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Abstract—Theory for random arrayspredicts a mean sidelobe level given
by the inverse of the number of elements. In practice, however, the sidelobe
level fluctuates much around this mean. In this paper two optimization
methods for thinned arrays are given: one is for optimizing the weights of
each element, and the other one optimizes both the layout and the weights.
The weight optimization algorithm is based on linear programming and
minimizes the peak sidelobe level for a given beamwidth. It is used to in-
vestigate the conditions for finding thinned arrays with peak sidelobe level
at or below the inverse of the number of elements. With optimization of the
weights of a randomly thinned array, it is possible to come quite close and
even below this value, especially for 1D arrays. Even for 2D sparse arrays
a large reduction in peak sidelobe level is achieved. Even better solutions
are found when the thinning pattern is optimized also. This requires an al-
gorithm that uses mixed integer linear programming. In this case solutions
with lower peak sidelobe level than the inverse number of elements can be
found both in the 1D and the 2D cases.

I. I NTRODUCTION

The 3D ultrasound imaging is one of the main innovations
in medical ultrasound in this decade. It has applications in all
clinical areas where ultrasound is applied. To take the field of
cardiology as an example, the advantages are improved surgi-
cal planning due to better diagnosis of complex anatomy like
valves and septal defects, unrestricted “any-plane” 2D imag-
ing, and improved volume quantification [1]. In most of the
demonstrated 3D systems, the data acquisition has been based
on mechanical scanning in at least one of the dimensions. One
of the main problems of 3D ultrasound is the limited frame rate
achievable due to the slow data acquisition, but 2D arrays with
electronic scanning in both dimensions have the greatest poten-
tial for acceptable frame rates. This is due to the greater beam
agility and the possibility for parallel beams [2], [3].

The topic of this paper is the study of the beam pattern of 2D
arrays. The 2D arrays in ultrasound represent a technological
challenge not the least because of the high channel count [4].
For this reason sparse 2D arrays, where elements are removed
by thinning, are considered to be necessary [5]. Steinberg [6]
has given a comprehensive theory for the unweighted randomly
thinned array. The main results for the far-field continuous wave
(CW) beampattern are:
• The probability distribution of the elements’ position deter-
mines the main lobe’s shape and the nearby sidelobes in exactly
the same way as they are determined by the weighting in a full
array.
• The sidelobe level can be described in a statistical sense and
away from the main lobe, the ratio of the mean sidelobe power
to the main lobe peak power is1/K whereK is the number of
remaining elements. This result is independent of the statistical
distribution of the elements.
• The sidelobe amplitude away from the main lobe is Rayleigh

distributed and unaffected by the element distribution. The peak
sidelobe may be as high as 10 dB above the average sidelobe
level.

As an example a sparse random array with 256 elements will
have an average sidelobe level of−24 dB and peak sidelobes up
to−14 dB. This should be compared to the requirement of high-
quality ultrasound imaging where a peak sidelobe level better
than−30 dB (one-way beampattern) is usually desirable. In
the far-field CW case, the two-way beampattern is obtained by
multiplying the transmit and receive beampatterns. This is also
the case at the focal point for a focused array, and to a first order
approximation it is also valid for the pulsed case [3]. Thus a
two-way sidelobe level of−60 dB is desirable.

A. Sparse Array Optimization

Several different approaches to overcome the high sidelobe
level of random arrays have been proposed. They can be dis-
tinguished by whether the element distributions are random or
random-like, or periodic, but it is even more useful to distinguish
by whether the receiver and transmit element configurations are
the same or different.

There is a long history in the radar literature for analysis of
beampatterns for sparse arrays when the receiver and transmit-
ter elements are the same. In the far-field CW case, this is
equivalent to analysis of the one-way beampattern. In ultra-
sound imaging, this was the approach used in [7] where it was
partially confirmed that Steinberg’s results for average one-way
sidelobe levels can be squared to estimate the levels for the two-
way beampattern for pulsed 2-D arrays. In [8] an optimization
of element placement was reported. The optimization criterion
was to find the best approximation to the full array’s two-way
CW beampattern. The solution was an optimal thinning pattern
with random-like appearance.

