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Abstract � A method is presented which opti-

mizes weights of general planar 1D and 2D sym-

metric full and sparse arrays.

The objective is to �nd a weighting of the array

elements which gives the minimum sidelobe level

of the array pattern in a speci�ed region - the stop-

band. The sidelobe level is controlled on a discrete

set of points from this region. The method min-

imizes the Chebyshev norm of the sidelobe level.

The method is based on linear programming and

is solved with the simplex method.

The method removes the large �uctuation in

sidelobe level which characterizes random sparse

arrays. Examples of optimal weighted 1D and 2D

planar arrays are presented.

I. Introduction

2D arrays in ultrasound represent a technological chal-
lenge not the least because of the high channel count [7].
For this reason sparse array methods, where elements are
removed by thinning, are considered to be necessary [8].
However this will result in an often unacceptably high
sidelobe level. Two di�erent approaches to overcome this
problem have been proposed. The �rst is optimization of
the two-way beampattern without consideration for the
individual transmit and receive beampatterns [6]. The
second is to optimize the transmit and receive beampat-
terns independently.
In the �rst approach the transmit energy may often be

spread over a large angular region. In medical applications
the peak intensity is limited by safety concerns and thus
it may not be possible to achieve a good enough signal
to noise ratio. In addition the beam sharpening result-
ing from both a narrow transmit and receive beam is not
achieved.
In the second approach, the one-way beampattern of

the thinned array is optimized. This has been done by
searching for the thinning pattern that minimizes the peak
sidelobe level [3], or that is the best approximation to the
full array's beampattern [5].
In [4] it was proposed instead to optimize the beam-

pattern by �nding the best element weights for a given

thinning pattern. In this paper the results are extended
from 1D to 2D arrays and improved results are reported
since linear programming is used for the optimization. In
this way a constrained optimization is performed where a
speci�c beamwidth is achieved while minimizing the max-
imum sidelobe.

A. The beam pattern of a planar array

The beampattern of a 2N element array is given as

W (~k) =
2NX
n=1

wne
j~k�~xn (1)

where the array element locations are ~xn 2 R3 with the
corresponding weights wn 2 R. The wavenumber vector
~k 2 R3 has amplitude j~kj = 2�=� where � is the design
wavelength.

The elements of a 2D planar array are located in the
xy-plane with element n at ~xn = (xn; yn; 0). De�ne also
the unit direction vector with the following rectangular
coordinates ~s�;� = (sin� cos �; sin� sin �; cos�).

To ensure a real beampattern and a real optimization
problem, symmetric arrays with symmetric real weighting
are considered [9]. The beampattern is:

W (�; �) = 2
NX
n=1

wn cos

�
2�

�
~s�;� � ~xn

�
(2)

= 2
NX
n=1

wn cos

�
2�

�
sin�(xn cos � + yn sin �)

�

which gives the array response to a monochromatic wave
from direction (�; �) in space (�gure 1).

Using matrix notation one gets:

W (�; �) = v(�; �)Tw (3)

where w = [w1 � � � wN ]
T are the element weights

and the kernel vector v(�; �) is given as v(�; �) =�
2cos(2�

�
~s�;� � ~x1) � � � 2cos(

2�
�
~s�;� � ~xN )

�T
.
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Figure 1: A 2D planar array with coordinate systems.

II. Optimization problem

The objective is to minimize the sidelobe level in a con-
tinuous region R of the ��-plane (�gure 2), which is the
equivalent of a �lter's stopband. Since the beampattern
is symmetric about the �-axis; W (��; �) =W (�; �), only
the right halfplane is left for the optimization. The pass-
band in this case is minimal in the sense that it consists
only of the �-axis.

A. Optimization formulation

The optimization problem may now be stated loosely as

Minimize array pattern level in stopband
w

Subject to normalized array pattern level
in passband

(4)

The stopband region R is discretized intoM gridpoints
R = f(�1; �1) � � � (�M ; �M)g. The absolute array pattern
level �s on the discrete set R is de�ned as

�s = max
�;�2R

jW (�; �)j (5)

A more formal optimization formulation of (4) is now
obtained with (5)

Minimize �s
w

Subject to W (0; �) = 1
jW (�; �)j � �s 8 (�; �) 2 R

(6)

This optimization problem can be transformed into a
linear programming problem

Minimize cTx

Subject to Ax � b

(7)
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Figure 2: The optimization region R in the ��-plane.

