelength spacing in both dimensions was then considered.
solutions are the optimal ones. The array is inscribed in a circle giving 112 elements. Random
The standard algorithms in CPLEX were used for solving thkinning to 64 elements (57%) and optimization of the weighting
element weighting and thinning optimization problem. Thus gives a beampattern with a sidelobe levelda® to —15 dB. The
main purpose here was to point out the usefulness of formulptocedure for finding the optimal thinning and weighting was
ing this problem as a mixed integer programming problem. Fuhen used with a sidelobe target 6fi9.5 dB. The optimized
ther algorithmic work is required to solve larger problems, or tayout was then input with varying start-angles in the weight
solve variations of this problem. Such variations may be to soleptimization algorithm. The peak sidelobe level can now be re-
for the minimum maximum sidelobe level for a fixed number afuced down to-20 to —22 dB (Fig. 6). Each curve is the result
active elements when the weights and the thinning pattern is ai-between 5 and 8 optimizations with different start values for
lowed to vary, or when only the thinning pattern is varied and thbe azimuth angles. The sidelobe value should be compared to
active elements are unweighted. Some work along these linethis value predicted for mean sidelobe levellgf4 = —18.1
in progress. dB, and shows that there is a potential of getting a peak value

Here the constraints (i) and (i) are as before except dhat
given, while (i) gives a logical link between the layout variabl
x, and the weight variable,,. In order to vary the weight,,
between the two boundg and~, one has to set,, to 1. The
actual values of the parameteysand~, may be set depend-
ing on the specific problem studied. For instance, interesti
choices are; = 0 (nonnegative weightsy;y; = v2 > 0 (sym-
metric bounds), or positive weights witja /~; restricted to the

2D Sparse Arrays
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which is 3 dB lower than that predicted for the mean if optisidelobe regions. This corresponds to an annular regidﬁ in
mized thinning patterns can be found. This is about the largagiace of radiugr /A centered at the origin (Fig. 10). Due to the
array size where optimized element layouts can be found withmpled nature of the aperture, the beampattern will be repeated
reasonable use of computer resources (less than about 4 hfmrrargument oft, andk, larger thar2w/\ when the pitch is
CPU time and some hundreds of Mbytes of RAM). The foux/2.
element layouts are shown in Fig. 7. When steering is applied to the array, the beampattern is
Finally, in order to show the ability of the weight optimizationW (k. — k2, k,, — kg) [20]. The visible region will shift to have
algorithm to deal with large arrays, a 64 by 64 element arrétg center at the steering directi¢h?, &), while the optimized
with half wavelength spacing at 3.5 MHz is considered. Thegion from the array is still centered at the origin. There is,
array is inscribed in a circle giving a total of 3228 elements. Thierefore, no longer full overlap between the optimized region
array is randomly thinned to 404 elements (87.5 % thinninghd the visible region. In order to deal properly with steering,
as shown in Fig. 8 and the response is optimized. The sizeopk must, therefore, optimize a larger region.
the problem is to find 202 weights plus the sidelobe level usingFor a 1D array this is greatly simplified. The only relevant
11520 control points for sidelobe control. The result is showvariable isk., and when there is steering, the argument in the
in Fig. 9. The peak sidelobe is reduced frer9.5 dB to —17.4 beampattern is
dB with only a slightincrease in the beamwidth. The four peaks o i . 0n
before optimization were located at approximatghs 64° and ky —k, =2m/A-(sin¢g —sing”) =2x/A-u  (10)
atf = £26° andf = +62°. Compared to the predicted mearFirst there is always symmetry with respectuto= 0. When,
value of1/404 = —26.1 dB, there is still some way to go beforein addition the element locations are all on a grid with distance
the peak is down to that level. Based on the previous examp,tqg, there will also be symmetry with respect o= 1. In
this is due to the properties of the thinning pattern, which wahis case optimization over the regiore [0, 1] ensures that the
selected at random and could not be optimized due to the Iafgpay can be steered to any azimuth angle [16]. If the pitch is
number of elements. less than\/2, it is simple to find from this argument that the
The optimization has led to an increase in the average frejptimization region must be larger tharc [0, 1].
—28.8 dB to —26.1 dB. This indicates that the sidelobe distri- |t turns out that the achievable minimum sidelobe levels for
bution has become more compact: lower peak value and higherarrays are comparable independent of whether the array is
mean. The increase in the mean seems to be the price to payjimized for steering or not, although the actual element lay-
getting the peak value down at least as long as a large incregs& or weights may be different. The results of this paper
in beamwidth is not allowed. As indicated previously, the LBre therefore representative of those that can be obtained when
algorithm could have been formulated as a minimization of tRgeering is taken into account also.