When one allows the transmit and receive thinning patterns
to be different, there is some more freedom. Davidsenet al.
[9] did a search for the random-like thinning patterns that op-
timized the beam profile in the focal range of interest by min-
imizing the peak sidelobe level and the beamwidth. Instead of
a search or optimization, it has been proposed to use periodic
thinning patterns on both receive and transmit. The desired two-
way beampattern is obtained by letting the transmit zeros cancel
the receive grating lobes and vice versa, based on the first order
approximation to the far-field CW case. This principle has pre-
viously been proposed for design of 1D array systems and was
applied to 2D arrays in [3]. The method has been further devel-
oped by Lockwoodet al. [10], [11] and good results from imag-
ing of a phantom using a 1D array have been presented. For the
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pulsed case and away from the focal point, this approach gave
even better results than a random sparse array. Others [12] have
reported that in 2D array simulations the random-like and peri-
odic thinning approaches have given comparable performance.

Although much interest has been generated by the periodic
thinning approach, it is believed that there is still more potential
for performance improvements by optimizing random-like ele-
ment distributions. This work is an attempt to find the properties
of the random-like thinning patterns. It is based on optimiza-
tion of the one-way response by either changing the element
apodization or the element positions or both.

There have been previous attempts to apodize sparse arrays.
This has been reported to have no effect, but this was because
regular apodization functions were sampled [7]. In [13] we
showed that it is possible to find apodization functions or ele-
ment weights for a given thinning pattern that give the beampat-
tern optimal properties. An important point is that these func-
tions have little or no resemblance with the corresponding full
array’s apodization function. A limitation of this work was that
is was not possible to optimize the full angular extent of the
sidelobe region for a sparse array. This was due to the algo-
rithm used (Remez exchange algorithm). In [14] this approach
was extended from 1D to 2D arrays, and improved results were
reported. By using the linear programming algorithm for opti-
mization, it was possible to optimize the whole sidelobe region.
Due to the properties of 2D array elements (high impedance,
low sensitivity) it is undesirable to apodize the elements of a 2D
transducer array. The goal of this work is, therefore, not pri-
marily to propose practical weighting functions, but rather the
optimization methods are used to find properties of the beam-
pattern of such arrays. Of special interest is to determine the
minimum peak sidelobe level and compare it with the predic-
tions from random theory. Finally a method is also described
for optimizing the element positions of a random-like sparse ar-
ray. This optimization gives results that are more directly useful
in an array design. Other related work on joint optimization of
thinning pattern and weights has been reported in the context of
sonar arrays in [15] and [16]. Like all of the previously cited
papers our approach is based on allowing elements only on a
fixed underlying grid of positions as opposed to what was done
in [17].

The optimization criterion used is also very important. In
many cases a minimization of the maximum sidelobe is used.
This is a criterion which is related to imaging of a strong re-
flecting point target in a nonreflecting background containing
other point targets. An alternative criterion is to minimize the
integrated sidelobe energy. In an imaging system, this is related
to imaging of a nonreflecting area like a cyst or a ventricle in
a background of reflecting tissue. Some results on weight op-
timization for 1D arrays using this criterion and the quadratic
optimization algorithm of [18] have been reported in [19]. Both
of the optimization criteria are relevant to clinical ultrasound
imaging. In this paper we find the properties of arrays based
on minimization of the peak sidelobe, because this has been the
most common criterion until now, and it is straightforward to
formulate optimization algorithms for it.

B. The Beam Pattern of a Planar Array

The far-field continuous wave (CW) beampattern of an array
with an even number,L = 2N , of omnidirectional elements is
given as [20]:

W (~k) =
2N∑
n=1

wne
j~k·~xn (1)

where the array element locations are~xn ∈ R3 with the corre-
sponding weightswn ∈ R. The wavenumber vector~k ∈ R3 has
amplitude|~k| = 2π/λ whereλ is the wavelength.