The problem in (6) may be written in standard form
(7) by introducing block matrices for c;x;A and b. Let
the variable vector x consist of the weights w and the
array pattern level indicator �s. The full linear program
is stated as

Minimize
�
0TN 1

� " w

�s

#

w

Subject to

2
666664

1TN 0

-1TN 0

v(�; �)T �1

�v(�; �)T �1

3
777775

"
w

�s

#
�

2
666664

1

�1

0

0

3
777775

8 (�; �) 2 R

(8)

where 0TN and 1TN are row vectors withN elements equal
to 0 and 1 respectively.

B. Duality

Every linear program has another program associated
with it. One of them is called the primal problem and
the other the dual problem [1]. From linear programming
theory, the duality theorem assures that if an optimal so-
lution exists to either of them, then the other also has an
optimal solution and the objective value coincides.
Since the solution to both programs are obtained by

solving either one, it may be advantageous to solve the
dual program rather than the primal itself.
The full linear program in (8) has an A matrix with

2M +2 rows and N +1 columns. M is the number of dis-
crete points on R and N are half the 2N element weights
by symmetry. For most purposesM > N . With this kind



of problem it is more e�ective to solve its dual [1]

Maximize bTy

Subject to ATy = c

y � 0

(9)

where c;x;A and b is as above. The optimal solution
to the primal is established as a transform of the optimal
dual solution. Let y� be an optimal basic solution to the
dual problem. Then an optimal solution x� to the primal
problem is

x� = A�1

0
b (10)

A0 consists of the rows fromA corresponding to the basic
variables in y�.

III. Examples

A. 1D sparse array

A 3.5 MHz array with half lambda spacing, 64 elements
and gaussian thinning to 48 elements was optimized. The
beam patterns before and after optimization are shown
in �gure 3. Several such simulations were performed for
various beamwidths and thinning patterns. The result is
shown in �gure 4. The curve starts leveling o� at �17 to
�18 dB sidelobe level. This is in the vicinity of the mean
sidelobe level predicted for a random array given as the
inverse of the number of elements [2] which is �16:8 dB
for 48 elements.

B. 2D sparse array

A 2D square array for 3.5 MHz with 16 by 16 elements
with half wavelength spacing in both dimensions is consid-
ered. 50% thinning gives a beam pattern with a maximum
sidelobe of �11 dB and a�6 dB beamwidth of 7-8 degrees
(like the full array). Weighting results in a reduction of
the sidelobe level to �17:7 dB with hardly any loss of
beamwidth as shown in �gure 5.
Finally a 64 by 64 element array with half lambda spac-

ing at 3.5 MHz is considered. The array is inscribed in a
circle giving a total of 3228 elements. The array is thinned
to 404 elements (87.5 % thinning) and the response is op-
timized. The size of the problem is to �nd 202 weights
plus the sidelobe level using 11520 control points for side-
lobe control. The optimization took less than 5 minutes in
CPLEX on a Silicon Graphics Power Challenge L. How-
ever to set up the problem in MATLAB took almost ten
times the time needed for optimization. The result is
shown in �gure 6. The peak sidelobe is reduced from�9:5
dB to �17:4 dB without changing the beamwidth.

IV. Conclusion

The optimization method for �nding weights is shown to
work for 1D and 2D, and full and sparse arrays. The
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Figure 3: Beampattern before and after optimization for
64 element array thinned to 48 elements.
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Linear transducers: 64 full, 25% thinnings, 48 full

Figure 4: Sidelobe level as a function of beamwidth for
64 element and 48 element full arrays (solid lines) and
for several realizations of 25% thinning of the 64 element
array (dotted lines).
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Figure 5: Beampattern for 16 by 16 element array thinned
50%. The unweighted (top) and the optimally weighted
(bottom) responses are shown from the side.
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Figure 6: Beampattern for 64 by 64 element array �rst
inscribed in a circle (3228 elements) and then thinned
by 87.5% (404 active elements). The unweighted (top)
and the optimally weighted (bottom) responses are shown
from the side.

formulation is simple, and it is simple to include additional
conditions like for instance a restriction to positive weights
only.
Theory for random arrays predicts a mean sidelobe level

given by the inverse of the number of elements. In practise
however, the sidelobe level �uctuates much around this
mean. With optimization of the weights it is possible to
come quite close to the predicted value, especially for 1D
arrays. Even for 2D sparse arrays a large reduction in
peak sidelobe level is achieved.
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