mean rather than the peak.
V. CONCLUSION

IV. DiscussionN A method based on linear programming for finding the opti-
A. Focusing and Pulsing mum weights for minimum peak sidelobe level and a method

. ) using mixed integer linear programming for finding both the
In the case of focusing, the equations for the beampatter (liahts and the element layout have been presented. They have

- 4), must be expanded with terms that include the focal depffyen, ysed to find properties of sparse arrays with random thin-
The optimization region will no longer only be described by @iy and arrays with optimized thinning. The properties are
region in angles as in Fig. 1, but also a region in depth. Hows 4 by trading off sidelobe level for beamwidth.
ever, near the focus, the farfield assumption is valid. It is OUlTheory for random arrays predicts a mean sidelobe level
experience that, if th_ere are sidelqbe peaks in the farfield befﬂﬂfen by the inverse of the number of elements. In practice how-
pattern, then they will also be evident over a range of deptiize; the sidelobe level fluctuates much around this mean. With
However, the focusing will change the delays or phases appliggimization of the weights, it is possible for the peak value to
to the array elements, and this will influence the_optlmallty Yome quite close and even below the predicted value for the
the solutions presented here. As a parenthesis it may be mefe,, - especially for 1D arrays. Even for 2D sparse arrays a
tioned that it is possible _to obtain optimal solutions at a S'”gllﬁrge reduction in peak sidelobe level is achieved. However,
frequer_lcy by only c_hang|_ng the phases [?5]' _ ~when the thinning pattern is optimized also, solutions which
The issue of pulsing with broad bandwidth pulses is also ifzye Jower peak sidelobe level than the inverse number of el-
portant. In this paper, the assumption is that there is only a Sfments can be found both in the 1D and the 2D cases.
g_le frequency present. In general pulsing will tend to smear outj is also shown that for 2D sparse phased arrays withgrid
sidelobe peaks. To some extent this happens to the sparse aggysing, steering requires a larger region in the wavenumber do-

also, butthe peaks are still there, although smaller, after pulsigyin where sidelobes should be optimized than for an unsteered
array. This is different from a 1D array where steering does not

add any new constraints.

For optimization over the elevation, azimuth space the side-
lobe level over the region defined by all elevation angles and
with the azimuth angle in the randé;, /2] should be min-  We would like to thank the reviewers for important comments
imized, whereg, is the boundary between the mainlobe anthat helped improve this paper.

B. Optimization of Steered Arrays
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Fig. 3. Beampattern before and after optimization for 64-element array ran-
domly thinned to 48 elements. Thinning and weights are shown in the center
panel of Fig. 5.
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Fig. 4. Sidelobe level as a function of beamwidth for uniform sidelobe level 64-

element and 48-element full arrays (dash-dot lines), for two realizations of
Fig. 2. The optimization regioR in the ¢6-plane. random 25% thinning of the 64-element array (dashed lines), and for worst-
case and optimally 25% thinned arrays (solid lines).
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0010100111110111101110111111111Optimized 2, (-19.5 dB) (lower solid curve)
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random 64-element layouts and a 62-element optimized layout. The random
Fig. 5. Weights found after optimization from 2 degrees for three different arrays are sorted according to the peak sidelobe level in Fig. 6 with Random
element layouts. The beampattern of the random layout is shown in the 1 having the highest peak sidelobe level for large beamwidths.
lower panel of Fig. 3.
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Fig. 6. Sidelobe level as a function of beamwidth for several weight-optimized _é _4‘1 _é 6 é 21 é

uniform sidelobe cases: 112-element full array (dash-dot line) and three x [mm]

realizations of random thinning to 64 elements (dashed lines). The best

result is obtained for a layout-optimized 62-element thinning (solid line). Fig. 8. Element layout for 64 by 64 element array first inscribed in a circle (3228
elements) and then randomly thinned by 87.5% (404 active elements).
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Fig. 9. Beampattern for 64 by 64 element array first inscribed in a circle (3228
elements) and then thinned by 87.5% (404 active elements). The unweighted
(top) and the optimally weighted (bottom) responses are shown as a function
of azimuth angle and seen from the side in 3D space, i.e. the peak values
over all elevation angles are shown.
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