Let the unit direction vector be~sφ,θ = (sinφ cos θ,
sinφ sin θ, cosφ) in rectangular coordinates (Fig. 1). Then the
wavenumber vector is~k = 2π~sφ,θ/λ.

The elements of a 2D planar array are located in thexy-plane
with elementn at~xn = (xn, yn, 0). Thus the beampattern is:

W (kx, ky) =
2N∑
n=1

wne
j(kx·xn+ky·yn) (2)

The beampattern has the following properties:
• For real weights, the beampattern is conjugate symmetric, i.e.
W (kx, ky) = W ∗(−kx,−ky).
• Symmetric arrays with symmetric weights give a real beam-
pattern.

When the two properties are combined, the beampattern for
an array with an even number of elements is real and equal to:

W (φ, θ) = 2
N∑
n=1

wn cos

(
2π

λ
~sφ,θ · ~xn

)
(3)

= 2
N∑
n=1

wn cos

(
2π

λ
sinφ(xn cos θ+ yn sin θ)

)
which gives the array response to a monochromatic wave from
direction(φ, θ). A similar expression for an odd number of ele-
ments can easily be found.

Using matrix notation one gets

W (φ, θ) = v(φ, θ)w (4)

wherew = [w1 · · · wN ]
T are the element weights and the ker-

nel row vector is given as:

v(φ, θ) =

[
2 cos(

2π

λ
~sφ,θ · ~x1) , · · · , 2 cos(

2π

λ
~sφ,θ · ~xN)

]
.

(5)

II. OPTIMIZATION OF BEAMPATTERN

Two optimization problems will be formulated as linear pro-
gramming problems. The first is a minimization of the maxi-
mum sidelobe level by varying element weights. The second
problem gives rise to a mixed integer linear programming prob-
lem which is considerably harder to solve. It is a minimiza-
tion of the number of active elements and an optimization of the
weights in order to achieve a specific maximum sidelobe level.
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A. Optimization of Element Weights

The objective is to minimize the sidelobe level in a continuous
regionR of theφθ-plane (Fig. 2), which is the equivalent of a
filter’s stopband. Since the beampattern is symmetric about the
θ-axis;W (−φ, θ) = W (φ, θ), only the right halfplane is neces-
sary for the optimization. The passband in this case is minimal
in the sense that it consists only of theθ-axis.

The element weight optimization problem is to minimize the
beampattern in the stopband by varying the element weight vec-
tor subject to the constraint of having a normalized mainlobe.
This problem may be formulated and solved as a linear program-
ming problem as discussed next.

A linear programming (LP) problem is the minimization of
a linear objective function subject to a (finite) set of linear in-
equalities and linear equations [21], [22]. In matrix form an LP
problem may be written as

minimize cT x
subject to Ax ≤ b (6)

wherex is a vector ofn variables, and the data is given by the
m × n-matrix A and the vectorsc andb. Today large-scale LP
problems can be solved efficiently on standard computers with
good algorithms and implementations.

The stopband regionR is discretized into a set ofM grid-
pointsR = {(φm, θm) : m = 1, . . . ,M }. Introduce theM×N
matrixV with themth row being theN -dimensional row vector
v(φm, θm) given in (5), orvm for short. For a given element
weight vectorw the maximum sidelobe levelδsl on the discrete
setR is defined as:

δsl(w) = max{|vmw| : 1 ≤ m ≤M} =

max{|
∑N
n=1 vm,nwn| : 1 ≤ m ≤M}.

(7)

Thus the element weight optimization problem is to minimizeδ
subject to|vmw| ≤ δ for 1 ≤ m ≤M , and a normalization cor-
responding to a unit response for zero azimuth angle,v0w = 1,
wherev0 = [1, . . . , 1]. This is a nonlinear optimization prob-
lem, but a standard reformulation [22], may be used to turn it
into an LP problem. Consider the LP problem:

minimize δ
subject to
(i) v0w = 1;
(ii) vmw ≤ δ for m ≤M ;
(iii) −vmw ≤ δ for m ≤M.

(8)

The variables arew andδ. This problem is of the form (6) with

x =
[

w δ
]T
, c =

[
0 1

]T
,

A =


v0 0
−v0 0

V −1
−V −1

 , b =


1
−1

0
0


where0 is a vector of all ones.

In an optimal solution of (8) the variableδ equals the mini-
mum value ofδsl(w) in (7). This problem is, therefore, a min-
max problem. Thus the element weight optimization problem
may be solved as the LP problem (8).

A very fast and reliable LP solver, CPLEX [23], was used.
This is an optimization library for solving linear programming
and integer linear programming problems. The problem (8) may
be solved for problems corresponding to 2D arrays with thou-
sands of elements where several hundreds of them are active.
Thus, the main work of the implementation is to generate the
correct entries in the coefficient matrix and vectors. The simplex
algorithm (a part of CPLEX) was used for solving the problem.
In order to speed up the algorithm (roughly by a factor of 3, it
turned out) one should solve the dual problem of (8) or, equiv-
alently, use the dual simplex algorithm. Briefly, the dual prob-
lem is an associated LP problem where the role of variables and
constraints are interchanged in a certain sense (for a more accu-
rate description, see [21], [22]). The main point is that, while
the problem (8) has2M + 1 constraints, the dual problem has
only N constraints (recall thatM is considerably larger than
N ). Now, it is the general experience (also confirmed in theory)
that the main contribution to computational time of the simplex
algorithm is caused by the number of constraints; the number
of variables are not that important. Thus, one can solve the dual
problem a lot faster than (8), and the optimal solution of (8) may
also be found directly out of this.

The routines in the Optimization toolbox in MATLAB [18]
were also used to solve the weight optimization problem and
worked well for 1D arrays, except that for larger problems
CPLEX was considerable faster, as expected.

It should be mentioned that more specialized algorithms for
solving the element weight optimization problem may be de-
veloped. It is, for instance, straightforward to change the norm
from the min-max to the sum of absolute values. This may be
used for minimization of the average sidelobe level. Another
natural extension is to assign different sidelobe requirements to
different angles. One could for instance take element directivity
into account by allowing the angles far away from the mainlobe
to have higher sidelobes than the smaller angles. This can be
achieved by using an angle-dependent error weighting in (8). It
is also possible to develop more efficient algorithms by elim-
inating some of the variables. It should be pointed out, how-
ever, that for the problems in this study the algorithms described
above were all suitable.

B. Optimization of Element Layout and Weights

The simultaneous weighting and thinning problem is a natu-
ral extension of the element weighting problem in the previous
section. Since the objective is to minimize the number of array
elements, a binary variablexn ∈ {0, 1} is introduced for each
element. The purpose is to letxn = 1 indicate that the element
is present, andxn = 0 indicates that the element is removed by
thinning.

Note that the objective is now to minimize the number of ar-
ray elements, rather than minimizing the sidelobe levelδ. The
sidelobe level is consequently a fixed parameterδ̄ in this prob-
lem as in [15]. Thus one considers the element weighting and
thinning optimization problem: minimize the number of array
elements subject to constraints assuring a normalized mainlobe
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and fixed sidelobe level. Consider the following problem

minimize
∑
n xn

subject to
(i) v0w = 1;

(ii)

[
V
−V

]
w ≤ δ̄1;

(iii) γ1xn ≤ wn ≤ γ2xn for n ≤ N ;
(iv) xn ∈ {0, 1} for n ≤ N.

(9)

Here the constraints (i) and (ii) are as before except thatδ̄ is
given, while (iii) gives a logical link between the layout variable
xn and the weight variablewn. In order to vary the weightwn
between the two boundsγ1 andγ2 one has to setxn to 1. The
actual values of the parametersγ1 andγ2 may be set depend-
ing on the specific problem studied. For instance, interesting
choices areγ1 = 0 (nonnegative weights),−γ1 = γ2 > 0 (sym-
metric bounds), or positive weights withγ2/γ1 restricted to the
maximum allowed dynamic range of the apodization hardware.

The problem (9) is a mixed integer linear programming prob-
lem, i.e., a linear programming problem where some or all vari-
ables are required to be integral. This particular problem may
be written in matrix form similarly to what was shown in the
previous section. In general, mixed integer LP problems are
computationally very difficult optimization problems. Even this
particular problem is difficult, i.e., to find an optimal solution
seems hard also for moderately-sized problems. This is mainly
due to the complex structure of the matrixV which comes in
combination with the integrality constraints on the layout vari-
ablesxn. In practice it turns out that it is only realistic to solve
problems of size corresponding to 1D arrays so far. At present
only simplified heuristic methods may be used to solve for the
larger problems [8], [16]. One important use of the mixed inte-
ger linear programming algorithm is that it may be used to com-
pare the quality of different simplified heuristic methods for the
same problem.

Small-scale problems may be solved by the branch and bound
method in CPLEX [23]. This is a general method for solving
mixed integer linear programming problems in which the feasi-
ble region is gradually divided into finer subregions for which
a linear programming problem is solved. To (hopefully) control
the combinatorial explosion of these subdivisions, one cuts off
in subdivisions that cannot lead to a further improvement of the
current best solution.

For larger problems CPLEX will run “forever,” but even early
in this process it may find good solutions satisfying (9), that
may be of interest. The problem, however, is to prove that these
solutions are the optimal ones.

The standard algorithms in CPLEX were used for solving the
element weighting and thinning optimization problem. Thus a
main purpose here was to point out the usefulness of formulat-
ing this problem as a mixed integer programming problem. Fur-
ther algorithmic work is required to solve larger problems, or to
solve variations of this problem. Such variations may be to solve
for the minimum maximum sidelobe level for a fixed number of
active elements when the weights and the thinning pattern is al-
lowed to vary, or when only the thinningpattern is varied and the
active elements are unweighted. Some work along these lines is
in progress.

III. EXAMPLES

A. 1D Sparse Array

A 3.5 MHz array with half wavelength spacing, 64 elements
and Gaussian thinning to 48 elements was optimized. An exam-
ple of the beam patterns before and after optimization are shown
in Fig. 3.

Several such optimizations were performed for various
beamwidths and thinning patterns. For each thinning pattern,
the start angleφ1 (the boundary between the mainlobe and side-
lobe regions) was varied and an optimization was performed.
The resulting peak sidelobe and−6 dB beamwidth is plotted in
Fig. 4. Each curve is the result of between 5 and 18 such opti-
mizations. Fig. 4 shows two dash-dot lines which are the results
of optimizing the weights to give uniform sidelobe levels for
the full arrays. The left-hand one is the performance for a full
64-element array, and the right-hand one for a full 48-element
array. Only thinned arrays with performance better than the 48-
element curve are of interest. All the remaining curves are for
a 64-element array thinned to 48 elements. The upper solid line
shows performance for the worst symmetric thinning that could
be found, giving a minimum sidelobe level of about−13 dB.
The two dashed lines are two realizations of random Gaussian
thinning. Both of them start leveling off at−17 to−18 dB side-
lobe level. This is in the vicinity of the mean sidelobe level
predicted for a random array given as the inverse of the number
of elements which is−16.8 dB. However, with the optimization
used here this value is achieved as a peak value instead.

Finally the two lower solid curves are the results from opti-
mizing the weights for two near-optimal thinning patterns. They
were obtained with the combined weight and layout optimiza-
tion algorithm with sidelobe targets of−18 and−19.5 dB. The
other values in their curves were obtained by keeping the lay-
out and then optimizing the weights only for different values of
start-angles in the optimization. With such thinnings the peak
sidelobe level can be improved down to the range−17 to −20
dB.

All the thinning patterns are shown in Table I. Examples of
the weights required are shown in Fig. 5. They are quite differ-
ent from the much smoother weight functions that are obtained
for full arrays (see the Dolph-Chebyshev weights of Figs. 46-49
of [24]).

B. 2D Sparse Arrays

A 2D array for 3.5 MHz with 12 by 12 elements with half
wavelength spacing in both dimensions was then considered.
The array is inscribed in a circle giving 112 elements. Random
thinning to 64 elements (57%) and optimization of the weighting
gives a beampattern with a sidelobe level of−12 to−15 dB. The
procedure for finding the optimal thinning and weighting was
then used with a sidelobe target of−19.5 dB. The optimized
layout was then input with varying start-angles in the weight
optimization algorithm. The peak sidelobe level can now be re-
duced down to−20 to−22 dB (Fig. 6). Each curve is the result
of between 5 and 8 optimizations with different start values for
the azimuth angles. The sidelobe value should be compared to
the value predicted for mean sidelobe level of1/64 = −18.1
dB, and shows that there is a potential of getting a peak value
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which is 3 dB lower than that predicted for the mean if opti-
mized thinning patterns can be found. This is about the largest
array size where optimized element layouts can be found with
reasonable use of computer resources (less than about 4 hours
CPU time and some hundreds of Mbytes of RAM). The four
element layouts are shown in Fig. 7.

Finally, in order to show the ability of the weight optimization
algorithm to deal with large arrays, a 64 by 64 element array
with half wavelength spacing at 3.5 MHz is considered. The
array is inscribed in a circle giving a total of 3228 elements. The
array is randomly thinned to 404 elements (87.5 % thinning)
as shown in Fig. 8 and the response is optimized. The size of
the problem is to find 202 weights plus the sidelobe level using
11520 control points for sidelobe control. The result is shown
in Fig. 9. The peak sidelobe is reduced from−9.5 dB to−17.4
dB with only a slight increase in the beamwidth. The four peaks
before optimization were located at approximatelyφ = 64◦ and
at θ = ±26◦ andθ = ±62◦. Compared to the predicted mean
value of1/404 = −26.1 dB, there is still some way to go before
the peak is down to that level. Based on the previous example,
this is due to the properties of the thinning pattern, which was
selected at random and could not be optimized due to the large
number of elements.

The optimization has led to an increase in the average from
−28.8 dB to−26.1 dB. This indicates that the sidelobe distri-
bution has become more compact: lower peak value and higher
mean. The increase in the mean seems to be the price to pay for
getting the peak value down at least as long as a large increase
in beamwidth is not allowed. As indicated previously, the LP
algorithm could have been formulated as a minimization of the
mean rather than the peak.

IV. D ISCUSSION

A. Focusing and Pulsing

In the case of focusing, the equations for the beampattern (1
- 4), must be expanded with terms that include the focal depth.
The optimization region will no longer only be described by a
region in angles as in Fig. 1, but also a region in depth. How-
ever, near the focus, the farfield assumption is valid. It is our
experience that, if there are sidelobe peaks in the farfield beam-
pattern, then they will also be evident over a range of depths.
However, the focusing will change the delays or phases applied
to the array elements, and this will influence the optimality of
the solutions presented here. As a parenthesis it may be men-
tioned that it is possible to obtain optimal solutions at a single
frequency by only changing the phases [25].

The issue of pulsing with broad bandwidth pulses is also im-
portant. In this paper, the assumption is that there is only a sin-
gle frequency present. In general pulsing will tend to smear out
sidelobe peaks. To some extent this happens to the sparse arrays
also, but the peaks are still there, although smaller, after pulsing.

B. Optimization of Steered Arrays

For optimization over the elevation, azimuth space the side-
lobe level over the region defined by all elevation angles and
with the azimuth angle in the range[φ1, π/2] should be min-
imized, whereφ1 is the boundary between the mainlobe and

sidelobe regions. This corresponds to an annular region in~k-
space of radius2π/λ centered at the origin (Fig. 10). Due to the
sampled nature of the aperture, the beampattern will be repeated
for argument ofkx andky larger than2π/λ when the pitch is
λ/2.

When steering is applied to the array, the beampattern is
W (kx − k0

x, ky − k
0
y) [20]. The visible region will shift to have

its center at the steering direction(k0
x, k

0
y), while the optimized

region from the array is still centered at the origin. There is,
therefore, no longer full overlap between the optimized region
and the visible region. In order to deal properly with steering,
one must, therefore, optimize a larger region.

For a 1D array this is greatly simplified. The only relevant
variable iskx, and when there is steering, the argument in the
beampattern is

kx − k
0
x = 2π/λ · (sinφ− sinφ0) = 2π/λ · u (10)

First there is always symmetry with respect tou = 0. When,
in addition the element locations are all on a grid with distance
λ/2, there will also be symmetry with respect tou = 1. In
this case optimization over the regionu ∈ [0, 1] ensures that the
array can be steered to any azimuth angle [16]. If the pitch is
less thanλ/2, it is simple to find from this argument that the
optimization region must be larger thanu ∈ [0, 1].

It turns out that the achievable minimum sidelobe levels for
2D arrays are comparable independent of whether the array is
optimized for steering or not, although the actual element lay-
outs or weights may be different. The results of this paper
are therefore representative of those that can be obtained when
steering is taken into account also.

V. CONCLUSION

A method based on linear programming for finding the opti-
mum weights for minimum peak sidelobe level and a method
using mixed integer linear programming for finding both the
weights and the element layout have been presented. They have
been used to find properties of sparse arrays with random thin-
ning and arrays with optimized thinning. The properties are
found by trading off sidelobe level for beamwidth.

Theory for random arrays predicts a mean sidelobe level
given by the inverse of the number of elements. In practice how-
ever, the sidelobe level fluctuates much around this mean. With
optimization of the weights, it is possible for the peak value to
come quite close and even below the predicted value for the
mean, especially for 1D arrays. Even for 2D sparse arrays a
large reduction in peak sidelobe level is achieved. However,
when the thinning pattern is optimized also, solutions which
have lower peak sidelobe level than the inverse number of el-
ements can be found both in the 1D and the 2D cases.

It is also shown that for 2D sparse phased arrays withλ/2 grid
spacing, steering requires a larger region in the wavenumber do-
main where sidelobes should be optimized than for an unsteered
array. This is different from a 1D array where steering does not
add any new constraints.
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Fig. 3. Beampattern before and after optimization for 64-element array ran-
domly thinned to 48 elements. Thinning and weights are shown in the center
panel of Fig. 5.
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Fig. 4. Sidelobe level as a function of beamwidth for uniform sidelobe level 64-
element and 48-element full arrays (dash-dot lines), for two realizations of
random 25% thinning of the 64-element array (dashed lines), and for worst-
case and optimally 25% thinned arrays (solid lines).
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Elements enabled Comment
11011101110111011101110111011101Worst-case symmetric array
11010110110110101111101111111011Random 1 (upper dashed curve)
11011011011111111001010111110111Random 2 (lower dashed curve)
10111100011001111101101111111111Optimized 1, (-18 dB) (upper solid curve)
00101001111101111011101111111111Optimized 2, (-19.5 dB) (lower solid curve)

TABLE I

LEFT-HAND PART (32 ELEMENTS) OF SYMMETRIC64-ELEMENT ARRAYS. ALL REFERENCES TO RELATIVE POSITION ARE TO THE RIGHT-HAND PART OF

CURVES IN FIG. 4
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Fig. 5. Weights found after optimization from 2 degrees for three different
element layouts. The beampattern of the random layout is shown in the
lower panel of Fig. 3.
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Fig. 6. Sidelobe level as a function of beamwidth for several weight-optimized
uniform sidelobe cases: 112-element full array (dash-dot line) and three
realizations of random thinning to 64 elements (dashed lines). The best
result is obtained for a layout-optimized 62-element thinning (solid line).
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1 having the highest peak sidelobe level for large beamwidths.
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Fig. 9. Beampattern for 64 by 64 element array first inscribed in a circle (3228
elements) and then thinned by 87.5% (404 active elements). The unweighted
(top) and the optimally weighted (bottom) responses are shown as a function
of azimuth angle and seen from the side in 3D space, i.e. the peak values
over all elevation angles are shown.
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